
1. Introduction
The meridional overturning circulation is fed by dense waters sinking into the ocean abyss at high latitudes, 
redistributing heat and freshwater throughout the deep ocean (Talley, 2013). To maintain the overturning circula-
tion, the dense deep water (below approximately 2,000 m) must upwell to the upper ocean via diabatic processes 
(Ferrari, 2014; Lumpkin & Speer, 2007; Marshall & Speer, 2012; Toole et al., 1994). The seminal studies of 
Munk (1966) and Munk and Wunsch (1998) highlighted the role of turbulent mixing in sustaining the deep-ocean 
stratification and overturning circulation, with an estimated average diapycnal diffusivity κ ∼ 10 −4 m 2 s −1. A clus-
ter of in-situ measurements unprecedentedly revealed that enhanced turbulent mixing (κ ∼ 10–100 × 10 −4 m 2 s −1) 
is concentrated at complicated topographic features, such as mid-ocean ridges (Garabato et al., 2004; Ledwell 
et al., 2000; Polzin et al., 1997; Thurnherr et al., 2005, 2019), canyons (Kunze et al., 2012; St. Laurent et al., 2001), 
seamounts (Carter et al., 2006; Kunze & Toole, 1997; Lueck & Mudge, 1997; Ye et al., 2022) and hydraulically 
controlled passages (Alford et al., 2013; Cusack et al., 2019; Mackinnon et al., 2008; Polzin et al., 1996; Tian 
et al., 2009; Voet et al., 2015).

Abstract A significant portion (∼2.1 Sv, 1 Sv = 10 6 m 3 s −1) of deep water penetrates into the Philippine 
Sea through the Yap-Mariana Junction, the sole passage of the Philippine Sea below 4,000 m, and is then 
upwelled into shallower layers, closing regional overturning circulation. Yet, the structure and variability of this 
diapycnal upwelling remain poorly understood. Here, we report on a fine-resolution hydrographic observation 
conducted at the most significant topographic feature in the Philippine Sea, the Kyushu-Palau Ridge (KPR). 
Enhanced mixing up to O(10 −2) m 2 s −1 near the KPR is manifested, indicating the presence of substantial 
upwelling herein. Besides, the ridge-related topography contributes more deep-water mass transformation than 
abyssal basins in the Philippine Sea. This study highlights the significant role of rough bathymetry features in 
generating diapycnal upwelling in the North Pacific.

Plain Language Summary In the North Pacific, a significant portion of deep water from the 
Antarctic enters the Philippine Sea below 4,000 m, where it is upwelled into shallower layers, closing regional 
overturning circulation. However, where the deep water gains buoyancy in the deep Philippine Sea required 
to upwell into shallower layers remains largely unknown, rendering our understanding of the western Pacific 
overturning circulation incomplete. To fill this gap, we conducted observations at two transects over the 
Kyushu-Palau Ridge (KPR), the most significant topographic feature in the Philippine Sea. Based on this 
observational program, we reveal the mixing structure down to the bottom across the KPR and estimate 
the deep water transformation in the deep Philippine Sea. This study illuminates the role of ridge-related 
topography in driving diapycnal upwelling in the deep ocean and improves our understanding of the deep 
circulation in the North Pacific Ocean.
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The localized intense mixing impacts on the abyssal basin-scale circulation, supplies buoyancy flux, and links 
deep water to intermediate and upper layers to close the overturning circulation. For example, previous studies 
in the Brazil Basin indicated that following the intrusion of Antarctic Bottom Water through Vema Channel and 
Hunter Channel, more than 80% of the water transformation takes place near the Mid-Atlantic Ridge rather than 
on the abyssal plain (Thurnherr et al., 2005, 2019), which is associated with the intense mixing observed over the 
western flank of the Mid-Atlantic Ridge (Polzin et al., 1997). Theoretical and numerical studies further addressed 
the regulation dynamics of bottom-enhanced diapycnal mixing on deep-ocean water-mass transformation and 
upwelling occurring near the mid-ocean ridge (e.g., Drake et al., 2020; Ferrari, 2014).

In the North Pacific, the Philippine Sea manifests similar features to that of the Brazil Basin. The deep Philippine 
Sea below 4,000 m is linked to the surrounding waters by the only choke point, Yap-Mariana Junction (YMJ). 
Inside the Philippine Sea, the deep basin is divided by the north-south oriented Kyushu-Palau Ridge (KPR) 
into several sub-basins, that is, the Philippine Basin (PB) to the west, and the Parece Vela Basin (PVB) and the 
Shikoku Basin to the east. The Lower Circumpolar Deep Water (LCDW), which originates from the Southern 
Ocean, flows along topographically-guided pathways to the North Pacific Ocean (Figure 1a). A significant portion 
(∼2.1 Sv) of LCDW enroutes the YMJ and supplies water masses to the deep Philippine Sea (Siedler et al., 2004; 
Wang et al., 2021a, 2021b; Zhou et al., 2022). Previous studies indicate a preliminary picture of horizontal path-
ways of deep waters in the Philippine Sea based on inverse modeling (Kaneko et al., 2001; Tian et al., 2021), 
reanalysis data (Zhai & Gu, 2020) and direct observations (Chaen et al., 1993; Komaki & Nagano, 2018; Uehara 

Figure 1. (a) Bathymetric map of the Pacific Ocean. Map shows the bottom potential temperature using data from the World Ocean Atlas. Schematic pathways of 
LCDW are indicated (Talley et al., 2011). (b) Hydrographic stations are indicated by pink double circles with two repeat-occupation stations in cyan. Schematic of 
LCDW's intrusion is indicated by thick arrows in magenta. (c) Spatial structure of potential temperature below 2,000 m.
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& Taira, 1990; Yoshioka et al., 1988; Zhai et al., 2014; Zhou et al., 2018). The LCDW is expected to upwell 
somewhere, regulating the overturning circulation and biogeochemical properties in the Philippine Sea. However, 
where the LCDW gains buoyancy required to upwell into shallower layers remains largely unknown, rendering 
our understanding of the western Pacific overturning circulation incomplete.

As a prominent bathymetric high in the middle Philippine Sea stretching over 2,600 km with steep and rugged 
bottom topography as well as energetic internal tides (Wang et al., 2018), the KPR acts as a potential hotspot for 
deep water upwelling, like the Mid-Atlantic Ridge. To better characterize the structure and evolution of the deep 
water in the deep Philippine Sea, hydrographic observations were conducted over the KPR (Figure 1b) to inves-
tigate the water mass characteristics and the upwelling of deep water in the Philippine Sea.

2. Materials and Methods
2.1. Data

From 23 September to 22 October 2021, observations at 31 stations (Figure 1b, Table S1 in Supporting Infor-
mation S1) were conducted using Seabird 911 Plus Conductivity-Temperature-Depth (CTD). One transect cuts 
across the KPR with approximately 1° spacing in the PB and PVB and a minimum of 2 km near the KPR, and 
the other transect runs basically along the KPR with station spacing of 0.25°. A single CTD profile was taken at 
most of the stations except two stations located near the KPR, that is, A6 and B4, which were repeated to resolve 
tidal variability (9 profiles at each station). Two stations were located at the Mariana Trench (MT), measuring 
upstream properties of the LCDW. At all the stations except station A6, nearly full-depth CTD profiles were 
conducted down to an average of 50 m height above the bottom. With the pre-cruise calibrations, the accuracies of 
the CTD sensors are <0.001 psu for salinity and ±0.001°C for temperature. The CTD data were quality controlled 
for further analysis.

Temperature and salinity data used outside the observation area are from the World Ocean Atlas 2013 (Locarnini 
et al., 2013; Zweng et al., 2013). Barotropic tidal currents were extracted from TPXO9 with 1/30° resolution 
(Egbert & Erofeeva, 2002). CTD profiles from World Ocean Database (WOD) are used to evaluate the upwelling 
transport in adjacent regions (Boyer et  al.,  2018). Fine-resolution topography at the two transects was meas-
ured using a multi-beam echo sounder system. Additionally, the Shuttle Radar Topography Mission data set 
at 15-arc-second resolution (SRTM15+) is used. The SRTM15+ is significantly enriched by small-scale topo-
graphic features (Tozer et al., 2019).

2.2. Methods

2.2.1. Gregg–Henyey–Polzin Parameterization

Turbulent kinetic energy dissipation rate ε is inferred using the widely employed Gregg-Henyey-Polzin (GHP) 
parameterization based on internal wave–wave interaction (Gregg et al., 2003), which has provided reasonable 
estimation of ε in mixing hotspots in the Western Pacific (Hibiya et al., 2012). The specific strain-based form of 
the parameterization is

𝜀𝜀 = 𝜀𝜀0
𝑁𝑁2

𝑁𝑁2

0

⟨

𝜉𝜉2𝑧𝑧
⟩2

𝐺𝐺𝐺𝐺

⟨

𝜉𝜉2𝑧𝑧
⟩2

ℎ(𝑅𝑅𝜔𝜔)𝑗𝑗

(

𝑓𝑓

𝑁𝑁

)

 (1)

where ε0 = 6.73 × 10 −10 W kg −1, and f and N are the Coriolis and buoyancy frequencies, respectively. The term Rω 
is defined as 𝐴𝐴 𝐴𝐴𝜔𝜔 =

⟨

𝑉𝑉 2
𝑧𝑧

⟩

∕
⟨

𝜉𝜉2𝑧𝑧
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 , where 𝐴𝐴
⟨

𝑉𝑉 2
𝑧𝑧

⟩

 and 𝐴𝐴
⟨

𝜉𝜉2𝑧𝑧
⟩

 represent the fine-scale internal wave shear and strain vari-
ance. 𝐴𝐴 𝐺𝐺𝐺𝐺

⟨

𝜉𝜉2𝑧𝑧
⟩

 is the strain variance estimated from the Garret and Munk spectrum (Garrett & Munk, 1972, 1975). 
Strain-based dissipation rates with Rω = 7 agree to within a factor of 2 with shear-and-strain dissipation rates from 
GHP (Kunze et al., 2006). As a result, dissipation rates are estimated from CTD strain and a constant of Rω. Stain 
profiles with a resolution of 10 m were divided into half-overlapping 320-m-long segments starting from the 
bottom. The strain variance was obtained by integrating strain spectra from a variable minimum vertical wave-
length (50–90 m) to a maximum (320 m) to avoid instrument noise at higher wavenumbers (Tian et al., 2009):

⟨

𝜉𝜉2𝑧𝑧
⟩

= ∫
𝑘𝑘max

𝑘𝑘min

𝑆𝑆𝜉𝜉𝑧𝑧 (𝑘𝑘𝑧𝑧)𝑑𝑑𝑘𝑘𝑧𝑧 (2)
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2.2.2. Thorpe-Scale Method

The ε is also estimated using the Thorpe scale method, 𝐴𝐴 𝐴𝐴 = 0.64𝐿𝐿2

𝑇𝑇
𝑁𝑁3 (Thorpe, 1977). To estimate the diapycnal 

diffusivity κ from the GHP and Thorpe-scale method inferred ε, the Osborn (1980) formula with Γ = 0.2 is used, 
which is

𝜅𝜅 = Γ
𝜀𝜀

𝑁𝑁2 (3)

A drawback of the Thorpe-scale method is that overturns could not be easily detected if there exists a strong or 
too weak stratification. Therefore, our analysis mainly relies on the GHP method in this study and we use the 
Thorpe-scale method for comparison. The diffusivity estimates based on the GHP and Thorpe-scale method yield 
reasonable consistency (Figure S1 in Supporting Information S1).

2.2.3. Internal Tide

The vertical displacement 𝐴𝐴 𝐴𝐴
(

⟨𝑧𝑧(𝜎𝜎𝜃𝜃)⟩𝑡𝑡, 𝑡𝑡
)

 is computed through 𝐴𝐴 𝐴𝐴
(

⟨𝑧𝑧(𝜎𝜎𝜃𝜃)⟩𝑡𝑡, 𝑡𝑡
)

= 𝑧𝑧(𝜎𝜎𝜃𝜃, 𝑡𝑡) − ⟨𝑧𝑧(𝜎𝜎𝜃𝜃)⟩𝑡𝑡 (Desaubies & 
Gregg, 1981). Here z(σθ,t) is the potential density measurement, and 𝐴𝐴 ⟨𝑧𝑧(𝜎𝜎𝜃𝜃)⟩𝑡𝑡 is the time-averaged depth of z(σθ,t). 
The depth-integrated available potential energy (APE) is calculated by:

APE =

⟨

1

2 ∫
0

−𝐻𝐻

𝑁𝑁2(𝑧𝑧𝑧 𝑧𝑧)𝜂𝜂(𝑧𝑧𝑧 𝑧𝑧)𝑑𝑑𝑧𝑧

⟩

 (4)

The baroclinic modes for vertical displacement Φn(z) are defined as the solutions of the eigenvalue problem 
(Gill, 1982)

𝑑𝑑2Φ𝑛𝑛

𝑑𝑑𝑑𝑑2
+

𝑁𝑁2(𝑑𝑑)

𝑐𝑐2𝑛𝑛
Φ𝑛𝑛(𝑑𝑑) = 0 (5)

with boundary conditions 𝐴𝐴 Φ𝑛𝑛(0) = Φ𝑛𝑛(−𝐻𝐻) = 0 , where subscript n is the baroclinic mode number and 𝐴𝐴 𝐴𝐴𝑛𝑛 is the 
eigenspeed, defined as

𝑐𝑐𝑛𝑛 =
1

𝑛𝑛𝑛𝑛 ∫
0

−𝐻𝐻

𝑁𝑁(𝑧𝑧)𝑑𝑑𝑧𝑧 (6)

The corresponding modes for pressure and horizontal velocity ∏n(z) are defined as

∏

𝑛𝑛

(𝑧𝑧) = 𝜌𝜌0𝑐𝑐
2
𝑛𝑛

𝑑𝑑Φ𝑛𝑛(𝑧𝑧)

𝑑𝑑𝑧𝑧
 (7)

To project vertical displacement onto the first ten modes (n = 1, 2, 3, …, 10), the least squares fit method is used 
(Nash et al., 2006). The equivalent mode number is toward the internal tide, which is determined by the modal 
dispersion relation given by

𝑘𝑘𝑗𝑗 =
𝑗𝑗𝑗𝑗

𝐻𝐻

(

𝜔𝜔2 − 𝑓𝑓 2

𝑁𝑁
2
− 𝜔𝜔2

)1∕2

 (8)

where j is the mode number; kj is the corresponding horizontal wavenumber, H and f are the mean water depth 
and Coriolis frequency in the selected region, respectively. The ω is the tidal frequency.

2.2.4. Diapycnal Velocity

Diapycnal velocity w* can be calculated from McDougall (1984) derived equation. If the isopycnal diffusivity 
term and double diffusion can be ignored, the equation is written as

𝑤𝑤∗ =
1

𝑁𝑁2

𝜕𝜕

𝜕𝜕𝜕𝜕
(Γ𝜀𝜀) +

𝑔𝑔

𝑁𝑁2

[

−
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜅𝜅𝜕𝜕2𝜕𝜕 −

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜅𝜅𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

]

 (9)

where α is the thermal expansion coefficient and p is pressure. The subscript z denotes derivative with respect to 
depth. Here, logarithmic fits to dissipation rate profiles are used to calculate w*.
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3. Results
3.1. Three-Dimensional Distribution of Water Properties and Mixing in the Deep Philippine Sea

Sections of potential temperature (θ, Figure 1c), potential density (σ2, Figure S2 in Supporting Information S1) 
along and across the KPR exhibit the distribution of water properties in the deep Philippine Sea. The 1.2°C 
isotherm or 36.04 kg m −3 isopycnal at depth of ∼4,000 m demonstrate the intrusion of cold, saline and dense 
LCDW (θ < 1.2°C) from the YMJ. Due to the topographic constraint of the KPR, no LCDW is identified on 
the western half of the section. This is consistent with previous studies (Tian et al., 2021; Wang et al., 2023), 
which suggests that the LCDW penetrates through the gaps of the KPR to the north and constrain at the Northern 
Philippine Basin. Therefore, notable difference of water mass properties is manifested between the deep water 
to the east and west of the KPR, resulting in weaker stratification in the PB. Nevertheless, the isotherms (e.g., 
1.15°C, 1.2°C, 1.22°C, and 1.23°C isotherms) below 4,000 m on both sides of the KPR slope downward while 
approaching the KPR, indicating the existence of vigorous turbulent mixing and water mass transport along the 
slope of the KPR.

Water masses above 3,000 m (Figure 2a) are discernible evidently but they were outside the scope of present 
study focusing on deep water. The deep water below 3,500 m undergoes a significant increase in temperature and 
a decrease in density and salinity as it transitions from the MT to the PVB (Figure 2b). Although there are several 
gaps, where deep water exchanged between the PB and PVB (Wang et al., 2023), at the KPR below 3,800 m, the 
deep water in the PB is distinctly warmer and lighter than that in the PVB. Additionally, it is worth noting that 
the deep water exhibits a remarkable warming and lightening trend from the PB eastward to the KPR and from 
the PVB westward to the KPR (Figures 2c and 2d). This trend is associated with the sloping isolines and is likely 
influenced by the mixing that occurs near the KPR.

Based on the fine-scale parameterization, the three-dimensional structure of diapycnal mixing over the KPR 
is illustrated in Figure 3. Vertically, a substantial bottom intensified structure, resembling previous findings of 
Kunze et al. (2006), is also suggested. Horizontally, inhomogeneous spatial distribution of turbulent dissipation 
and mixing is manifested, which is tightly related to the rough KPR. There is a remarkable enhancement in dissi-
pation (O[10 −7 m 2 s −3]) and diffusivity (O[10 −3 m 2 s −1]) near the KPR below 2,000 m. These elevated diffusivity 
values near the KPR are comparable to those observed in other basins (Polzin et al., 1997; Sloyan, 2006). Eight 
profiles in meridional and eight densely-spaced profiles in zonal represent profiles near the KPR, while the 
remaining 13 profiles in the PB and PVB are on behalf of profiles outside KPR. Averaged profiles of diffusivity 
and dissipation near the KPR highlight the enhanced mixing near the KPR, with values approximately one order 
of magnitude larger than the relatively flat PB and PVB, yet there is insignificant difference above 1,500 m 
(Figures 3c and 3f). This enhanced mixing coincides with sloping isotherms and isopycnals in the vicinity of the 
KPR. Kunze et al. (2006) revealed that sharp pycnoclines in the background stratification to contaminate esti-
mates of internal wave strain variance, particularly affecting strain-only estimates. Nevertheless, this contamina-
tion is less pronounced in our study, as we specifically focus on processes below 2,000 m, which are considerably 
distant from the pycnoclines. The uncertainties of GHP method might affect the mixing pattern overall in the 
deep ocean but the enhanced mixing near the KPR is still reliable.

The breaking of internal tides generated over rough topography has been suggested to be the main contributor 
to the intensified turbulent mixing in deep ocean (Bell, 1975; Garrett & Kunze, 2007; Vic et al., 2019). Tidal 
energy budget analysis at Mid-Atlantic Ridge highlighted the significance of the generation of the high-mode 
internal tides (Vic et al., 2018), which are more prone to near-field dissipation (St. Laurent & Nash, 2004; Vic 
et al., 2018). Utilizing data from two repeat stations, one located near the top of the KPR (B4) and the other in the 
relatively flat PVB (A6), the APE of tidal generation is evaluated. Profiles at B4 extended down to the bottom of 
∼3,300 m, whereas those at A6 extended down to ∼2,000 m. When comparing results of the generated internal 
tides above the upper 2,000 m with full-depth profiles at B4, the differences were found to be small. Therefore, we 
utilize the upper 2,000 m profiles from A6 for further analysis. The displacement η is projected qualitatively onto 
10 modes. The generated APE of internal tides varies at the two stations (Figure 4a). Mode-1 APE of A6 accounts 
for 58% of the energy density of modes 1–10, while mode-1 APE of B4 accounts for only 34% (37% using upper 
2,000 m profiles). This suggests that more high-mode internal tides, presumably locally generated exist near 
the KPR compared to inside the deep basin, and likely dissipated locally to furnish mixing (Vic et al., 2018). 
The wavelet spectrum of multibeam bathymetric data of zonal section is distinctly different at the two stations 
(Figure S3 in Supporting Information S1). At B4, the spectrum density exhibits a high level at both small and 
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large  wavelengths (50–200 km). While at A6, the spectrum peaks at wavelengths larger than 120 km. The equiv-
alent mode numbers for the diurnal tide imply that internal tides with high vertical modes are prevalent near the 
KPR, which is consistent with the results of the generated APE (Figure 4a). Due to limitation of velocity data, we 
could not obtain a reliable analysis of baroclinic horizontal kinetic energy (HKE). But, for a single wave, the ratio 
between HKE and APE is generally following HKE/APE = (ω 2 + f 2)/(ω 2 − f 2), where ω is the tidal frequency and 
f is the inertial frequency. As a result, the analysis of the energy budget of internal tides is reasonable.

3.2. Upwelling in the Deep Philippine Sea

After intruding into the Philippine Sea through the YMJ, LCDW has to upwell to upper layers via diaba-
tic processes. Given that the YMJ is the only deep passage below 4,000 m and the area of 3.9 × 10 6 km 2 at 
4,000 m of the Philippine Sea (see topography in Figure 4c), LCDW transport of 2.1 ± 0.4 Sv (Zhou et al., 2022) 
would be accompanied by an averaged upwelling rate of (0.54 ± 0.10) × 10 −6 ms −1, nearly four times larger than 
Munk's assumption for the global ocean average (w* = 0.14 × 10 −6 ms −1, Munk, 1966). It is of interest to under-
stand where the deep water upwells to the upper layers of the Philippine Sea.

Figure 2. (a) Relation of potential temperature versus salinity (with contours overlain) along zonal section in the Philippine 
Basin (PB, in blue), Parece Vela Basin (PVB, in red) and two stations at Mariana Trench (MT, in gray). The gray contours 
with numbers stand for the potential density. The darker the color, the further east the location is. Panel (b) same as (a) except 
for depth below 3,500 m. White stars indicates 3,800 m in the PB, PVB and MT, respectively. (c) Potential temperature and 
(d) potential density profiles of along zonal section below 3,000 m.
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Diapycnal velocity w* can be calculated from Equation 9 (e.g., Du et al., 2017; Groeskamp et al., 2016). Note 
that this w* does not consider the upward components driven by wind stress curl or convergence and diver-
gence. The errors (or 95% confidence interval) of derived w* are given by the averaged profiles of N 2 and ε. 
A persistent upwelling is indicated with magnitudes on the order of 10 −6  ms −1 below 2,000  m (Figure  4b). 
This upwelling weakens as the depth becomes shallower, with the maximum upwelling of approximately 
(4.18 ± 1.25) × 10 −6 ms −1 near the KPR and (3.50 ± 1.11) × 10 −6 ms −1 outside the KPR, both of which are found 
near the bottom. The estimated upwelling rate of (0.54 ± 0.10) × 10 −6 ms −1 calculated using LCDW transport is 

Figure 3. Spatial structure of turbulent dissipation (a) across the Kyushu-Palau Ridge (KPR) and (b) along the KPR and (c) average profiles of dissipation rate near 
(in magenta) and outside (in cyan) the KPR with errorbars showing the standard deviation. (d)–(f) are the same as (a)–(c) but for the diffusivity. Logarithmic scales are 
used for the dissipation and diffusivity.

Figure 4. (a) The percentage of mode 1 and modes 2–10 of the Available Potential Energy (APE) at B4 and A6. (b) Vertical velocity profiles below 2,000 m. Errorbars 
indicate the 95% confidence interval of the mean value. The red stars are the average vertical velocity at 3,500 m, 3,700 m, and 4,000 m, based on the transport at the 
Yap-Mariana Junction. (c) Estimates of upwelling transport in the basin and near the Kyushu-Palau Ridge (KPR). The dotted line stands for the area of ridge-related 
topography, with the KPR filled in magenta. Tidal ellipses are indicated in gray along the KPR.
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basically between the strong upwelling ([1.33 ± 0.30] × 10 −6 ms −1) near the KPR and relatively weak upwelling 
([0.41 ± 0.30] × 10 −6 ms −1) outside the KPR at 4,000 m. This suggests that most of the deep water would upwell 
near the KPR, while much weaker upwelling take place inside the deep basin of the Philippine Sea. The results at 
3,500 and 3,700 m are consistent with those at 4,000 m (Figure 4b).

Mixing in the KPR is modulated by locally generated internal tides. The generated internal tides' energy is 
proportional to the buoyancy frequency N, the wavenumber and the amplitude that characterizes the bathyme-
try (k, h) and the barotropic tidal velocity 𝐴𝐴 ⃖⃗𝑢𝑢 (Jayne & St. Laurent, 2001). In attempt to estimate the water mass 
upwelling, we conducted comprehensive analysis of the bathymetries, stratification and barotropic tides along 
the KPR. First, we calculated the mean spectra using SRTM15+ data within two regions: one near the KPR, 
which spans about 200 km in width with the shallowest point at the center, and the other outside the KPR, which 
is about 150–200 km away from the KPR, according to the location of station B4 and A6, respectively. The 
results suggested similar topographic features along the entire KPR in spectral space (Figure S3 in Supporting 
Information  S1). Subsequently, we obtained the average stratification N 2 below 2,000  m near the KPR. The 
magnitude of the averaged N 2 along the KPR is within a factor of two (Figure S3 in Supporting Information S1). 
Finally, we analyzed the barotropic tides along the KPR from TPXO9, which indicates that the major axes of 
the tidal ellipse are zonally dominated and almost identical to the KPR (Figure 4c). Consequently, it can be 
inferred that the  generation of internal tides is similar throughout the entire KPR based on these findings. Here, 
the ridge-related topography in the northern KPR, that is, the Daito Ridge Group (DRG), is also considered in 
these aspects. Besides, the analysis based on WOD data suggests that upwelling volume certainly should not be 
neglected at the Daito Ridge Group (Table S2 in Supporting Information S1).

The Philippine Sea at 4,000 m can be divided into two major areas, that is, the area near the ridge-related topog-
raphy (the KPR and the DRG) and the relatively flat deep basin. The former covers approximately 0.84 × 10 6 km 2 
(accounting for 21%), while the latter covers 3.06 × 10 6 km 2 (accounting for 79%). Using the average vertical veloc-
ity estimates near and outside the KPR at 4,000 m above, the upwelling volume is estimated to be 1.12 ± 0.18 Sv 
and 1.26 ± 0.91 Sv near and outside the KPR at 4,000 m, respectively. The estimate of 2.38 ± 0.93 Sv in total 
is close to the observed volume transport of around 2.1 Sv through the YMJ below 4,000 m (Zhou et al., 2022) 
and is similar to the result (2.42 ± 0.67 Sv) when taking other potential mixing hotspots into account (Figure S5 
in Supporting Information S1), which strengthens our speculation. This estimate presents a primary pattern for 
mixing-induced upwelling in the deep Philippine Sea. The ridge-related topography accounts for only 21% of the 
deep Philippine Sea at 4,000 m, but contributes 47% of deep water upwelling. A similar pattern was revealed in 
the Brazil Basin, where 15% of the upper interfacial area of deep water lies at the mid-ocean ridge, yet approxi-
mately one-half of the diapycnal buoyancy fluxes take place there (Thurnherr et al., 2005, 2019).

4. Discussion
A significant portion of deep water enters the Philippine Sea below 4,000 m, through the only deep passage 
namely YMJ. We reveal that the KPR is an upwelling hotspot due to enhanced mixing. The APE budget suggests 
that the internal tides generated in the KPR are more likely contribute to the enhanced mixing. However, part of 
the generated lower-mode internal tides in the Mariana Arc and Luzon Strait could propagate to the KPR and the 
refraction and interference effects of these internal tides could affect mixing near the KPR (Chen et al., 2021; 
Wang et al., 2021a, 2021b; Xu et al., 2021; Zhao et al., 2016, 2021). Besides, other energetic dynamic processes 
were revealed in the deep Philippine Sea, such as bottom current across the KPR (Wang et al., 2023) and deep 
eddies in the PB (Ma et al., 2023). The energy from these geostrophic flows into lee waves can break and sustain 
enhanced turbulent mixing (e.g., Nikurashin & Ferrari, 2011; Voet et al., 2020). Further confirmation of the role 
of low-mode internal tides and lee waves is required in the future.

The diapycnal upwelling near and outside the KPR are assessed at 4,000 m, highlighting the important role of 
ridge-related topography played in water mass transformation. The estimated 2.38 ± 0.93 Sv upwelling transport 
is comparable with the observed volume transport at YMJ (2.1 Sv). There is not distinct bias (2.42 ± 0.67 Sv) 
when taking other mixing hotspots into consideration. The upwelling of the deep water in the Pacific is related to 
the variability of the Indonesian Throughflow and the warm pool, regulating the regional climate system (Feng 
et al., 2017; Holzer et al., 2021; Hu et al., 2015; Sen Gupta et al., 2016; Talley, 2013). Therefore, our study urges 
observational, theoretical and modeling efforts toward incorporating rough topography effects on Pacific over-
turning circulation.
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Data Availability Statement
The global bathymetry and topography at 15 arcseconds (SRTM15+) data are downloaded from https://topex.
ucsd.edu/www_html/srtm15_plus.html. The WOA hydraulic data are from https://www.nodc.noaa.gov/OC5/
woa13/. The WOD data can be accessed at https://www.ncei.noaa.gov/products/world-ocean-database. The 
barotropic tides (TPXO9) are from https://www.tpxo.net/. The hydrographic observations are available at the 
Zendo repository (https://doi.org/10.5281/zenodo.7895316).
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