欢迎光临刘志宇 博士的个人主页
 
 
个人首页
Home
 
项目课题
Programs
 
主要教学
Teaching
 
指导学生
Students
 
学术奖励
Honors Awards
 
课题组
Research Group
 
论文著作
Publications
 



刘志宇  博士
教授
厦门大学翔安校区希平楼C3-416室
Dr. Zhiyu Liu
Professor
C3-416 Xiping Bldg, Xiangan Campus, Xiamen University, Xiamen 361102, China
Tel:+86-592-2880106
Fax:+86-592-2880107
Email:zyliu(at)xmu.edu.cn
 

论文著作 Publications

A. Peer-Reviewed Journal Papers (* corresponding author, advised student or postdoc) CV
[82] Hu Z., Liu Z., Liu X., Masuda T., Shiozaki T., Yamada H., Lin H., Huang B., and Furuya K. (2024), Intrathermocline eddies in the tropical western North Pacific: Nutrient dynamics and biogeochemical significance, submitted.
[81] Wang C., Liu Z.*, Lin H., Chen D., Yang Q., and Ni Q. (2024), A practical separation of oceanic vortical and wavy motions entangled in the SWOT satellite measurements, submitted.
[80] Zhang Q., Chen Z., Liu Z., Qu L., Lu H., Sun Y., He Q., Xu J., Gong Y., and Cai S. (2024), Wind forcing over an eddying ocean can generate a quasi-universal internal wave spectrum, submitted.
[79] Sun X., Lin H.*, Liu Z.*, Hu Z., Yu J., and Dai M. (2024), A modified thermal lag correction method for glider-based salinity measurements, in revision.
[78] Zhou T., Liu Z.*, Lin H., and Wang C. (2024), On the contribution of internal gravity waves to horizontal dispersion in the ocean, in revision.
[77] Wang C., Liu Z.*, Lin H., Yang Q., and Chen D. (2024), Disentangling wavy and vortical oceanic motions in snapshots of the sea surface height and velocity, revised.
[76] Du C., Dai M., Liu Z., Kao S.-J., Hu Z., Cao Z., Yang J.-Y. T., Zhou K., Lin H., Yuan Z., Wang L., Huang T., Guo L., and Wang Z. (2024), Diapycnal fluxes of nutrients in the North Pacific Subtropical Gyre, Global and Planetary Change, revised.
[75] Tian Y., Bai X., Wang C., and Liu Z.* (2024), Tidal energetics in the eddying South China Sea from a high-resolution numerical simulation, Progress in Oceanography, revised.
[74] Yang Y., Huang R. X., Liang X. S., Liu Z., Hu J., Zhao Y., and Fu G. (2024), The causal relation within air–sea interaction as inferred from observations, Journal of Climate, 37(24), 6713–6727.
[73] Tu J., Wu J., Fan D., Liu Z., Zhang Q., and Smyth W. (2024), Shear instability and turbulent mixing by Kuroshio intrusion into the Changjiang river plume, Geophysical Research Letters, 51(20), e2024GL110957.
[72] Cao Z., Liu Z.*, Wang D., Wang J., Lin H., and Zhang F. (2024), Scaling the diurnal mixing/mixed layer depth in the tropical ocean: A case study in the South China Sea, Journal of Geophysical Research: Oceans, 129(9), e2024JC021296.
[71] Cao A., Liu Q., Zhang J., Shiller A.M., Cai Y., Zhang R., Gilbert M., Guo X., and Liu Z. (2024), Dissolved rare earth elements in the North Pacific Subtropical Gyre: Lithogenic sources and water mass mixing control, Geochimica et Cosmochimica Acta, 372, 42–61.
[70] Yuan Z., Browning T.J., Du C., Shen H., Wang L., Ma Y., Jiang Z.-P., Liu Z., Zhou K., Kao S.-J., and Dai M. (2023), Enhanced phosphate consumption stimulated by nitrogen fixation within a cyclonic eddy in the Northwest Pacific, Journal of Geophysical Research: Oceans, 128(11), e2023JC019947.
[69] Xiao X., Zhou C., Yang Q., Jing Z., Liu Z., Yuan D., Xu Z., Zhao W., and Tian J. (2023), Diapycnal upwelling over the Kyushu-Palau Ridge in the North Pacific Ocean, Geophysical Research Letters, 50(18), e2023GL104369.
[68] Liu G., Chen Z., Lu H., Liu Z., He Q., He Y., Xu J., Gong Y., and Cai S. (2023), Energy transfer between mesoscale eddies and near-inertial waves from surface drifter observations, Geophysical Research Letters, 50(16), e2023GL104729.
[67] Liu L., Chen M., Wan X.S., Du C., Liu Z., Hu Z., Jiang Z.-P., Zhou K., Lin H., Zakem E.J., Qin W., Dai M., and Zhang Y. (2023), Reduced nitrite accumulation at the primary nitrite maximum in the cyclonic eddies in the western North Pacific subtropical gyre, Science Advances, 9(33), eade2078.
[66] Robertson R., Zhao C., Wang W., Xu Z., and Liu Z. (2023), A case study off the Tiwi Islands and the Coburg Peninsula: Baroclinic on one side and barotropic on the other, Progress in Oceanography, 216, 103057. https://doi.org/10.1016/j.pocean.2023.103057
[65] Hu Z., Lin H.*, Liu Z.*, Cao Z., Zhang F., Jiang Z., Zhang Y., Zhou K., and Dai M. (2023), Observations of a filamentous intrusion and vigorous submesoscale turbulence within a cyclonic mesoscale eddy, Journal of Physical Oceanography, 53(6), 1615–1627.
[64] Bai X., Lamb K.G., Liu Z.*, and Hu J.* (2023), Intermittent generation of internal solitary-like waves on the northern shelf of the South China Sea, Geophysical Research Letters, 50(6), e2022GL102502.
[63] Wang C., Liu Z.*, and Lin H. (2023), On dynamical decomposition of multiscale oceanic motions, Journal of Advances in Modeling Earth Systems, 15(3), e2022MS003556.
[62] Wang C., Liu Z.*, and Lin H. (2023), A simple approach for disentangling vortical and wavy motions of oceanic flows, Journal of Physical Oceanography, 53(5), 1237–1249.
[61] Yuan Z., Browning T.J., Zhang R., Wang C., Du C., Wang Y., Chen Y., Liu Z., Liu X., Shi D., and Dai M. (2023), Potential drivers and consequences of regional phosphate depletion in the western subtropical North Pacific, Limnology and Oceanography Letters, 8(3), 509–518.
[60] Xie X., Wang Y., Liu Z., Liu X., Chen D., and Zhang D. (2023), Observation of near-inertial waves in the bottom boundary layer of an abyssal seamount, Journal of Physical Oceanography, 53(2), 635–645.
[59] Lin H., Xu S., Liu Z.*, Hu J.*, Zhang F., and Cao Z. (2023), Scale-dependent temperature-salinity compensation in frontal regions of the Taiwan Strait, Journal of Geophysical Research: Oceans, 128(2), e2022JC019134.
[58] Yang W., Wei H., Liu Z., and Zhao L. (2023), Widespread intensified pycnocline turbulence in the summer stratified Yellow Sea, Journal of Geophysical Research: Oceans, 128(1), e2022JC019023.
[57] Shen D., Wang J., Liu Z., and Wang F. (2023), Mixing in the upper western equatorial Pacific driven by westerly wind event, Frontiers in Marine Science, 9, 907699. https://doi.org/10.3389/fmars.2022.907699
[56] Lu H., Chen Z., Xu K., Liu Z., Wang C., Xu J., Gong Y., and Cai S. (2022), Interannual variability of near-inertial energy in the South China Sea and western North Pacific, Geophysical Research Letters, 49(24), e2022GL100984.
[55] Chen Z., Liu G., Liu Z., Chen S., Lu H., Xu J., Gong Y., Xie J., He Y., Chen J., He Y., and Cai S. (2022), Mutual enhancement of wind- and tide-induced near-inertial internal waves in Luzon Strait, Journal of Physical Oceanography, 52(12), 3259–3272.
[54] Tu J., Fan D., Liu Z., and Smyth W. (2022), Scaling the mixing efficiency of sediment-stratified turbulence, Geophysical Research Letters, 49(13), e2022GL099025.
[53] Liu C., Feng L., Köhl A., Liu Z., and Wang F. (2022), Wave, vortex and wave-vortex dipole (instability wave): three flavors of the intra-seasonal variability of the North Equatorial Undercurrent, Geophysical Research Letters, 49(11), e2021GL097239.
[52] Wang C., Liu Z.*, and Lin H.* (2022), Interpreting consequences of inadequate sampling of oceanic motions, Limnology and Oceanography Letters, 7(5), 385–391.
[51] Cao Z., Hu Z., Bai X., and Liu Z. (2022), Tracking a rain-induced low-salinity pool in the South China Sea using satellite and quasi-Lagrangian field observations, Remote Sensing, 14(9), 2030. https://doi.org/10.3390/rs14092030
[50] Liu C., Huo D., Liu Z., Wang X., Guan C., Qi J., and Wang F. (2022), Turbulent mixing in the barrier layer of the equatorial Pacific Ocean, Geophysical Research Letters, 49(5), e2021GL097690.
[49] Yang W., Wei H., Liu Z., and Li G. (2021), Intermittent intense thermocline shear associated with wind-forced near-inertial internal waves in a summer stratified temperate shelf sea, Journal of Geophysical Research: Oceans, 126(12), e2021JC017576.
[48] Miao M., Zhang Z., Qiu B., Liu Z., Zhang X., Zhou C., Guan S., Huang X., Zhao W., and Tian J. (2021), On contributions of multiscale dynamic processes to the steric height in the northeastern South China Sea as revealed by moored observations, Geophysical Research Letters, 48(14), e2021GL093829.
[47] Bai X., Lamb K.G., Hu J.*, and Liu Z.* (2021), On tidal modulation of the evolution of internal solitary-like waves passing through a critical point, Journal of Physical Oceanography, 51(8), 2533–2552.
[46] Du C., He R., Liu Z., Huang T., Wang L., Yuan Z., Xu Y., Wang Z., and Dai M. (2021), Climatology of nutrient distributions in the South China Sea based on a large data set derived from a new algorithm, Progress in Oceanography, 195, 102586. https://doi.org/10.1016/j.pocean.2021.102586
[45] Qiu G., Xing X., Chai F., Yan X.-H., Liu Z., and Wang H. (2021), Far-field impacts of a super typhoon on upper ocean phytoplankton dynamics, Frontiers in Marine Science, 8, 643608. https://doi.org/10.3389/fmars.2021.643608
[44] Peng S., Liao J., Wang X., Liu Z.*, Liu Y., Zhu Y., Li B., Khokiattiwo S., and Yu W.* (2021), Energetics-based estimation of the diapycnal mixing induced by internal tides in the Andaman Sea, Journal of Geophysical Research: Oceans, 126(4), e2020JC016521.
[43] Shen J., Jiao N., Dai M., Wang H., Qiu G., Chen J., Li H., Kao S.-J., Yang J.-Y., Cai P., Zhou K., Yang W., Zhu Y., Liu Z., Chen M., Zuo Z., Gaye B., Wiesner M., and Zhang Y. (2020), Laterally transported particles from margins serve as a major carbon and energy source for dark ocean ecosystems, Geophysical Research Letters, 47(18), e2020GL088971.
[42] Lin H., Liu Z.*, Hu J.*, Menemenlis D., and Huang Y. (2020), Characterizing meso- to submesoscale features in the South China Sea, Progress in Oceanography, 188, 102420. https://doi.org/10.1016/j.pocean.2020.102420
[41] Liu C., Wang X., Liu Z., Köhl A., Smyth W.D., and Wang F. (2020), On the formation of a subsurface weakly sheared laminar layer and an upper thermocline strongly sheared turbulent layer in the eastern equatorial Pacific: interplays of multiple-time-scale equatorial waves, Journal of Physical Oceanography, 50(10), 2907–2930.
[40] Tu J., Fan D., Lian Q., Liu Z., Liu W., Kaminski A., and Smyth W.D. (2020), Acoustic observations of Kelvin-Helmholtz billows on an estuarine lutocline, Journal of Geophysical Research: Oceans, 125(4), e2019JC015383.
[39] Lian Q., Smyth W.D., and Liu Z.* (2020), Numerical computation of instabilities and internal waves from in situ measurements via the viscous Taylor-Goldstein problem, Journal of Atmospheric and Oceanic Technology, 37(5), 759–776.
[38] Chen Z., Chen S., Liu Z., Xu J., Xie J., He Y., and Cai S. (2019), Can tidal forcing alone generate a GM-like internal wave spectrum? Geophysical Research Letters, 46(24), 14,644–14,652.
[37] Liu C., Fang L., Köhl A., Liu Z., Smyth W.D., and Wang F. (2019), The subsurface mode tropical instability waves in the equatorial Pacific Ocean and their impacts on shear and mixing, Geophysical Research Letters, 46(21), 12,270–12,278.
[36] 魏泽勋,郑全安,……,刘志宇,…… (2019), 中国物理海洋学研究70年: 发展历程、学术成就概览, 海洋学报, 41(10), 23–64.
[35] Bai X., Liu Z.*, Zheng Q., Hu J., Lamb K.G., and Cai S. (2019), Fission of shoaling internal waves on the northeastern shelf of the South China Sea, Journal of Geophysical Research: Oceans, 124(7), 4529–4545.
[34] Makarim S., Sprintall J., Liu Z., Yu W., Santoso A., Yan X.-H., and Susanto R.D. (2019), Previously unidentified Indonesian Throughflow pathways and freshening in the Indian Ocean during recent decades, Scientific Reports, 9, 7364. https://doi.org/10.1038/s41598-019-43841-z
[33] Zhang Z., Liu Z., Richards K., Shang G., Zhao W., Tian J., Huang X., and Zhou C. (2019), Elevated diapycnal mixing by a sub-thermocline eddy in the western equatorial Pacific, Geophysical Research Letters, 46(5), 2628–2636.
[32] Liu C., Wang X., Köhl A., Wang F., and Liu Z. (2019), The northeast-southwest oscillating equatorial mode of the tropical instability wave and its impact on equatorial mixing, Geophysical Research Letters, 46(1), 218–225.
[31] Bian C., Liu Z.*, Huang Y., Zhao L., and Jiang W. (2018), On estimating turbulent Reynolds stress in wavy aquatic environment, Journal of Geophysical Research: Oceans, 123(4), 3060–3071.
[30] Du C., Liu Z., Kao S.-J., and Dai M. (2017), Diapycnal fluxes of nutrients in an oligotrophic oceanic regime: The South China Sea, Geophysical Research Letters, 44(22), 11,510–11,518.
[29] Liu Z.*, Lian Q., Zhang F., Wang L., Li M., Bai X., Wang J., and Wang F. (2017), Weak thermocline mixing in the North Pacific low-latitude western boundary current system, Geophysical Research Letters, 44(20), 10,530–10,539.
[28] Lozovatsky I., Fernando H.J.S., Planella-Morato J., Liu Z., Lee J.-H., and Jinadasa S.U.P. (2017), Probability distribution of turbulent kinetic energy dissipation rate in ocean: Observations and approximations, Journal of Geophysical Research: Oceans, 122(10), 8293–8308. (Editor's Highlight)
[27] Lin H., Hu J., Liu Z., Belkin I.M., Sun Z., and Zhu J. (2017), A peculiar lens-shaped structure observed in the South China Sea, Scientific Reports, 7, 478. https://doi.org/10.1038/s41598-017-00593-y
[26] Wang X., Liu Z., and Peng S. (2017), Impact of tidal mixing on water mass transformation and circulation in the South China Sea, Journal of Physical Oceanography, 47(2), 419–432.
[25] Liu C., Köhl A., Liu Z., Wang F., and Stammer D. (2016), Deep-reaching thermocline mixing in the equatorial Pacific cold tongue, Nature Communications, 7, 11576. https://doi.org/10.1038/ncomms11576
[24] Liu Z.* (2016), On instability and mixing on the UK Continental Shelf, Journal of Marine Systems, 158, 72–83.
[23] Wang X., Peng S., Liu Z., Huang R.X., Qian Y.-K., and Li Y. (2016), Tidal mixing in the South China Sea: An estimate based on the internal tide energetics, Journal of Physical Oceanography, 46(1), 107–124.
[22] Wu K., Dai M., Chen J., Meng F., Li X., Liu Z., Du C., and Gan J. (2015), Dissolved organic carbon in the South China Sea and its exchange with the Western Pacific Ocean, Deep-Sea Research II, 122, 41–51.
[21] Lian Q., and Liu Z.* (2015), Turbulence and mixing in a freshwater-influenced tidal bay: Observations and numerical modeling, Science China: Earth Sciences, 58(11), 2049–2058.
[20] Bai X., Liu Z.*, Li X., and Hu J. (2014), Generation sites of internal solitary waves in the southern Taiwan Strait revealed by MODIS true-color image observations, International Journal of Remote Sensing, 35(11–12), 4086–4098.
[19] Bai X., Liu Z., Li X., Chen Z., Hu J., Sun Z., and Zhu J. (2013), Observations of high-frequency internal waves in the southern Taiwan Strait, Journal of Coastal Research, 29(6), 1413–1419.
[18] Lozovatsky I.D., Liu Z.*, Fernando H.J.S., Hu J., and Wei H. (2013), The TKE dissipation rate in the northern South China Sea, Ocean Dynamics, 63(11–12), 1189–1201.
[17] Du C., Liu Z., Dai M., Kao S.-J., Cao Z., Zhang Y., Huang T., Wang L., and Li Y. (2013), Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern South China Sea: Insights from an isopycnal mixing model, Biogeosciences, 10(10), 6419–6432.
[16] 徐鹏, 刘志宇, 毛新燕, 江文胜 (2013), 强潮狭长海湾中垂直涡黏性系数与底拖曳系数的估计, 中国海洋大学学报, 43(8), 1–7.
[15] Dai M., Cao Z., Guo X., Zhai W., Liu Z., Yin Z., Xu Y., Gan J., Hu J., and Du C. (2013), Why are some marginal seas sources of atmospheric CO2? Geophysical Research Letters, 40(10), 2154–2158.
[14] Zhu J., Hu J., and Liu Z.* (2013), On summer stratification and tidal mixing in the Taiwan Strait, Frontiers of Earth Science, 7(2), 141–150.
[13] Liu X., Huang B., Liu Z., Wang L., Wei H., Li C., and Huang Q. (2012), High-resolution phytoplankton diel variations in the summer stratified central Yellow Sea, Journal of Oceanography, 68(6), 913–927.
[12] Liu Z.*, and Lozovatsky I.D. (2012), Upper pycnocline turbulence in the northern South China Sea, Chinese Science Bulletin, 57(18), 2302–2306.
[11] Liu Z.*, Thorpe S.A., and Smyth W.D. (2012), Instability and hydraulics of turbulent stratified shear flows, Journal of Fluid Mechanics, 695, 235–256.
[10] Lozovatsky I., Liu Z.*, Fernando H.J.S., Armengol J., and Roget E. (2012), Shallow water tidal currents in close proximity to the seafloor and boundary-induced turbulence, Ocean Dynamics, 62(2), 177–191.
[09] 王凡, 胡敦欣, 穆穆, 王启, 何金海, 朱江, 刘志宇 (2012), 热带太平洋海洋环流与暖池的结构特征、变异机理和气候效应, 地球科学进展, 27(6), 595–602.
[08] Lozovatsky I.D., Roget E., Planella J., Fernando H.J.S., and Liu Z. (2010), Intermittency of near-bottom turbulence in tidal flow on a shallow shelf, Journal of Geophysical Research: Oceans, 115(C5), C05006.
[07] Liu Z.* (2010), Instability of baroclinic tidal flow in a stratified fjord, Journal of Physical Oceanography, 40(1), 139–154.
[06] Thorpe S.A., and Liu Z. (2009), Marginal instability? Journal of Physical Oceanography, 39(9), 2373–2381.
[05] Liu Z.*, Wei H., Lozovatsky I.D., and Fernando H.J.S. (2009), Late summer stratification, internal waves, and turbulence in the Yellow Sea, Journal of Marine Systems, 77(4), 459–472.
[04] Lozovatsky I.D., Liu Z., Wei H., and Fernando H.J.S. (2008), Tides and mixing in the northwestern East China Sea Part II: Near-bottom turbulence, Continental Shelf Research, 28(2), 338–350.
[03] Lozovatsky I.D., Liu Z., Wei H., and Fernando H.J.S. (2008), Tides and mixing in the northwestern East China Sea Part I: Rotating and reversing flows, Continental Shelf Research, 28(2), 318–337.
[02] Liu Z.*, and Wei H. (2007), Estimation to the turbulent kinetic energy dissipation rate and bottom shear stress in the tidal bottom boundary layer of the Yellow Sea, Progress in Natural Science, 17(3), 289–297.
[02'] 刘志宇*, 魏皓 (2007), 黄海潮流底边界层内湍动能耗散率与底应力的估计, 自然科学进展, 17(3), 362–369.
[01] Wei H., He Y., Li Q., Liu Z., and Wang H. (2007), Summer hypoxia adjacent to the Changjiang Estuary, Journal of Marine Systems, 67(3–4), 292–303.
B. Other Publications & Manuscripts
[07] Ezer T., Bonaduce A., ..., Liu Z., ... (2024), Editorial – Ocean Dynamics in 2023: overview and thank you to reviewers, Ocean Dynamics, https://doi.org/10.1007/s10236-024-01603-0
[06] 白晓林, 刘志宇 (2022), 海洋内部是一片平静的世界吗, 十万个高科技为什么(第三辑), 176–180,广东科技出版社.
[05] 刘志宇*, 白晓林, 马家骏 (2022), 南海北部陆架区内波的演变与耗散机制, 海洋科学进展, 44(4), 791–799. (invited review)
[04] Lian Q., Smyth W.D., and Liu Z.* (2022), MATLAB tools to solve the viscous Taylor-Goldstein equation for both instabilities and waves, Zenodo, https://doi.org/10.5281/zenodo.6521976
[03] Ezer T., Xu F., Liu Z., Stanev E., Wang S., and Wei J. (2021), The 11th International Workshop on Modeling the Ocean (IWMO 2019) in Wuxi, China, on June 17–20, 2019, Ocean Dynamics, 71(4), 471–474.
[02] 刘志宇*, 林宏阳 (2018), 海洋中小尺度过程及其能量串级机制与效应, 10000个科学难题(海洋科学卷), 54–57, 科学出版社.
[01] 刘志宇* (2009), 强潮驱陆架海中的湍流与混合, 博士学位论文, 中国海洋大学. [Liu Z. (2009), Turbulence and Mixing in Tidally Energetic Shelf Seas, Ph.D. dissertation, Ocean University of China.]