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ABSTRACT

Some naturally occurring, continually forced, turbulent, stably stratified, mean shear flows are in a state

close to that in which their stability changes, usually from being dynamically unstable to being stable: the time-

averaged flows that are observed are in a state of marginal instability. By ‘‘marginal instability’’ the authors

mean that a small fractional increase in the gradient Richardson number Ri of the mean flow produced by

reducing the velocity and, hence, shear is sufficient to stabilize the flow: the increase makes Rimin, the min-

imum Ri in the flow, equal to Ric, the critical value of this minimum Richardson number. The value of Ric is

determined by solving the Taylor–Goldstein equation using the observed buoyancy frequency and the

modified velocity. Stability is quantified in terms of a factor, F, such that multiplying the flow speed by (1 1 F)

is just sufficient to stabilize it, or that Ric 5 Rimin/(1 1 F)2.

The hypothesis that stably stratified boundary layer flows are in a marginal state with F , 0 and with jFj
small compared to unity is examined. Some dense water cascades are marginally unstable with small and

negative F and with Ric substantially less than ¼. The mean flow in a mixed layer driven by wind stress on the

water surface is, however, found to be relatively unstable, providing a counterexample that refutes the hy-

pothesis. In several naturally occurring flows, the time for exponential growth of disturbances (the inverse of

the maximum growth rate) is approximately equal to the average buoyancy period observed in the turbulent

region.

1. Introduction

a. Marginal instability

This is an examination of the hypothesis that the mean

state of continually forced, naturally occurring, stably

stratified turbulent flows is generally one that is mar-

ginally unstable.

The concept of control in a marginal state is intro-

duced by Turner (1973), who refers to Mittendorf’s

(1961) laboratory observations:

After the Kelvin-Helmholtz mechanism had led to the
breakdown of an interface between two accelerating
layers [of different densities] in an inclined tube, the
turbulence in the mixing region was suppressed before

the transition layer had spread out very far. In one ex-
periment he observed three successive breakdowns of the
interfacial region, separated by quiescent periods. While
turbulence is present the drag on the layers increases and
the velocity falls, but when it is suppressed the flow is
accelerated again by gravity. This behaviour can now be
interpreted in terms of an increase of an appropriate
gradient Richardson number to a stable value, because of
the decrease of the velocity gradient due to mixing.

Turner goes on to discuss the Ellison and Turner (1959)

experiments on the flow of relatively dense fluid cas-

cading down a slope beneath a deep layer.

At moderately steep slopes the stress depends mostly on
the entrainment at the outer edge of the layer and little on
bottom friction. The turbulence effecting the entrainment
is therefore produced in the same region as it is used to do
work against buoyancy forces. . . Because of the compo-
nent of gravity which tends to accelerate the flow if the
stress becomes too small, one might expect in addition that
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this outer edge could be maintained in a marginally stable
state. . . The experiments support the existence of a critical
gradient Richardson number, less than 0.1, at which tur-
bulence is strongly damped.

In other words, a decrease in turbulence will lead to a

reduction in the Reynolds stress in the upper region of

the downslope density flow, but the downslope compo-

nent of gravity will then lead to acceleration of the

current, the growth of billows, an increase in turbulence,

and enhanced Reynolds stress, maintaining the flow in a

marginal state characterized by the gradient Richardson

number.1

b. The Taylor–Goldstein equation and the
Miles–Howard theorem

The Taylor–Goldstein (T–G) equation,

d2u/dz2 1 fN2/(U � c)2 � k2 � d2U/dz2/(U � c)gu 5 0,

(1)

with appropriate boundary conditions, determines the

stability of small disturbances in a steady, stably strati-

fied, shear flow. In (1) the streamfunction is c(x, z, t) 5

f(z) exp[ik(x 2 ct)], and k is the (real) wavenumber of a

two-dimensional disturbance in the horizontal x direc-

tion in which the flow has a component, U(z). The

buoyancy frequency is N(z). The term c 5 cr 1 ici is the

complex wave phase speed, so that cr is the phase speed

of disturbances and kci is their growth rate. Effects of

viscosity and diffusion are neglected. In real flows, at

least those close to marginal conditions, turbulent fluxes

are likely to be moderate, possibly justifying the neglect

of terms representing the vertical turbulent transport of

momentum and the vertical flux of buoyancy. It is im-

portant, however, to stress that we shall here examine

the stability of an observed mean flow found by aver-

aging in time over the turbulent motions and density

fluctuations associated with turbulence and internal

waves, and using the T–G equation neglecting terms rep-

resenting turbulent fluxes. Our definition of ‘‘marginal’’

is therefore restricted by these constraints. It appears,

however, to be the simplest and most pragmatic way to

conduct an investigation of the state of an observed flow,

or one that may be generated by a numerical model of a

real flow.

The neglect of the turbulent fluxes implicitly con-

strains marginal to refer to the stability of the mean flow

found by averaging over its fluctuations but assuming it

is inviscid and nondiffusive. With U and N specified, the

T–G equation can be solved by the shooting method

(e.g., see Hazel 1972; Davis and Peltier 1976; Merrill

1977; Sun et al. 1998) or by the matrix method (Monserrat

and Thorpe 1996; Moum et al. 2003) to obtain values of

c for a given k, and the maximum growth rate of unstable

modes can be determined. [In the appendix we derive

an integral formula for c, similar to that given by Moum

et al. (2003), that is useful as a check of the matrix method

of solving the T–G equation.]

The Miles–Howard theorem, derived by Miles (1961)

and Howard (1961) from the T–G equation, provides a

sufficient condition for stability: under certain restrictive

conditions, a stratified shear flow is stable if

Ri 5
N2

dU
dz

� �2
(2)

is greater than ¼ for all values of z (i.e., the minimum

Richardson number, Rimin . ¼).

For many flows, the critical Richardson number Ric,

the value of Rimin below which small disturbances grow,

is equal to ¼; flows in which Rimin is less than ¼ will then

be unstable with exponentially growing disturbances.

Eriksen (1978) and Davis et al. (1981) show scatterplots

of values of N versus those of dU/dz at fixed depth in the

thermocline. Values are calculated from differences of

densities and velocities from pairs of instruments sepa-

rated by 3–7 m in the vertical. The plots have an ap-

parent cutoff at a ratio, N/(dU/dz), of about ½ (i.e., when

Ri ’ ¼), there being relatively few measurements with

smaller values of the ratio.2 This is interpreted to imply

that Kelvin–Helmholtz instability (KHI) is relatively

rare. It appears that a value, Ri ’ ¼, is a ‘‘critical’’ value

in the sense that fluctuations that increase the shear,

dU/dz, and reduce the vertical density gradient and

therefore N, promoting local regions where Ri , ¼, cause

instability and a vertical transfer of momentum that in-

creases Ri, bringing the flow to a stable value .¼. Being

1 It should be noted that the velocity is the main flow quantity

being modulated, and that this discussion is strictly two dimen-

sional, describing the effects of turbulence acting normal to the

slope (z) on the downslope (x) flow, without regard to the effect of

local patches of turbulence in producing different downslope speeds

at different positions (y) parallel to isobaths. How enhanced tur-

bulence in some local region will affect the downslope flow requires

consideration of the effects of variations in three dimensions.

2 The measurements at vertically separated instruments do not

resolve the micro- or fine structure of velocity and density varia-

tions, and provide only upper bounds of the minimum Ri in the

water column between the pairs of instruments. The cutoff ob-

served by Davis et al. (1981) appears closer to Ri 5 1/8 than the ¼

value of Eriksen’s (1978) data.
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mainly associated with internal waves, such regions may

be identified as those of wave breaking.3 The cutoff may

also be interpreted to imply that, in the thermocline, the

mean flow and internal wave field are in a controlled

state near marginal conditions, or that the internal wave

field is ‘‘saturated,’’ any further increase of internal

wave energy resulting in wave breaking and dissipation

that return the flow field toward a state with Rimin . ¼.

Except where the flow is continuously forced, for example

by inertial waves (Alford and Gregg 2001) or by major

currents [e.g., the equatorial undercurrent (Gregg 1976)],

instability in the main thermocline is caused intermittently

by the occasional arrival of groups of internal waves or the

superposition of two or more internal waves, and the

time-averaged flow is generally statically and dynamically

stable, with a value of Rimin determined from the mean

velocity and density, greater than ¼.

There are, however, flows with Rimin , ¼ that are

stable (i.e., in which the critical Richardson number Ric
is less than ¼), and an example is described in the next

section. The Miles–Howard theorem therefore provides

a condition that is sufficient to ensure stability of a flow

with Ri . ¼ everywhere, but does not provide what is

often needed—the condition that an observed flow is

definitely unstable through KHI. Nor, by itself, does the

theorem provide information about the nature of un-

stable disturbances; this is revealed by the solutions of

the T–G equation.

c. Dense water cascading down a slope

Thorpe and Ozen (2007) solve the T–G equation by

the shooting method, taking for U(z) and N(z), data ob-

tained during periods of cold winter weather leading to

the gravity-driven cascading of cold, and therefore rela-

tively dense, water as a density current down the 4.68

sloping bottom of Lake Geneva.4 The average mean

density is statically stable (i.e., with density increasing

downward) but the mean downslope flow is unstable to

KHI. The most unstable disturbance is of mode 1,

growing exponentially with a growth rate, kci, of 1.36 3

1024 s21 and with a maximum amplitude at a level where

Rimin is about 0.1.5 The most unstable disturbance grows

exponentially in a time, t 5 (kci)
21, of 2.04 h with its

maximum amplitude at a level where the buoyancy

period, Tb 5 2pN21, is about 1.4 h, giving t/Tb ’ 1.5.

A reduction of the observed mean flow speed at all

levels, and therefore the shear, by about 20% is just

sufficient to reduce the growth rate found in the T–G

equation to zero (i.e., to stabilize the flow). The flow

speed and shear were adjusted in accordance with the

notion that, in the cases to be examined, instability is

driven and controlled by flow acceleration and decel-

eration in the cascading flow discussed by Turner or by

mechanical forcing (e.g., in section 2, by wind stress),

rather than by density or buoyancy changes. We define a

factor, F, such that multiplying the flow speed by a

factor (1 1 F) is just sufficient to stabilize disturbances;

all solutions to the T–G equation have kci # 0: for the

cascading flow F 5 20.2. The parameter F provides a

measure of the marginal condition of the flow and of the

critical Ri,

Ri
c
5

Ri
min

(1 1 F)2
, (3)

for flows with the same N and having velocity profiles

with the same shape. Here Ric is about 0.14 (substan-

tially less than ¼) and in the sense that jFj is small

compared to unity and the growth time of disturbances is

large, the flow is marginal as conjectured by Turner.

To provide a comparison for this, and later, results, we

note that for unstable periodic disturbances to a shear

flow at a density interface within a vertically unbounded

fluid, with profiles of velocity and density being hyper-

bolic tangents (i.e., U and r both } tanhaz, where a is

constant), the ratio t/Tb is equal to 1 when Rimin ’ 0.18

(Hazel 1972). The critical Richardson number Ric is

equal to ¼, so that the value of F corresponding to Rimin

is 20.15. (A summary of this and other values is given in

Table 1.) The buoyancy frequency represents the

greatest frequency of small, localized internal waves,

and so Tb represents the smallest period of these internal

waves. When t/Tb # 1, exponential growth of small

disturbances may occur in a time less than the period of

internal waves.

3 Examples of the breaking of an internal soliton wave, of the

problems of adequately resolving Ri from measured data, and of

the use of the Taylor–Goldstein equation to examine the stability

of the wave are given by Moum et al. (2003). Laboratory experi-

ments by Troy and Koseff (2005) and numerical calculations by

Fringer and Street (2003) suggest that although unstable distur-

bances will begin to grow if Rimin , ¼ in internal waves traveling on

a relatively thin interface, Kelvin–Helmholtz billows will not have

time to form unless the wave period is sufficiently great in com-

parison with their e-folding time, and that a value of Ric near 0.1

may be a more appropriate limiting value to determine the onset of

mixing caused by the overturning billows.
4 Thorpe and Ozen (2007) give other examples of flows with

Ric , ¼. Mr. Jan Zika made a further study of a cascading flow

at the Woods Hole Oceanographic Institution Geophysical Fluid

Dynamics (GFD) Summer School in 2007, reaching similar con-

clusions to Thorpe and Ozen about its marginal stability (see Zika

2008).

5 Even smaller values of Ri are found very close to the sloping

boundary and below the level of the maximum downslope velocity,

where Ri tends to infinity.
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d. The atmospheric boundary layer

Merrill (1977) examines the stability of the mean wind

and temperature profiles averaged over a period of

10 min in a 200-m-deep, stably stratified, nocturnal at-

mospheric boundary layer. The minimum Ri is 0.15 at a

height of about 110 m where the shear is approximately

uniform in height with dU/dz ’ 0.071 s21, implying

(since Rimin # Ric # 0.25) that 0.6 # Ric/Rimin # 1 and

20.225 # F # 0, close to marginal conditions. Merrill

solves the T–G equation (incorporating the mean pro-

files) by the shooting method. Unstable disturbances are

found with an exponential growth period t of 286 s,

giving t/Tb ’ 1.5, where Tb is the buoyancy period at

110 m. They have phase speeds of 6–6.5 m s21 and

wavelengths of 370–1250 m, with maximum growth rate

for a wavelength of 640 m. These calculated values com-

pare with microbarograph and acoustic sounder records

of tilted braidlike disturbances (microfronts or temper-

ature ramps) attributed to KHI with a mean phase speed

of 7–9 m s21 and wavelength (inferred from phase speed

and period) of 340–450 m. Linear stability theory—the

use of the T–G equation with its implicit neglect of vis-

cosity and diffusion—accounts moderately well for the

generation of the observed oscillations.

We now test (and refute) the hypothesis that boundary

layer flows are always marginal by examining a further,

but different, example of a stratified boundary layer

flow. It is one driven by the wind on the water surface.

2. The near-surface boundary layer

Thorpe and Hall (1977) solve the T–G equation by the

shooting method to examine the stability of the average of

two vertical profiles of horizontal velocity and density

made in the freshwater lake, Loch Ness, in Scotland in July

1976. The parameter F is not determined, but the flow is

unstable with the fastest growing disturbances in the lim-

ited range examined (40–140 m) having a wavelength of

about 60–125 m, a range covering the distance between

temperature ramps determined from their repetition pe-

riod in the known mean flow. The e-folding time scale of

the fastest growing disturbances exceeds 1 h (t/Tb . 7.5,

where Tb is the mean buoyancy period in the mixed layer).

An increase in mean flow (or of the shear) of 5% (a value

F 5 0.05) is sufficient to result in the growth of periodic

disturbances with a length of 63 m (roughly that of the

ramps) in an e-folding time of 22.4 min (t/Tb ’ 2.9). The

uncertainty of estimates of growth rates in a mean flow

that is determined from only two profiles is, however,

considerable and the analysis is therefore unsatisfactory

and inconclusive.

We have therefore conducted a more thorough in-

vestigation of the stability of wind-driven flow near the

water surface by examining the flow shown in Fig. 1, the

mean of 25 profiles of velocity and density in Loch Ness

measured over a different daytime period of about 7 h

in September 1973. [The series of profiles are shown in

Fig. 18 of Thorpe (1977), where details of the mea-

surement technique are given.] The speed of the wind

along the loch axis decreased gradually from about 8.5 to

6.5 m s21 during the period. Whitecapping was frequent,

with wave heights of about 0.6 m and periods of 3 s. The

sky was overcast with air temperature about 1.58C

greater than the surface water temperature; the air–

water heat flux was not measured but was probably small

and positive. Except for a slow rise in isopycnals at a rate

of about 0.2 m h21, the measured flow conditions in the

loch remained fairly steady.

The two components of the averaged flow shown in

Fig. 1a are U(z), in the wind direction parallel to the axis

of the loch, and V(z), across the loch to the right of the

wind. The strength and direction of the mean current

varied in depth, being 0.201 m s21 in a direction 208 to the

right of the wind direction near the surface, and in the

wind direction from about 12 to 18 m, where V was very

small. The mean density sT (z), derived from temperature

TABLE 1. Summary table showing the critical value of Ri (Ric), the minimum observed Ri (Rimin), the ratio of the e-folding times of the

most unstable disturbances to the buoyancy period (t/Tb), and the value of F for flows of different sources discussed in text. The data for

the atmospheric boundary layer are from Merrill (1977), those for the Equatorial Undercurrent are from Sun et al. (1998), and those for

the Clyde Sea are from Liu (2009).

Source Ric Rimin t/Tb F

tanh profiles (section 1c) 0.25 0.20 1.51 20.016

— 0.18 1.05 20.152

— 0.15 0.69 20.225

— 0.10 0.40 20.368

Cascade (section 1c) 0.16 0.1 1.5 20.2

Atmospheric BL (section 1d) #0.25 0.15 1.5 20.23 to 0

Loch Ness surface BL (section 2) 0.25 6 0.11 0.012 0.65 20.78 6 0.05

Equatorial Undercurrent (section 3) #0.25 0.13 1.1 20.28 to 0

Clyde Sea (hour 15; section 3) 0.21 6 0.04 0.02 0.17 20.69 6 0.03
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measurements, is shown in Fig. 1b. Regions of static in-

stability are common in individual density profiles in the

upper 20 m, with some 30% of the water column in the

upper 8 m being statically unstable (with density in-

creasing upward) throughout the period of observation—

evidence of persistent turbulent mixing. The overturning

or Thorpe scale LT decreases monotonically from about

1.7 m at a depth of 6 m to about 0.2 m at 27 m.

The T–G equation, (1), is solved using both the

shooting and the matrix methods for two-dimensional

disturbances with wavenumbers k in directions a relative

to the direction of the Loch axis using the mean velocity

in this direction, W(z) 5 U cosa 1 V sina. The bound-

ary condition adopted at the surface, z 5 0 m, is that the

vertical velocity is zero. At the lower end of the mea-

sured data, z 5 h 5 55 m, the vertical velocity and the

pressure fluctuations are matched to those of an assumed

potential flow with uniform density below 55 m. The

growth rates and phase speeds determined by the two

methods of solving (1) are found to agree to within about

3%, but it proved difficult to maintain convergence using

the shooting method at nondimensional wavenumbers

kh greater than 4.5, and the matrix method is therefore

used to find the results described below.

The Richardson number on which the two-dimensional

disturbances depend varies with direction a. The profile

of Ri 5 N2/(dW/dz)2 at a 5 758 is shown in Fig. 1c. The

variation of Rimin with a is shown in Fig. 2. The smallest

Ri, 0.012, is found in the direction a 5 308.

The growth of periodic disturbances depends also on

direction a, the nondimensional wavenumber kh, and

the mode of the disturbance. Growth rates are calcu-

lated for 0 # kh # 120 and 2158 # a # 1658. The fastest

growing mode is mode 1. Growth rates kci are shown as a

function of kh in Fig. 3 in 158 increments of the distur-

bance direction a from a 5 08 to a 5 1058. There is

generally more than one maximum in kci: a secondary

maximum where kh is about 5–15, corresponding to

a wavelength of 23–69 m, and a larger maximum at a

FIG. 1. Profiles, all vs depth z of mean (a) downwind velocity U(z) and across-wind velocity

V(z) (to the right of the wind), (b) density sT (z), and (c) logarithm of Ri (a 5 758).

FIG. 2. The minimum values of Ri 5 N2/(dW/dz)2 found in profiles

as a function of direction a.
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higher value of kh corresponding to a smaller wave-

length. The fastest growing mode 1 disturbance is found

when a ’ 758 when kh 5 39.9 or a wavelength of 8.7 m.

The streamfunction f(z) of this disturbance, propor-

tional to the amplitude of the vertical velocity pertur-

bation, w 5 –ikf(z) exp[ik(x 2 ct)], is shown in Fig. 4

and its maximum at a depth of about 3.5 m. The phase

speed of this disturbance is 0.099 m s21, and the

‘‘steering’’ or critical level, where cr 5 W, is approxi-

mately at the depth (3.5 m) where the streamfunction is

maximum. This is also where Ri is a minimum and

within the region where static instability is frequent.

The maximum growth rate of disturbances is 1.96 3

1023 s21. The corresponding exponential growth time t

is about 8.5 min, giving t/Tb ’ 0.45, where Tb 5 2pN21

and N ’ 5.5 3 1023 s21, is the mean buoyancy frequency

in the upper 10 m of the water column. (This compares

with t/Tb* ’ 1.2 taking Tb* 5 2pNmax
21 and using the

value, Nmax ’ 0.015 s21, in the thermocline at 25 m;

exponential growth occurs within a period t, equal to

about 1.2 times the smallest period 2p/Nmax of internal

waves.)

The fastest growing two-dimensional disturbances

are not found in the direction for which Ri is smallest

(a ’ 308; Fig. 2) or in the direction (’208) of the near-

surface mean flow, but at the greater value of a, about

758 (Fig. 3). If the across-wind V component of flow is

ignored (as in the earlier calculations described in section

2a) by taking a 5 08, the largest growth rate is reduced

to 1.34 3 1023 s21, giving t/Tb ’ 0.65 or t/Tb* ’ 1.8 at

kh 5 20.8, a wavelength of 16.6 m.

FIG. 3. Growth rates kci of small disturbances as a function of kh at angles a from 08 to 1058

at 158 intervals.

FIG. 4. The streamfunction f(z) proportional to the vertical

velocity component, corresponding to the disturbance with maxi-

mum growth rate. The function f(z) has been scaled to have a

maximum of unity.
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The mean velocity of the flow in the direction a 5 758

of the fastest growing disturbances was varied to deter-

mine, by extrapolation, the value of F for which the

maximum growth rate is reduced to zero. At this value,

F is about 20.78 6 0.05 and using (3), Ric is found by

multiplying Rimin (50.012) by 1/(11F)2, giving Ric 5

0.25 6 0.11 (although the flow must be stable if Ri $ 0.25

by the Miles–Howard theorem).6 In this case the value,

jFj, is not much less than unity, implying that the flow

is not marginal, and Ric is not significantly different

from ¼.

3. Conclusions

Several authors (e.g., Thorpe and Hall 1977; Merrill

1977; Sun et al. 1998) have previously used the T–G

equation to examine the nature of unstable disturbances

and of internal waves in naturally occurring stably

stratified shear flows. A novel feature of the present

discussion is to address the question, how unstable is an

observed flow? and to provide a quantitative answer.

The cascading flow (section 1c) is marginal in the sense

that F 5 20.2 is relatively close to zero, but the analysis

of the wind-driven flow in the upper layers of Loch Ness

(section 2) finds that F 5 20.78 6 0.05; this refutes the

conjecture that turbulent shear flows are generally in a

marginal state.

This leaves the further question, why is one flow

marginal and another not? There is no very obvious

answer. The two boundary layer flows, the marginally

unstable cascading flow (section 1c) and the very un-

stable flow in the mixed layer (section 2; Fig. 1), differ in

the way in which they are continuously driven. The

former is driven by buoyancy forces and pressure gra-

dients resulting from the downslope component of

gravity, and the latter is driven by wind stress transmit-

ted to the water in the presence of surface waves. In both

cases the speed of the flow is eventually limited by tur-

bulent Reynolds stresses associated with its instability.

The turbulence caused by the instability of flow in the

former case may, in the terminology of Turner (1973),

be regarded as being driven by an internal process,

similar to that of the Mittendorf experiments. The

classification of the latter is more ambiguous, since tur-

bulence in the mixed layer may be driven by that caused

in breaking surface waves or perhaps by Langmuir cir-

culation, both ‘‘external processes’’ arising from the

waves at the free surface and wind-driven shear. The

instability of the mixed layer is, however, best described

as an internal mixing process driven by shear, and one

that plausibly is a cause of the large-scale intermittent

coherent structures found in the mixed layer, the

‘‘temperature ramps.’’ The density and velocity profiles

(Fig. 1) and the structure of the fastest growing distur-

bance (Fig. 4) suggest that, rather than being described

as KHI, the instability may best be regarded as a form of

asymmetric Holmboe (AH) instability with the greatest

shear concentrated in the region above the maximum

density gradient (Carpenter et al. 2007). Simple classi-

fication is, however, hindered because of the presence of

the water surface. [The AH instability accomplishes

mixing mainly through entrainment from the upper

thermocline, with water being mixed into the upper shear

layer and resulting in deepening of the upper mixed

layer. This process of entrainment into the mixed layer

of Lake Geneva is recorded by Ozen et al. (2006).] The

two flows also differ in that the cascading flow evolves

spatially, with distance downslope, while the flow in the

upper layer of Loch Ness, being at a moderately large

fetch (about 20 km), appears to be mainly temporal, the

structure of the boundary layer being maintained by a

slow upwelling of isopycals.

The main difference between the flows is in their

density, and particularly velocity, profiles. This being so,

it appears that no general rule can be drawn to determine

how close a given flow is to being marginal within the

limits we have chosen to define the term in section 1b;

each case may be different and should be judged without

the guidance of some general rule. Table 1 summarizes

the examples described above, and includes two others.

Liu (2009) describes and analyzes the stratified shear

flow near the sill at the mouth of the Clyde Sea. One

hour, hour 15, of Liu’s analysis when the flow is turbu-

lent, but not in a marginal state, is included in the table.

Sun et al. (1998) examine the stability of the flow in the

equatorial Pacific where shear results from the presence

of the Equatorial Undercurrent. While the zonal com-

ponent of shear is dominant in the period of observations,

there is a substantial meridional shear and energetic os-

cillations. In a period of 1 h, designated hour 6, the growth

rate of the fastest growing disturbance is 1.1 3 1023 s21

for a mode that is maximum at a depth of about

47 m where Rimin 5 0.13 and N2 ’ 0.55 3 1024 s22, giving

t/Tb ’ 1.1, close to unity. Since 0.25 $ Ric $ Rimin, (3)

gives 20.28 # F # 0, the value entered in Table 1.

Although the more unstable flows, those with the

largest jFj, have smaller values of t/Tb, the ratio of dis-

turbance growth time to buoyancy period, it is remark-

able that in all the examples t/Tb is of order unity. It

6 As F decreases from 1.0 to 20.2, the secondary maximum in kci

near kh 5 10 diminishes. Maximum growth rate continues to be at

kh 5 39.9 with a smooth trend of max(kci) vs F to F 5 20.6, be-

yond which extrapolation leads to the stated uncertainty in the

value of F at kci 5 0.
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appears possible that continuously forced, turbulent flows

may not adjust toward a state in which Rimin is just less

that Ric so that F , 0 and jFj � 1, but to one in which the

minimum growth time of disturbances is of the same or-

der as the smallest period of internal waves, the buoyancy

period. Sutherland and Linden (1998; see also Sutherland

2001) find that waves near the buoyancy period are gen-

erated by, radiate, and drain energy from turbulence in a

stratified shear flow. Such waves may be instrumental in

transporting energy from the turbulent region, perhaps

leading to a physical control, but it is not obvious how this

may be quantitatively related to the growth rate of un-

stable disturbances. It would be of value to examine data

from other continuously forced shear flows to see

whether t/Tb ’ 1, and to investigate the relation between

the unstable disturbances in a turbulent region and the

internal waves radiating from it.
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APPENDIX

An Integral Equation for c

Moum et al. (2003, their appendix) use the kinetic

energy equation to derive an expression for the growth

rate of small disturbances as

ð
[U9›c/›x›c/›z�B›c/›x] dz

� �� ð
[(›c/›x)2

1 (›c/›z)2] dz

� �
,

where U9 5 dU/dz, B 5 2gr/r0 is the buoyancy associ-

ated with density fluctuations r and the streamfunction

is c(x, z, t), with velocity components u 5 ›c/›z and w 5

2›c/›x. (Moum et al. adopt a convention for c with the

negative of the sign used here.) The angle brackets h i
denote averaging over one wavelength in x, averaging

accidentally omitted by Moum et al. (Dr. W. D. Smyth

2008, personal communication). The expression is useful

in testing the results of the matrix method of solving the

T–G equation. We have derived a similar formulation,

but one that can be used to check c when the T–G

equation is solved by the matrix method with boundary

condition f(z) 5 0 at rigid boundaries z 5 0 and h, where

the vertical velocity, w 5 2›c/›x, is zero.

The Taylor–Goldstein equation is given by (1), where

u and c are complex. From the equation of density

conservation, we find an expression for the buoyancy

fluctuation

b(z) 5
uN2

(U � c)
, (A1)

related to the density fluctuation by r 5 2(b(z)r0/g)

exp[ik(x 2 ct)], where r0 is the mean density. Elimi-

nating N2 in (1) using (A1), multiplying the resulting

equation by u(U 2 c), integrating from z 5 0 to h, and

applying integration by parts, we obtain

�
ð

U9ff9dz�
ð

Uf92 dz1c

ð
f92 dz1

ð
bfdz

�k2

ð
Uf2 dz1ck2

ð
f2 dz12

ð
U9ff9dz50, (A2)

with f9 5 df/dz. Rearranging we have

c 5

ð
[U(f92 1 k2f2)� bf

�
�U9ff9] dz

�. ð
(f92 1 k2f2) dz

	 

, (A3)

an equation for the complex speed, c 5 cr 1 ici, in terms

of integrals from z 5 0 to h.

Equation (A3) gives both the real and imaginary parts

of c. It only applies, however, when f(0) 5 0 and f(h) 5 0,

and therefore not in the case examined in section 2.
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