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ABSTRACT

The Taylor–Goldstein equation is used to investigate the stability of a baroclinic tidal flow observed in

a stratified fjord. The flow is analyzed at hourly intervals when turbulent dissipation measurements were

made. The critical gradient Richardson number is often close to the Miles–Howard limit of 0.25, but some-

times it is substantially less. Although during 8 of the 24 periods examined the flow is marginally stable, it is

either very stable or very unstable in others. For the unstable flow, the e-folding period of the fastest growing

disturbances is 83–455 s, about 46% of the buoyancy period at the levels where the fastest growing distur-

bances have their maximum amplitude. These disturbances to the flows have wavelengths about 20%–72% of

the water depth and have mostly a second-mode structure. Simultaneous measurements of the flow and

turbulence allow for testing of the hypothesis that the growth rates of the most unstable disturbances are

related to the turbulent dissipation rates. Dissipation is found to depend on the growth rates, but only to

a power of about 1.2; there is a stronger (power 1.8) dependence on the buoyancy frequency.

1. Introduction

Turbulent mixing caused by dynamic instability is of

great importance to the vertical exchanges of momen-

tum, mass, and heat in the stratified oceans, especially in

the shelf seas where tidal and wind-forced flows are very

strong.

Parameterizations of turbulent mixing in the stratified

ocean interior have been devised to represent the rate of

dissipation of turbulent kinetic energy per unit mass «,

by, for example, Gregg (1989), Kunze et al. (1990), Polzin

et al. (1995), and MacKinnon and Gregg (2003, 2005).

These parameterizations are based on the assumption

that turbulence is caused by instability resulting from

the shear and strain induced by internal waves. In this

study, we develop this idea by examining whether « is

related to the location and rate of growth of unstable

disturbances in a flow in which internal waves are present;

we test the hypothesis that a mechanistic link exists be-

tween the measured rate of dissipation of turbulent ki-

netic energy and the dynamic instability of the flow.

The stability characteristics of observed flows de-

scribed in section 2 are found by solving the Taylor–

Goldstein (T–G) equation with their measured velocity

and density profiles. The method of analysis is described

in section 3a and demonstrated in section 3b in a de-

tailed examination of the flow in one period. We test the

hypothesis in section 4b. This is followed by conclusions

in section 5. Some details of the methodology of the

stability analysis are provided in the appendix.

2. The data

a. Measurement methods

The data analyzed in this study were collected in July

2002 in the Clyde Sea (Fig. 1), which is connected to the

North Channel of the Irish Sea through a sill, the ‘‘Great

Plateau,’’ of about 40-m depth. Observations were made

for 24 h at a mooring station C2 (558219N, 5849W), which

is just inside the entrance sill to the fjord and where the

mean water depth is 58 m. The tidal range was 2.0 m

during the observational period. Velocity structure was

measured with a bottom-mounted 300-kHz ADCP. A
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10-min averaged velocity was obtained throughout most

of the water column, 3.6–51.6 m above the seabed, with

a vertical interval of 2.0 m. A free-falling microstruc-

ture Fast Light Yo-yo (FLY) profiler measured the

temperature, conductivity (for salinity), and microscale

velocity shear used to determine the turbulent dissi-

pation rate through the water column (e.g., Simpson

et al. 1996). The hourly deployments of FLY consisted

of six consecutive casts to make the burst-averaged

data statistically more robust. The interval between

individual casts was 2–3 min, and the vertical resolution

for the buoyancy frequency and turbulent dissipation

rate is 1.0 m.

Hourly mean profiles of temperature, salinity, and

turbulent dissipation rate are obtained by averaging the

measurements from each hourly set of six FLY casts,

which usually lasted 12–18 min, and velocity profiles

were obtained for the same period, giving a set of data

profiles at hourly intervals. These are used to determine

N(z) and the [u(z), v(z)] eastward and northward com-

ponents of velocity. For presentation simplicity, in the

following sections the hourly profiles are referred to as

hour-0 data through hour-24 data. Because of a mechan-

ical failure of the FLY, no data are available for hour 20,

leaving 24 sets of data for analysis.

b. The mean flow, stratification, and dissipation

The mean (24-h averaged) stratification is character-

ized by a diffuse pycnocline (Fig. 2a). The mean flow is

weak (#0.05 m s21) in the lower ;30 m of the water

column, but it gradually increased upward to ;0.16 m s21

at z 5 51.6 m (Fig. 2c). As shown in Fig. 3b, the gradient

Richardson number Ri of the 24-h averaged flow ex-

ceeds 0.25 everywhere; therefore, according to the

Miles–Howard theorem (Miles 1961; Howard 1961), the

mean flow is stable to small disturbances. Typical of

wind-forced and tidally energetic flows near the upper

and lower boundaries in shelf seas (e.g., Simpson et al.

1996; Rippeth and Inall 2002; MacKinnon and Gregg

2003), « decreases locally with distance from the sea

surface and height above the seabed (Fig. 3c). There is

some indication of an inverse relationship between Ri

and «, but the correlation coefficient is not statistically

significant.

c. The variations of flow, stratification, and
dissipation

The flow is dominated by the rotating semidiurnal

tidal current, and the phase of the velocity varies with

height from the seabed (Figs. 4b,c). High shears are

located near the sea surface and in the pycnocline (cf.

Figs. 4d,e), and the existence of internal tidal waves

is most evident in the su 5 25.2 and 25.4 isopycnals in

Fig. 4d. Values of Ri , 0.25 (i.e., Ri21 . 4) are found

during most of the 24-h observational period (Fig. 5a),

except hour 18 and hour 19 (Fig. 5b), leaving 22-h pe-

riods of possible instability, although it may not neces-

sarily occur; Ri , 0.25 is a necessary, but not sufficient,

condition for instability.

As is typical of tidally energetic stratified shelf seas,

large values of « are located in three regions: near sea

surface, near seabed, and in the pycnocline. The near-

bottom dissipation exhibits a strong quarter-diurnal var-

iation as found by, for example, Simpson et al. (1996) and

Liu et al. (2009). Low dissipations (« , 1028 W kg21)

are located in the layer between the pycnocline and the

tidal bottom boundary layer (the blue band in Fig. 5c),

where Ri is almost always more than 0.25 (i.e., Ri21 , 4,

in gray in Fig. 5a); however, (comparing Figs. 5c, 4d) the

tidal variation in height of the pycnocline is seen to be

linked to the variations of the dissipation. The time–

height variations of Ri21 and log10« (Figs. 5a,c) show

a generally inverse relationship between Ri and «, but

the correlation coefficient between Ri21 and log10«

varies with depth. It is, for instance, not statistically

significant near the sea surface and at z 5 19–24 m; is

about 0.50 [with 95% confidence interval (CI) being

0.12–0.75] at z 5 8–16 m; and is up to 0.92 (95% CI,

FIG. 1. The Clyde Sea and the mooring station C2.
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0.82–0.97) at z 5 30 m. The correlation coefficient be-

tween the pycnocline-averaged values of Ri21 and

log10«, defined as the average at the heights between the

two isopycnals, su 5 25.0 and 25.4, in Fig. 5c, is found to be

0.68 (95% CI, 0.38–0.85), indicative of a relatively weak

local physical connection between flow stability and «.

FIG. 2. Ensemble averaged profiles over 24 h of (a) the potential density su, (b) the eastward

component u and the northward component y, and (c) the magnitude U and direction Dir,

measured counterclockwise from east, of the flow.

FIG. 3. The (a) buoyancy frequency N and shear S of the mean flow over 24 h, (b) the gradient

Richardson number Ri, and (c) the turbulent dissipation rate «. The mean 6 standard deviation

ranges of « are shaded in (c), and values of «
*

and «0 are shown as dotted and dashed–dotted

lines. See text for details.
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3. Analytical methodology

a. The Taylor–Goldstein equation and its
numerical solution

The stability of an inviscid, incompressible, stably

stratified, Boussinesq shear flow to small distur-

bances is determined by the solutions of the T–G

equation

f0 1
N2

(U � c)2
� U0

U � c
� k2

" #
f 5 0, (1)

where f(z) is the z-dependent amplitude of the stream-

function of a disturbance with real horizontal wave-

number k and complex phase speed c (5cr 1 ici), f0 5

d2f/dz2, and U(z) and N(z) are the profiles of velocity

FIG. 4. The time variations of (a) the surface elevation z, (b) the magnitude U and (c) di-

rection Dir of the velocity, (d) the buoyancy frequency N, and (e) the shear S over the 24-h

period. The marked contours of the potential density su are overlaid to the image plot of N to

better indicate the variation of the pycnocline.
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and buoyancy frequency; U0 5 d2U/dz2. Solutions with

kci . 0 grow exponentially in time. The flow is then

unstable to shear or Kelvin–Helmholtz instability. Two

Dirichlet boundary conditions of (1) are adopted: the

vertical velocity and therefore f(z) are zero at horizontal

rigid boundaries, z 5 0 the seabed and z 5 h the sea

surface. The stability of two-dimensional disturbances to

nonparallel flows can be examined by taking U as the

velocity component in the direction of the disturbance

wave vector (e.g., Sun et al. 1998; Thorpe 1999).

The T–G equation can be numerically solved via a

standard shooting method (e.g., Thorpe and Jiang 1998)

or a matrix method (Monserrat and Thorpe 1996). The

matrix method can find all the modes of disturbances

given a sufficiently fine vertical resolution of the velocity

and density profiles, whereas the shooting method often

misses some modes, including even the fastest growing

mode. We therefore use the matrix method in this study.

It is found that results obtained from the two methods

generally agree to within 3%, therefore validating the

general usefulness of the matrix method. As in Thorpe

and Liu (2009), we shall analyze the hourly mean data

including, as it does, the effects of internal waves and

turbulence; our estimates of, for example, growth rates

relate to disturbances to the flow, including these effects.

b. Stability analysis

We choose hour 15 to demonstrate the stability analysis

in some detail. Although not typical, it is evidently a pe-

riod with a pronounced ‘‘signal’’ of low Ri and high dis-

sipation. It is later found to have the greatest growth rate.

As shown in Figs. 6a,b, both of the two velocity com-

ponents show a pronounced baroclinic structure, and the

stratification is characterized by a diffuse pycnocline.

From z 5 ;39 m to the sea surface, Ri is always more

than 0.25, but the buoyancy frequency is substantially less

than the shear in the lower ;39 m of the water column,

with Ri , 0.25 (Figs. 6c,d). The turbulent dissipation rate «

shows a gradual decrease with the height from the seabed

in the lower 20 m of the water column, indicating a pro-

nounced bottom boundary layer (Fig. 6e). Above this

layer, the variation of « shows an inverse relationship

with that of Ri (cf. Figs. 6d,e); the correlation coefficient

between Ri21 and log10« is 0.52 (95% CI, 0.03–0.81).

FIG. 5. The time variations of (a) the inverse gradient Richardson number Ri21, (b) the

minimum Ri in the flow Rimin, and (c) the turbulent dissipation rate « over 24 h. The dashed–

dotted line in (b) shows a critical value of 0.25. No data are available for hour 20 as a result of

a mechanical failure of FLY. The levels at which Rimin is located are indicated by solid circles in

(a). The marked contours of the potential density su are overlaid to show the position of the

pycnocline in (c).
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Figure 6f shows that the direction of the shear in the

region where Ri , 0.25 is mostly in the vicinity of u 5

2608. We may therefore expect that the fastest growing

disturbances to the flow may propagate in a direction

near u 5 2608.

1) STABILITY CHARACTERISTICS

Following Sun et al. (1998) and Thorpe (1999), the

stability of two-dimensional wavelike disturbances in

direction a are examined by replacing the velocity in

the T–G equation with the velocity component Ua 5

u cosa 1 y sina, where u and y are the eastward and

northward components of the velocity vector, respec-

tively, and a is the direction of the disturbance wave

vector measured counterclockwise from the eastward di-

rection of u. By taking advantage of the symmetry of the

T–G equation in 6k, only half of the wave vector space

needs to be covered in the analysis. We choose a to be in

the range of 2908 to 908, with a 58 increment in the anal-

ysis; that is, the velocity vector is projected to 37 evenly

distributed directions between 2908 and 908. Stability is

assured by the Miles–Howard theorem if the directional

gradient Richardson number Ria 5 N2/(›Ua/›z)2 is more

than 0.25 for all z. We therefore do not seek unstable

disturbances in these directions.

FIG. 6. Profiles of (a) the velocity components u and y, (b) the potential density su, (c) the

shear S and the buoyancy frequency N, (d) the gradient Richardson number Ri, (e) the tur-

bulent dissipation rate «, and (f) the direction of shear u in the region Ri , 0.25 of hour 15.
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For other values of a, the T–G equation is numerically

solved with a range of horizontal wavenumber k. Rec-

ognizing that it is not clear what wavenumber range

should be used in the calculation, we tried a very large

range of wavenumber (wavelength) for a few of the 1-h

flows before defining an appropriate range of wave-

number for the stability analysis. It is found that a wave-

length range of 0.5–60 m covers all the wavelengths of the

fastest growing disturbances to the flows examined, and

we adopt this range in all the subsequent calculations.

Velocity and N2 profiles with relatively fine resolution

are needed to solve the T–G equation precisely using the

matrix method. We interpolate velocity and N2 profiles

from their observed values at 2- and 1-m vertically spaced

levels, respectively, to evenly spaced grids of 0.20-m size.

A linear interpolation method is used for N2, whereas

a cubic spline interpolation is conducted for the velocity

profile noting that second-order derivatives are needed

in the T–G equation. Sensitivity to the grid size (Dz) is

studied by conducting the calculations for the same ve-

locity and N2 profiles with different grid sizes. As shown

in Fig. 7, the growth rate versus wavelength plot for

mode 1 using hour-15 flow with four different grid sizes,

the results converge with decreasing Dz. The greatest

growth rate increases as Dz decreases, but (by inter-

polation) a finer resolution would result in a difference of

less than 1% when a size of 0.20 m is used; both the

greatest growth rate and corresponding wavelength are

almost identical for grid sizes of 0.20 and 0.10 m.

In some hourly periods, the layer of low Ri (,0.25) is

very thin, with only one point of the original data having

a value of Ri less than 0.25. Estimates of the greatest

growth rates by directly solving the T–G equation then

become unreliable. We therefore test whether the re-

sults of the stability analysis converge with decreased

vertical interval Dz, setting a threshold that, within 1%,

the greatest growth rates are independent—that is, the

changes of the growth rates are less than the threshold—

of Dz once a relatively fine resolution—for example,

0.20 m—is achieved. Only seven cases pass this threshold

condition.

Further results of analyzing the hour-15 data are

shown in Figs. 8–10. There are always regions in which

the Ria is less than 0.25 (Fig. 8a), suggesting the possible

existence of unstable disturbances in all the directions.

The fastest growing disturbance is found to propagate in

direction a 5 2608, with a wavelength of 24.0 m and

a growth rate of 1.31 3 1022 s21 (Fig. 8b). The flow is

generally most unstable to the second mode (Fig. 9),

defined by number of the zero crossings of the stream-

function, with maxima of the amplitude of the stream-

function being near positions where Ria has a minimum

(cf. Figs. 8a, 9). The fastest growing disturbance has a

second-mode vertical structure, with the maximum am-

plitude of the streamfunction (and also vertical velocity)

at a height of 14.2 m and the second maxima at 9.8 m

(Fig. 10a). The direction a 5 2608 is that of the shear in

this vicinity (see Fig. 6f), although the flow (Fig. 6a) is

toward the northeast: a ’ 458. (Notice that the definition

of a is in agreement with that of u.) The phase speed of

the fastest growing disturbance cr is 20.056 m s21, and it

matches the mean flow Ua(z) at z1 5 13.0 m and z2 5

28.9 m (Fig. 10c). The greatest growth rate of distur-

bances corresponds to an e-folding period of 76.3 s,

about 17% of the buoyancy period at the level of the

maximum in the amplitude of the streamfunction.

2) MARGINAL STABILITY

We examine now how unstable the flow is and

whether it is marginally stable (Thorpe and Liu 2009),

modifying the real mean flow U with a parameter F as

UF 5 (1 1 F)U, therefore increasing (or decreasing,

depending on the sign of F) the velocity by a factor of F.

By setting a series of values for F, the fastest growing

disturbances (if they exist) of the modified flows are

obtained by solving the T–G equation with UF and N2,

the observed buoyancy frequency squared. If the nu-

merical method of solving the T–G equation is robust,

then a critical value, Fc, the ‘‘marginal stability param-

eter,’’ is found by gradually decreasing F until the max-

imum growth rate becomes zero.

Because of the numerical errors in solving matrix ei-

genvalue problems, it is difficult to estimate Fc directly.

Unstable disturbances are sometimes found even when

FIG. 7. The growth rate vs wavelength plot for mode 1 using

hour-15 flow with four different grid sizes. A narrower wavelength

range is shown to emphasize the effect of the grid size on the fastest

growing disturbances.
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Ri is more than 0.25 everywhere in the flow. To over-

come this difficulty, we estimate the marginal stability

parameter in an indirect way: the T–G equation is solved

with the modified flows with a series of F, from some

lower limit at which the value determined for kci is small

up to an upper limit value of 1. The growth rate versus F

relation is then extrapolated to a zero growth rate using

a polynomial function. The order of the polynomial

function depends on the nature of the calculated growth

rate versus F relation.

Figure 11a shows the maximum growth rate for hour

15 at a 5 2608 as a function of F. The minimum Ri,

equal to the minimum Ri that is observed divided by

(1 1 F)2, equals 0.25 when F 5 20.72 and is greater

than 0.25 in the shaded region where, by the Miles–

Howard theorem, the flow is stable and no positive

values of the growth rate kci are possible. A third-order

polynomial closely fit the points, tending smoothly to

Fc 5 20.69 6 0.03 at kci 5 0, except for very small values

of the maximum growth rate where F , 20.5 and where

the numerically estimated growth rates exceed the poly-

nomial values and do not tend to zero even when the

minimum Ri is equal to, or even greater than, 0.25.

It is expected that the growth rate should approach

zero smoothly as the minimum Ri tends to its critical

value, a value that must be less than or equal to 0.25.

This is indeed found by Hazel (1972), using shooting

method solutions of the T–G equation for analytical

forms of velocity and N2, and it is confirmed by our so-

lutions using the matrix method.1 The discrepancy be-

tween the polynomial trend and the numerically estimated

values appears to be a consequence of increasingly poor

resolution in z of values of Ri less than the critical value

Ric, the number of such points decreasing as the mini-

mum Ri approaches Ric, and of the developing singu-

larities in the T–G equation, (1), at levels where (U 2 c)

approaches zero as the imaginary part of c (or the

growth rate) tends toward zero.

An indirect estimate of the stability characteristics can

be made for the 15 flows in which the growth rates are

difficult to estimate precisely. For cases in which kci does

not converge and satisfy the prescribed threshold con-

dition as Dz decreases, convergence is found when Ua, is

increased by a sufficiently large factor F (.0), and an

FIG. 8. The distributions of (a) the inverse directional gradient Richardson number Ria
21 in

z 2 a space and (b) the growth rate kci in the wave vector space for hour 15; kci is shown against

wavelength l in (b) to demonstrate more clearly the size of the wavelength of the disturbances.

1 The shooting and matrix methods give similar results, although

the matrix method solutions of analytical profiles (e.g., hyperbolic

tangent type profiles of velocity and density) demonstrate a similar

problem to that discussed earlier as the minimum Ri tends to Ric
from below and when kci is small. These tests of the matrix method

solution provide a means of estimating the size of (6) uncertainty

in Ric.
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estimate of the maximum value of kci as F tends to zero

is found by extrapolation (e.g., as shown in Fig. 11b for

hour 6). The shape of the streamfunction and the wave-

number of the fastest growing disturbances are generally

not very sensitive to changes in F between 0 and 1, so that

both can also be estimated as F tends to zero and hence in

the observed conditions.

The marginal stability parameter Fc 5 20.69 6 0.03

implies that a reduction of velocity of (69% 6 3%) is

required to stabilize the flow; the flow is therefore very

unstable and not ‘‘marginal’’ as defined by Thorpe and

Liu (2009). The Ric of the flow is 0.21 6 0.04, close to

0.25. The propagation direction of the fastest growing

mode does not change (from 2608) as F is reduced.

4. Results

a. Maximum growth rates and marginal stability

We now apply the methodology described in section 3

to investigate the variations of dynamic instability in the

21 other hourly periods of possible instability.

Results are shown in Table 1. The maximum growth

rates are (0.4–1.31) 3 1022 s21, with e-folding period t

ranging from 0.06 to 9 times the buoyancy period Tb 5

2p/N at the levels where the amplitude of the stream-

function is maximum. The ratio t/Tb generally increases

as jFcj decreases. Exponential growth therefore occurs

in periods comparable to those of the smallest wave-

length internal waves at the level of the disturbance, and

substantially less than the 42–48-min periods between

the hourly groups of six FLY casts.

Values of Fc and Ric are estimated as in section 3b.

The values of jFcj are not always very much less than

unity, implying that marginal instability is not always

found. In nine cases, Ric lies between 0.21 and 0.25 and,

given the uncertainty of the estimates, is indistinguish-

able from the Miles–Howard upper limit of 0.25 for

unstable disturbances; however, in six cases, a value of

the minimum Ri less than 0.1 is required before in-

stability can occur.

b. Comparison with dissipation rates

We now test the hypothesis that the growth rates of

the most unstable disturbances are related to the ob-

served «. We establish a vertical interval, z1 # z # z2,

over which the modulus of the normalized amplitude of

the streamfunction f(z) (proportional to the amplitude

of the fastest growing disturbance) exceeds a threshold

value, d, between 0 and 1. Then E 5
Ð z2

z1
« dz, where «

is the observed turbulent dissipation rate, provides a

measure of turbulent dissipation in the region where

instability is predicted to occur. Figure 12 shows the

height ranges in which the integrated dissipation rates

E are calculated for d 5 0.2.2

As shown in Fig. 12, the streamfunctions of the un-

stable disturbances are moderately successful in evalu-

ating where large dissipations occur. A quantitative test

of the hypothesis is, however, required: Is E related

to the instability variables (i.e., kci, the wavelength l,

FIG. 9. The normalized amplitude of the streamfunction f(z) of

the fastest growing disturbances in several directions for hour 15.

Only the results of every 158are plotted to clearly show the vertical

(along each dashed–dotted line in the plot) structure of the

streamfunction.

2 This value of d is later found to be an appropriate small value

that can be used to test the validity of Eq. (2).

JANUARY 2010 L I U 147



and the vertical range l ([z2–z1) of the fastest growing

disturbance)?

It is found that l and l are highly correlated for small

values of d: the correlation coefficient r $ 0.82 (95% CI,

0.53–0.94) when d # 0.18, and r $ 0.66 (95% CI, 0.22–

0.88) when d # 0.34; for small values of d, the wavelength l

is, alone, an appropriate length scale for a scaling for-

mula of E. We, therefore, for small values of d, propose

and test the following dimensionally correct scaling

formula

E
L

5 «*l 1 c
0
(kc

i
)3�aNal3, (2)

depending on kci, N (the buoyancy frequency at the

level where jf(z)j is maximum), and «* (a background

turbulent dissipation rate). The Ri, or better the term

that provides a measure of instability, (Ri 2 Ric) or Fc,

are not included in the formulation of E; a measure of

(Ri 2 Ric) is already provided by kci.

The three unknowns—«*, c0, and a—in (2) are esti-

mated for a range of values of d by best fitting to the

data. It is found that «* and a are not sensitive to vari-

ations in d for 0.12 # d # 0.34, but the proportion of

midwater-integrated turbulent dissipation Emid, defined

as
Ð 47m

10m « dz, accounted for by EL decreases with d, less

than 50% of Emid being accounted for when d . 0.20.

For 0.12 # d # 0.34, h«*i is estimated as (6.72 6 0.22) 3

1028 W kg21, where hi represents mean 6 standard

deviation, and hai 5 1.83 6 0.04. The fairly small vari-

ance of «* confirms the existence of a nearly constant

background turbulence. The estimates of a indicate that

there is a stronger dependence of E on N, with a power

of about 1.8, than on kci (power about 1.2). This supports

Thorpe and Liu’s (2009) conjecture that the growth rate

of small disturbances, and hence turbulence in the flow,

is largely under a physical control from the stratification.

The estimated values of c0, as expected from the form of

(2), generally decrease with increased d, but no reliable

quantitative dependence can be drawn from the present

dataset.

Equation (2) represents our proposed relationship.

Although a relatively high correlation coefficient, more

than 0.75 (95% CI, 0.39–0.91) for 0.12 # d # 0.34, is

obtained using (2), the difference between observed and

predicted values of E with the best-fit values of the un-

knowns («*, c0, a) leads to an uncertainty factor of about

3. As implied by the wide range of 95% confidence in-

terval, the high correlation coefficient is partly related to

the low number of degrees of freedom in the compari-

son. More extensive datasets are required to test the

validity of the formula, and, if it is valid, to make more

reliable estimates of the unknowns.

FIG. 10. The (a) amplitude of the normalized streamfunction f(z) of the fastest growing

disturbance, (b) inverse directional gradient Richardson number Ria
21, and (c) velocity com-

ponent in direction a 5 2608 for hour 15 with boundaries set at 3.6 and 51.6 m.
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c. Related formula for shelf sea dissipation rates

MacKinnon and Gregg (2003, 2005), using data from

the New England shelf, propose a scaling formula for the

dissipation designed «MG,

«
MG

5 «
0

N

N
0

� �
S

lf

S
0

� �
, (3)

where Slf is the low-frequency, low-mode resolved shear

(i.e., that of the internal tide). For simplicity S0 and N0

are set to be 3 cph ([5.2 3 1023 s21), and «0 equals

6.9 3 10210 W kg21 to best fit their later-summer data

and equals 1.1 3 1029 W kg21 for the spring data. The

reason for the difference is unknown. The uncertainty

in the estimates appears to be a factor of 2–4 (see

MacKinnon and Gregg 2005, their Fig. 11, bottom

right), comparable to our factor of 3.

The data from the Clyde Sea have a distribution in

an N versus shear diagram similar to that found by

MacKinnon and Gregg (2003, their Fig. 13a) and

MacKinnon and Gregg (2005, their Fig. 11, left), and

FIG. 11. The greatest growth rate kci vs F plot of (a) hour 15 and (b) hour 6. For hour 15,

a marginal stability parameter Fc of 20.69 6 0.03 is estimated based on a third-order poly-

nomial interpolation, and the critical gradient Richardson number Ric of the flow is estimated

to be 0.21 6 0.04. For hour 6, the maximum growth rate, marked as a solid triangle in (b) at F 5 0,

is estimated via interpolation, and Fc and Ric are estimated to be 20.06 6 0.01 and 0.16 6 0.02,

respectively.

JANUARY 2010 L I U 149



fits (3) with a value of «0 5 1.5 3 1028 W kg21. This

value of «0 is an order larger than that obtained by

MacKinnon and Gregg (2003, 2005). Although it is not

clear what process is responsible for the difference in «0,

a value of 4.4 3 1029 W kg21, closer to our estimate, is

obtained by Palmer et al. (2008)3 using data from the

Celtic Sea, and a value of 4.5 3 1028 W kg21, almost

two orders larger than MacKinnon and Gregg’s values,

is obtained by Sundfjord et al. (2007) with data from the

marginal ice zone of the Barents Sea. This may suggest

that «0, the energy density of the small-scale ‘‘test waves’’

(MacKinnon and Gregg 2003), is highly related to the

hydrodynamic and topographic characteristics of the stud-

ied site.

As shown in Fig. 3c, the assumed depth-independent

background turbulent dissipation rate «* approximately

equals the tidally averaged turbulent dissipation rate in

the pycnocline, whereas «0 coincides with the minimum-

averaged dissipation rate in the water column. This may

indicate the physical difference between the two con-

stant dissipation rates assumed in Eqs. (2) and (3): the

former represents the turbulence level in the pycnocline

when there are no growing disturbances leading to dy-

namic instability, whereas the later, selected to make the

modeled dissipation rate with (3) have the same average

value as the observed data, more closely represents

a background on which the low frequency waves (the

baroclinic tidal waves) are superimposed.

5. Conclusions

In this paper we have investigated the dynamic sta-

bility of a baroclinic tidal flow observed in a stratified

fjord. The principal results are as follows.

1) The observed flow is sometimes found to be stable

to Kelvin–Helmholtz instability with a minimum Ri

greater than 0.25, but it mostly has a minimum Ri less

than 0.25.

2) The Ric of the observed flow is often approximately

0.25 (e.g., hours 0, 5, 12), but sometimes it is sub-

stantially less than 0.25 (e.g., hours 1, 3).

3) Of the 22 hourly flows with a minimum Ri less than

0.25, 4 are found to be very stable, that is, Fc . 0 and

jFcj is not much less than unity; 8 in a state of mar-

ginal stability, that is, jFcj � 1; and 10 very unstable,

TABLE 1. Characteristics of the fastest growing disturbances. Here, l and kci are respectively the wavelength and growth rate of

the fastest growing disturbance, and N is the buoyancy frequency at the level where the amplitude of the streamfunction is maximum;

t 5 (kci)
21 is the e-folding period of the fastest growing disturbance, and Tb 5 2pN21 is the buoyancy period at the level where the

amplitude of the streamfunction is maximum. The marginal instability parameter Fc and the critical Richardson number Ric of the flows

are also listed. The values shown at hour 15* are those discussed at the end of the appendix for a pycnocline-located disturbance. Values

for the seven cases that pass the threshold condition described in section 3b(1) are in bold in the table.

Hour Mode l (m) kci (s21) N (s21) t/Tb Fc Ric

0 2 11.5 1.20 3 1022 4.6 3 1023 0.06 20.83 6 0.02 0.24 6 0.05

1 2 42.0 2.4 3 1023 2.19 3 1022 1.45 20.19 6 0.01 0.01 6 0.005

2 2 31.0 1.0 3 1023 1.81 3 1022 2.88 20.10 6 0.01 0.20 6 0.03

3 — — 0 (stable) — — 0.06 6 0.01 0.20 6 0.02

4 — — 0 (stable) — — 0.41 6 0.02 0.11 6 0.01

5 1 37.5 0.4 3 1023 2.24 3 1022 8.92 20.04 6 0.01 0.24 6 0.03

6 2 22.0 0.5 3 1023 1.23 3 1022 3.93 20.06 6 0.01 0.16 6 0.02

7 — — 0 (stable) — — 0.21 6 0.02 0.04 6 0.01

8 3 31.5 6.1 3 1023 1.22 3 1022 0.32 20.53 6 0.03 0.09 6 0.01

9 2 16.5 5.0 3 1023 8.3 3 1023 0.26 20.46 6 0.04 0.21 6 0.03

10 1 29.0 0.5 3 1023 2.85 3 1022 9.08 20.03 6 0.01 0.07 6 0.01

11 — — 0 (stable) — — 0.01 6 0.01 0.09 6 0.01

12 2 39.0 4.7 3 1023 1.46 3 1022 0.50 20.36 6 0.03 0.25 6 0.02

13 1 35.0 2.0 3 1023 9.4 3 1023 0.75 20.32 6 0.02 0.24 6 0.02

14 — — 0 (stable) — — 0.22 6 0.02 0.03 6 0.01

15 2 24.0 1.31 3 1022 1.40 3 1022 0.17 20.69 6 0.03 0.21 6 0.04

15* 2 47.0 5.0 3 1023 8.9 3 1023 0.28 — —

16 2 16.5 4.0 3 1023 1.09 3 1022 0.44 20.42 6 0.02 0.23 6 0.02

17 — — 0 (stable) — — 0.00 6 0.01 0.23 6 0.02

21 2 42.0 2.0 3 1023 6.0 3 1023 0.48 20.36 6 0.02 0.22 6 0.02

22 2 26.5 0.5 3 1023 1.23 3 1022 3.92 20.10 6 0.02 0.20 6 0.02

23 — — 0 (stable) — — 0.14 6 0.01 0.06 6 0.01

24 3 23.0 5.3 3 1023 8.5 3 1023 0.25 20.52 6 0.02 0.12 6 0.01

3 Noting that S0 5 N0 5 6 cph are adopted in Palmer et al.

(2008), their reported value of «0 (1.75 3 1028 W kg21) is divided

by 4 for the present comparison.
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that is, Fc , 0 and jFcj is not much less than unity.

This provides further examples in support of the

conclusion of Thorpe and Liu (2009) that naturally

occurring stratified flows are not, in general, in a

marginal state.

4) A relation between the estimated growth rate of the

fastest growing disturbances to the flow and the ob-

served rates of dissipation of turbulent kinetic energy

per unit mass has been devised, that is, Eq. (2). This

has, however, an uncertainty factor of about 3 for

the dissipation rates and does not provide a simple

means to estimate dissipation because of the need to

solve the T–G equation. Furthermore, as shown in

Fig. 12, the regions where dissipation is greatest do

not always correspond to those where the most un-

stable disturbances have their greatest amplitude.

The results provide some support for the hypothesis

that a mechanistic link exists between the measured

rates of dissipation of turbulence kinetic energy and the

dynamic instability of the flow, but it do not presently

lead to a useful means of predicting dissipation rates. A

more extensive dataset might reveal whether the in-

stability of the flow at an earlier time determines sub-

sequent dissipation rates.
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FIG. 12. The time variations of « during the 24-h observational period, with isopycnals

overlaid (same as Fig. 4c). The height ranges in which the integrated dissipation rates E are

calculated during the 15 hourly periods are shown as the thick solid bars. The 10 hourly periods

in which the flows are stable are marked as ‘‘S’’ and solid arrows. No data available for hour 20;

the plot is shaded and marked as ‘‘ND’’ and gray solid arrow.
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APPENDIX

The Sensitivity of the Results to the Location
of the Boundaries and the Growth of

Local Disturbances

We examine here the sensitivity of the results to the

choice for the location of the lower and upper bound-

aries in solving the T–G equation by conducting three

controlled experiments to the hour-15 flow: case A—

moving the upper boundary (from z 5 51.6 m) to z 5

44 m, keeping the lower boundary at z 5 3.6 m; case B—

moving the lower boundary (from z 5 3.6 m) to z 5 10 m,

keeping the upper boundary at z 5 51.6 m; case C—the

lower boundary to z 5 16 m, keeping the upper boundary

at z 5 51.6 m. The velocity component in direction a 5

2608 of the hour-15 flow and corresponding buoyancy

frequency are used in these experiments. As shown in

Fig. 10b, in case A, the vertical range of the flow is

narrowed by removing a region of high Ria (.0.25),

whereas in cases B and C, the lower one and two mini-

mum Ria regions are removed, respectively, by moving

the lower boundary to z 5 10 and 16 m.

It is found that, for case A, there are no apparent

changes in the results, confirming that imposing the

boundary condition of zero velocity at z 5 51.6 m is

appropriate for the stability analysis of the flow. As for

case B (Fig. A1), by moving the lower boundary to z 5

10 m, we remove the near-bottom low Ria region cen-

tered at z 5 5.6 m. The greatest growth rate is found to

decrease from 1.31 3 1022 to 0.80 3 1022 s21, and the

phase speed is 20.021 m s21, matching Ua at z 5 12.6

and 30.0 m. The fastest growing disturbance keeps a

second-mode vertical structure, but the maximum am-

plitude of the streamfunction moves to a height of

12.0 m, close to the level of the minimum Ria (cf.

Figs. A1a,b). The second maxima of the amplitude of the

streamfunction is now at z 5 29.6 m, in the vicinity of

the level of a local minimum Ria. The wavelength of

the fastest growing disturbance is 28.25 m. For case C

(Fig. A2), only one low Ria region, at z 5 31 m, is left.

The fastest growing disturbance has a first-mode vertical

structure, with the maxima locating at z 5 29.2 m, in the

close vicinity of the level of the minimum Ria. The

greatest growth rate is 0.47 3 1022 s21, corresponding to

an e-folding period of 211.9 s. The wavelength of the

fastest growing disturbance is 60.5 m,4 and the phase

speed is 0.0097 m s21, matching Ua at z 5 30.8 m.

FIG. A1. The (a) normalized amplitude of the streamfunction f(z) of the fastest growing

disturbance, (b) inverse directional gradient Richardson number Ria
21, and (c) velocity com-

ponent in direction a 5 2608of hour-15 flow for case B.

4 A wavelength range of 0.5–120 m, with an increment of 0.5 m,

was adopted in the calculation.
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It is concluded from the experiments that 1) the re-

sults are not sensitive to the precise position of the upper

boundary given that the near-upper boundary layer is

occupied by a region of high Ria (.0.25); 2) the in-

stability of the flow is mainly attributed to the three low

Ria regions, centered (i.e., the levels of the local mini-

mum Ria) at z 5 5.6, 12.6, and 31 m, respectively, and

the region in which the amplitudes of the streamfunc-

tion of the fastest growing disturbances are significant

occurs in the vicinity of the lower two low Ria regions.

However, the lower two of the low Ria zones are within

the bottom boundary layer (see Fig. 6e), where the

FIG. A2. Same as Fig. A1, but for case C.

FIG. A3. Results for the disturbances with the maximum amplitude of the streamfunction in

the vicinity of the upper local minimum Ria (maximum Ria
21) for hour 15 with a 5 2608: (a) the

normalized amplitude of the streamfunction f(z) of the fastest growing disturbances, (b) the

inverse directional gradient Richardson number Ria
21, and (c) the growth rate kci vs wavelength l.
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turbulence is significantly generated by the shear stress

close to the bottom. Because the objective is to exam-

ine the relation between Kelvin–Helmholtz instability

and turbulence, it is not appropriate to include this near-

bed region. It can be seen from Fig. A2 that the maximum

amplitude of the streamfunction of the fastest growing

disturbances would be near the upper local minimum Ria
near the pycnocline, where the production of the turbu-

lent kinetic energy results from the local dynamic in-

stability, if we remove the lower two low Ria regions.

We may ask now, is there any growing disturbance

with a maximum amplitude of the streamfunction in the

vicinity of the upper local minimum Ria for the hour-15

flow? This is important because we should like to relate

the greatest growth rate of the disturbances to the ob-

served turbulent dissipation rate within the region where

instability is predicted to occur, that is, where the normal-

ized amplitude of the streamfunction is large. The results of

our examinations are shown in Fig. A3. The greatest

growth rate of the disturbances that have a maximum

amplitude of the streamfunction in the vicinity of the

upper local minimum Ria is 0.50 3 1022 s21. The fastest

growing disturbance has a second-mode vertical struc-

ture, with the maximum amplitude of the streamfunction

at a height of 29.6 m and the second maxima at 9.2 m.

The wavelength of the fastest growing disturbance is

47.0 m, and the phase speed is 0.0156 m s21, matching Ua

at z 5 6.0, 12.2, and 30.8 m (see Fig. 10c).
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