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ABSTRACT

We explore numerical methods for the stability analysis of stratified, parallel shear flows consid-

ering the effects of small-scale turbulence represented by eddy viscosity and diffusivity. The result

is an extension of the classical Taylor–Goldstein problem applicable to oceanic and atmospheric

flows. Solutions with imaginary frequency describe shear and convective instabilities, whereas

those with real frequency represent internal gravity waves. Application to large observational

datasets can involve considerable computation and therefore requires a compromise between speed

and accuracy. We compare several numerical methods to identify optimal approaches to various

problems.

1. Introduction

The Taylor–Goldstein (T-G) equation describes

the stability of a Boussinesq stratified shear flow

under inviscid and nondiffusive conditions (Taylor

1931; Goldstein 1931; Liu 2010; Smyth and Carpenter

2019). It is a second-order ordinary differential equa-

tion whose solutions exhibit singularity at critical levels

(where the speed of the mean current matches the phase

velocity). The singular behavior arises from the neglect

of viscosity, diffusion and nonlinearity in the equa-

tions of motion (Maslowe 1986), and makes the T-G

equation a challenge to solve numerically. Several well-

known theorems, such as the Rayleigh inflection point

criterion (Rayleigh 1880), Fjørtoft’s condition (Fjørtoft
1950), the Miles–Howard theorem (Miles 1961; Howard

1961), and Howard’s semicircle theorem (Howard 1961),

allow us to predict certain aspects of instability

without solving the T-G equation, but the informa-

tion they give is far from complete. One alternative is

to use a numerical shooting method together with

asymptotic matching to cross singularities (Hazel

1972; Smyth and Peltier 1989; Rees and Monahan

2014). Another is to retain the viscous and diffusive

effects. Liu et al. (2012) extended the T-G equation

to include vertical and horizontal eddy coefficients of

viscosity and diffusivity, allowing those coefficients

to vary with height. The resulting viscous T-G (vT-G)

equation set (described below) is useful for modeling

naturally occurring flows. It is nonsingular, but it is

higher order than the T-G equation.

The focus of this paper is numerical methods for the

vT-G equations, specifically matrix-based methods.

Matrix methods are slower than shooting methods

for a given accuracy but are useful in practice because

they do not rely on an initial guess. We will compare

several commonly used methods to seek the most ef-

ficient way to get a solution with a prescribed level

of accuracy.Corresponding author: Zhiyu Liu, zyliu@xmu.edu.cn
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2. The viscous Taylor–Goldstein problem

For a small-amplitude, normal mode disturbance

with horizontal wave vector k evolving on a horizontal

background flow Uh 5 {u(z), y(z)}, mode evolution is

determined solely by the component of the background

flow parallel to the wave vector:

U5
k �U

h

k
,

where k5
ffiffiffiffiffiffiffiffiffi
k � kp

is the wave vector magnitude. Therefore,

without loss of generality, we consider the two-dimensional

problem that the parallel shear flow U(z) is disturbed

by the vertical velocity perturbation w0 and the buoy-

ancy perturbation b0. The buoyancy is defined as b 5
g(r0 2 r)/r0, where g is the acceleration due to gravity,

and r0 is a characteristic value of the density r. We de-

compose the density as r5 r0 1 r(z)1 r0(x, y, z, t), and
the buoyancy becomes b5B(z)1 b0, whereB52gr/r0
and b0 5 2gr0/r0 (see appendix E). The perturbations

can be expressed as the normal mode

w0 5 [ŵ(z)est1ikx]
r
; b0 5 [b̂(z)est1ikx]

r
,

where ŵ and b̂ are complex vertical structure func-

tions of vertical velocity and buoyancy, respectively,

s 5 sr 1 isi is the complex growth rate, subscripts r

and i indicate the real and imaginary parts, i5
ffiffiffiffiffiffiffi
21

p
and x is the horizontal coordinate parallel to the wave

vector. We include the effects of viscosity and diffu-

sivity, which may either be molecular in origin or

result from turbulence on spatial scales much smaller

than the wave scale k21. Following Liu et al. (2012),

the viscosity and diffusivity have separate horizontal

(Ah, Kh) and vertical (Ay, Ky) parts, and are allowed

to vary in the vertical. The linearized normal-mode

equations are then

(s1 ikU)=2ŵ2 ik
d2U

dz2
ŵ5T

w
ŵ2 k2b̂ , (1)

(s1 ikU)b̂1
dB

dz
ŵ5T

b
b̂ , (2)

with viscous and diffusive operators

T
w
5

d2

dz2

�
A

y

d2

dz2

�
2 k2 d

dz

�
(A

h
1A

y
)
d

dz

�
1 k4A

h
, (3)

T
b
5

d

dz

�
K

y

d

dz

�
2 k2K

h
. (4)

The Boussinesq approximation has been made to neglect

the effect of variation of density except in the buoyancy.

In the inviscid, nondiffusive limitAh5Kh5Ay5Ky5 0,

the vT-G equations [Eqs. (1) and (2)] become the con-

ventional T-G equation.

The vT-G equations [Eqs. (1)–(4)] can be restructured

as a generalized differential eigenvalue problem:

s

"
=2 0

0 I

#
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

A~

"
ŵ

b̂

#

5

2
664
2ikU=21ik

d2U

dz2
1T

w
2k2

2
dB

dz
2ikU1T

b

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B~

�
ŵ

b̂

�
, (5)

where 0 is the zero matrix, I is the identity matrix, and

=2 5 d2
/dz22k2

is the Laplacian in normal-mode form and A
~

and B
~

are

matrix differential operators.

Specification of the problem is completed by the

imposition of boundary conditions at the upper and

lower boundaries, which may in principle be at infinity.

Each boundary is assumed to be impermeable (ŵ5 0),

either rigid (dŵ/dz5 0) or frictionless (d2ŵ/dz2 5 0)

and either with constant buoyancy (b̂5 0) or insulat-

ing (db̂/dz5 0).

3. Numerical methods

The problem specified by (5) and the boundary

conditions is to find (complex) eigenvalues s for

given profiles of U(z), B(z), Ay(z), Ah(z), Ky(z),

Kh(z), and wavenumber k. We begin by defining grid

points zi (i 5 1, . . . , N), which may or may not be

evenly spaced (appendix A). We then define deriva-

tive matrices D(K)

~ such that the Kth derivative of a

discretized function fi 5 f(zi) is represented by

dKf

dzK

����
z5zi

5DK
ij fj . (6)

The differential eigenvalue problem (5) now becomes

the generalized eigenvalue problem

sA
~
x5B

~
x , (7)

where A
~

and B
~

are 2N 3 2N matrices and the eigen-

vector x is the concatenation of the elements of the

discretized structure functions ŵi and b̂i. This algebraic

problem is solvable using standard numerical routines,
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but we need first to specify the derivative matrices D(K)

~
that appear in A

~
and B

~
.

Numerical methods for determining D(K)

~ can be clas-

sified into the local and global categories. For the local

methods, the derivative at the grid point zi involves

only a few neighboring function values f(zj). We can

then calculate D
(K)
ij by applying Taylor’s expansion of

f or by differentiating a local polynomial interpolant

at zi (appendix B). The result is a sparse matrix with

bandwidth J. The larger J is, the higher the order

of D(K)

~ is.

In global methods, computing the derivative at any point

involves all the N nodes in the domain. Here, D
(K)
ij can be

derived by differentiating a high-order orthogonal poly-

nomial such as the Chebyshev polynomial (appendix C)

or integrating a trigonometric series (appendix D).

As a result, D(K)

~ is a full matrix. This increases the CPU

time and storage requirements but, in compensation, the

orthogonal high-order polynomials give higher accuracy

for a given N. Details of the computation of the differ-

entiation matrices are given in the appendixes.

It is important to recognize that higher-order finite-

difference methods are designed to be more accurate

in the limit D/ 0, where D is the grid spacing defined in

appendix A. In practice, we make D as small as we can

with the available resources, but often we are interested

inmarginally resolved flow features, for example, a layer

of strong shear that extends over just a few data points.

In this case, there is no guarantee that a higher-order

method will be more accurate. This failure of higher-order

methods to improve accuracy has been noted previously,

for example, by Putrevu and Svendsen (1992).

In some applications, our aim is to approximate the

solution of the differential eigenvalue problem as ac-

curately as possible, while in others we try to attain

acceptable accuracy while minimizing processing time

and memory. Therefore, we will compare methods based

on two criteria:

d How quickly does the error of the growth rate (or

phase speed) go to zero as N / ‘?
d What is the smallest N needed to achieve a predeter-

mined accuracy, for example, a relative error of 1% in

the growth rate?

Wewill address these questions for a set of test problems

including both simple, idealized models of parallel flow

and in situ oceanographic measurements.

4. Shear instabilities in idealized model flows

Our first goal in solving the vT-G equations is

to identify unstable normal modes, or instabilities.

We will begin with a profile that is often used in

modeling geophysical flows, the hyperbolic tangent

shear layer.

a. Case 1: A homogeneous, inviscid shear layer

In the homogeneous, inviscid limit the vT-G equation

reduces to the Rayleigh equation (Rayleigh 1880; Smyth

and Carpenter 2019). We consider a hyperbolic tangent

shear profile U 5 tanh(z) with boundary conditions

ŵ5 0 at z56H/2, whereH is the domain height, chosen

to be 10. Further boundary conditions are not needed

since Tw and Tb drop out of Eqs. (5). For each wave-

number k, a matrix-based method (local or global; see

appendixes B–D) using N grid points delivers 2N ei-

genmodes. We are concerned only with the fastest

growing of these eigenmodes, that is, sFGM.

The growth rate is purely real, and is amaximumwhen

k 5 0.46. As a ground truth for testing the various nu-

merical methods, we use the Fourier–Galerkin method

(appendix C) with high resolutionN5 801 to find the

corresponding growth rate s05 0.18456195. This is used

as a ground truth, or ‘‘target value’’ to define the relative

error, js 2 s0j/s0, for each of the other methods tested.

Figure 1 shows the relative error in the growth rate for

fivemethods: the second-, fourth-, and sixth-order finite-

difference methods (labeled FD2, FD4 and FD6, re-

spectively) and the Fourier and Chebyshev methods.

The number of grid points N ranges from 11 to 265. Not

surprisingly, all methods become more accurate as N is

increased. The error in the finite-difference methods

decreases according to the order of the method, giving

very accurate results at high N. At low N, however, the

difference vanishes. To achieve 1% accuracy in the

FIG. 1. Relative error in the growth rate s for case 1 with different

numerical methods as shown in the legend.
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growth rate requires N 5 39, 21, and 19 with FD2,

FD4, and FD6, respectively. The global methods be-

come extremely accurate at large N, but do not perform

as well at small N (the Chebyshev method especially).

The standard of 1% accuracy requires N 5 29 and 19

with the Chebyshev and Fourier methods, respectively.

An investigator desiring ,1% error in the growth rate

with high efficiency might do well to choose FD6 or the

Fourier method. However, FD4 is simpler while giving

nearly the same accuracy.

We now show that clustering the grid points in regions

of high shear using themethods described in appendixA

can improve accuracy significantly, especially when the

resolution is coarse (Fig. 2). In general, the clustered

grid delivers greatly improved accuracy for all orders of

finite-difference methods. The difference is particularly

striking at lowN, where the 1% standard is achieved even

for the lowest-order method FD2c, where ‘‘c’’ denotes

clustering (not to be confused with the phase speed of

internal waves in section 6) and at the lowest resolution

tested (N 5 11).

For each of the computations shown in Fig. 2 that

used clustered grids, an optimal value was chosen for

the clustering parameter a (see appendix A). This was

done by maximizing an improvement index Y, which

compares the accuracy achieved with a particular clus-

tered grid with that using a uniform grid:

Y(a,N)5 12

����sFDc
2s

0

s
FD

2s
0

���� , (8)

where sFD is the growth rate computed using a partic-

ular finite-difference method with uniform grids and

sFDc is the value obtained using clustered grids.

To illustrate the method, we examine the dependence

of Y on a at N 5 113 (Fig. 3a). Using method FD2c,

accuracy improves steadily as a is increased, reaching

a maximum at a 5 0.85. We identify this as the optimal

value for FD2c. With method FD4c, the increase is

faster and the maximum improvement is found at a5
0.60. With method FD6c, maximum improvement is

also found at a 5 0.60, but for higher values of a, the

rate of improvement decreases approaching zero as

the clustering becomes extreme.

We next examine the optimal value of a for a range

of N (Fig. 3b) using second-, fourth-, and sixth-order

methods. It is found that the optimal value of a for FD2c

is constant; for FD4c and FD6c, the optimal value of a

increases whenN is small. These results are important

because the advantage of the clustered grid method is

greatest for coarsely resolved features.

While the above results might suggest using larger

values of a, one should recall that setting a too large can

degrade accuracy (Fig. 3a). Conservatism is especially

well justified when analyzing observational data, where

one may not know a priori the flow structures that the

codewill encounter. On that basis, we tentatively choose

the lower values a 5 0.85 for FD2c, and a 5 0.60 for

FD4c and FD6c, as in Fig. 2.

We can go one step further and use eigenfunction

to test the accuracy of different numerical methods. As

we do to the growth rate, the relative error of vertical

velocity eigenfunction can be defined as

C(N)5

����jŵj2 jŵj
0

jŵj
0

���� , (9)

where jŵj is the magnitude of the vertical velocity

eigenfunction, jŵj0 is the target eigenfunction corre-

sponding to s0, and the overline indicates vertical

average. As shown in Figs. 4b and 4c, we normalize

the solutions by scaling the maximum magnitude of

the vertical velocity eigenfunction to unity. The ei-

genfunction is symmetric about z5 0, having peaks of

equal magnitude on the upper and lower edges of the

shear layer. Figure 4d shows the relative error C for

the FD methods, the FDc methods, and the Fourier

and Chebyshev methods. The FDc methods achieve

higher accuracy than the FD methods and global

methods, indicating that the clustered grids work for

eigenfunction. The Chebyshev method performs better

than the Fourier method. This is because the collocation

points of the Chebyshevmethod is symmetric about z5 0,

well suitable for this case. We also note that the clustering

strength needed to resolve the eigenfunction is smaller

FIG. 2. Relative error in the growth rate for case 1 using finite-

difference methods of different order on uniform and nonuni-

form grids.
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than that needed to resolve the growth rate. At N 5 11,

FD4c method with a 5 0.40 can reproduce the ei-

genfunction (dashed line in Fig. 4c).

b. Case 2: A stably stratified, inviscid, nondiffusive
shear layer

We turn now to an inviscid, nondiffusive, stably

stratified fluid for which the parallel shear flow problem

reduces to the Taylor–Goldstein equation (Taylor

1931; Goldstein 1931; Smyth and Carpenter 2019).

Different numerical methods were tested with a

simple case of a shear layer in homogeneous fluid in

the previous section. Earth’s oceans and atmosphere,

however, tend to be density stratified. It is thus critical to

make sure these methods also work well for stratified

shear flows.

As an example, we consider the hyperbolic tangent

model for the stably stratified shear layer:

U(z)5 tanh(z); B(z)5Ri
b
tanh(z) , (10)

FIG. 3. (a) Improvement index Y [defined in Eq. (8)] vs the clustering parameter a at N 5 113. The black

pentagrams highlight the optimal values. (b) Optimal value of a vs N. The dashed lines indicate the convergence

value for FD2c, FD4c, and FD6c, which are 0.85, 0.60, and 0.60, respectively.

FIG. 4. Eigenfunction of the fastest-growing mode for case 1. (a) Background velocity profile for reference.

(b) Real and imaginary parts of eigenfunction ŵ. (c) Eigenfunction magnitudes for target and the FD4c method

with N 5 11. (d) Relative error in the eigenfunction with different numerical methods as shown in the legend.
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where the constant Rib is the bulk Richardson number

characterizing the strength of the stratification relative

to the shear. Differentiating B(z), we have the squared

buoyancy frequency

B
z
(z)5Ri

b
sech2(z) . (11)

In this case, we set Rib5 0.15 and assume that ŵ5 0 and

b̂5 0 at z56H/2 andH5 10. The target growth rate s0

is smaller than that in case 1 (Fig. 5), meaning that shear

flow is stabilized by stratification.

We now repeat the calculations for which results

were shown in Figs. 1–3. In this case the FDc methods

are always more accurate than the FD methods. We

therefore neglect the latter and compare the different

order FDc methods with the Fourier and Chebyshev

methods in Fig. 5. Except at high N, FDc methods

achieve higher accuracy than the Fourier and Chebyshev

methods, with the FD4c method performing best. The

optimal values of a are similar to those found in the

unstratified case, though not exactly the same (Fig. 5,

legend). Once again, high-order FDc methods work

best with smaller a.

c. Case 3: A homogeneous, stratified shear layer with
variable eddy viscosity and diffusivity

Suppose that the shear layer has experienced insta-

bility events in the past and therefore has some residual

turbulence represented by the eddy coefficients Ay, Ah,

Ky, and Kh. We model this scenario as

U(z)5 tanh(z), B5 0,

A
y
(z)5A

h
(z)5K

y
(z)5K

h
(z)5 sech2(z)/Re, (12)

where the constant Re is the Reynolds number. The

eddy coefficients are assumed to be independent of

horizontal direction. The turbulent Prandtl number is

unity (Ky 5 Ay, Kh 5 Ah). We set Re 5 10 and do the

same analyses as in previous cases. Boundary condi-

tions are again ŵ5 ŵzz 5 b̂5 0 at z 5 6H/2 with H 5
10. Use of the normal-mode formalism in viscous,

diffusive fluid with arbitrary profiles U(z) and B(z)

implies the assumption that the instability grows on a

fast time scale in contrast with the slow diffusion of the

mean profiles, the so-called frozen flow approximation.

This generally requires that Re be sufficiently large

(Smyth and Carpenter 2019). Here, however, we work

with smaller Re to provide a rigorous test of the nu-

merical approximations used.

Figure 6 shows the results. Again, the target growth

rate is smaller than that in case 1. This reveals another

stabilizing mechanism: shear instability damped by

eddy viscosity and diffusion. The clustered finite-

difference methods give better accuracy than the

global methods at low N. At high N, the global

methods converge rapidly, with the Fourier method

outperforming the Chebyshev.

d. Case 4: Plane Poiseuille flow in homogeneous,
viscous fluid

Previous cases have employed frictionless boundaries,

with d2ŵ/dz2 5 0. We turn now to plane Poiseuille flow,

which consists of a parabolic velocity profile between two

stationary plates

U(z)5 4z(12 z) .

FIG. 5. Relative error in the growth rate s for case 2 with the FDc,

Fourier, and Chebyshev methods. As in Fig. 2, but with Rib 5 0.15.
FIG. 6. Relative error in the growth rate s for case 3 using the

FDc, Fourier, and Chebyshev methods. As in Fig. 2, but with

Re 5 10.
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The fluid is assumed to be homogeneous (B 5 0) and

Ay 5 Ah 5 1/Re. We impose rigid boundary conditions:

ŵ5dŵ/dz5 0 at z 5 0 and z 5 1.

The Chebyshev method with resolution N 5 101 is

used to compute the growth rate as a function of k

and Re (Fig. 7). For Re . 105, the maximum growth

rate increases with decreasing Re, that is, with in-

creasing viscosity. This is the Tollmien–Schlichting

instability (Schlichting and Gersten 2016), an exam-

ple of a mode that is destabilized by viscosity. The

growth rate maximum is found at Re 5 105 and k 5
1.55. Figure 8 shows relative errors of the growth rate

at the Reynolds number Re 5 105. In this case, both

the FDc and Chebyshev methods cluster the grid

points in the boundary layers. When resolution is

coarse, the strongly clustered FD methods (a $ 0.9)

achieve higher accuracy than the Chebyshev method.

The FD6c method performs better than the others.

At largeN, the Chebyshev method converges rapidly.

(The Fourier method is omitted because it cannot

represent the rigid boundary conditions in the form

used here).

To summarize, the numerical methods tested in this

paper (see appendixes) compute the growth rate of

idealized models of shear instability with varying de-

grees of accuracy. The accuracy of the finite-difference

methods depends on the order of the approximation.

When resolution is coarse, clustering the grid in regions

of strong shear can confer even higher accuracy than the

global Fourier and Chebyshev methods. Most often,

higher-order FD methods work best with less clustering

(i.e., lower a). At high N, the Fourier and Chebyshev

methods converge most rapidly. Before we make a final

assessment of all these methods, tests will be carried out

with an observed geophysical flows.

5. Shear instabilities in observed oceanic flows

We now demonstrate the application of these methods

to observed geophysical flows. Observed flow profiles

are considerably more complicated than the idealized

models discussed above (e.g., Sun et al. 1998; Liu

2010; Smyth et al. 2011; Liu et al. 2012; Smyth et al.

2013). In what follows, we consider two cases of in-

creasing complexity.

a. Case 5: Clyde Sea, observed profiles with single
shear maximum

Figure 9 shows the profiles observed at a mooring

station (558210N, 5840W) in the Clyde Sea at 2000 LT

29 June 2002 (see Liu 2010). The zonal and meridional

velocity components were obtained from a moored

acoustic Doppler current profiler (ADCP). Because

data below 3.6m (measured from the bottom) are

unreliable due to instrumental constraints, we extrapo-

late the velocity using cubic splines, assumingU5V5 0

at the bottom. The profiles of the squared buoyancy

frequency N2 and diffusivity Ky were obtained from a

free-fall yo-yo (FLY) microstructure profiler. The dif-

fusivity Ky was estimated from the turbulent kinetic

energy dissipation rate « via

K
y
5G

«

N2
,

where « can be directly estimated from FLY’s shear

probes signal, and G is the flux coefficient, commonly

approximated by the constant 0.2 (Gregg et al.

2018). As in case 3, the turbulent coefficients are

assumed to be isotropic in the horizontal direction

FIG. 7. Growth rate vs wavenumber and Reynolds number for case

4: plane Poiseuille flow with uniform viscosity.

FIG. 8. Relative errors of the growth rate for case 4 with Re 5 105

and k 5 1.55 (black dot in Fig. 7).
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with turbulent Prandtl number unity: Ay(z) 5 Ah(z) 5
Ky(z) 5 Kh(z).

Note that the shear profile has five local maxima

(excluding boundaries). Only two of these have Ri ,
1/4, z 5 16m and z 5 8m. Eddy viscosity is strong at

the latter, likely damping shear instability. We therefore

anticipate a single dominant mode with critical level

near z 5 16m.

To deal with the veering background flowUh 5 {u(z),

y(z)}, we recall that an instability is affected only by

the component of the mean flow parallel to its own

wave vector k (section 2). Accordingly, we define the

angle u as the direction of the wave vector, measured

counterclockwise from due west, and loop over u 5
[2908, 908]. For each u, the velocity profile appearing

in the vT-G equations is

U(z, u)5 u cosu1 y sinu .

We also loop over the wavelength l5 2p/k5 [1, 100] m

and ultimately find the direction and wavenumber

where the growth rate of the FGM is maximum (Fig. 10,

black dot).

To obtain a target value for evaluating different

numerical methods, we use the Fourier method with

very high resolution, N 5 801, and thus obtain the

following values for the FGM: u0 52548, l0 5 30.880m

(k0 5 2p/l0 5 0.2035m21), and s0 5 (6.295 821 1
4.879 614i) 3 1023 s21. The critical level is located at

15.8m, within the single maximum shear layer.

Figure 11 shows the comparison between the FD

methods and the global methods (i.e., the Fourier and

Chebyshev methods). At low N, no difference is visible

between the Fourier and FD methods. The Fourier and

FD6 method have higher accuracy than the others at

large N. The Chebyshev method performs worst, even

compared with FD2. This is because the Chebyshev

method clusters the grid points near the boundaries,

which is inefficient for this case.

We cluster the grid points in the single shear layer and

compare the accuracy of the FDc methods of different

orders with the FD method on a uniform grid. The

FDc method achieves higher accuracy than the FD

method (Fig. 12), indicating that the clustered grids

work for observed flows. At largeN, FD6c with a5 0.30

performs the best.

FIG. 9. Background profiles observed at a mooring station (558210N, 5840W) in the Clyde Sea

at 2000 LT 29 Jun 2002 (case 5). (a) Zonal (u) and meridional (y) velocity components. Circles

indicate the original data and the dashed lines show the extrapolated values. (b) Squared shear

S25 (du/dz)21 (dy/dz)2 and fourfold squared buoyancy frequency 4Bz. The black dots indicate

measurement depths where the gradient Richardson numberBz/S
2 is below 0.25. (c) Turbulent

viscosity/diffusivity. Horizontal dot-dashed lines show the lowest extent of the measurements.

Values below this depth are extrapolated as described in the text. All panels are plotted vs

height above the seabed.
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b. Case 6: Clyde Sea, observed profiles with multiple
shear maxima

Observed profiles are often more complex than the

one shown above, for example, Fig. 13. Conditions for

shear instability are evident at several depths; that is,

shear magnitude reaches a local maximum (red curve

in Fig. 13b), Ri , 1/4 (black dots), and turbulent co-

efficients are not too large (Fig. 13c). In this case

the stability analysis at each (k, u) may deliver two

or more unstable modes with critical levels close to

one of the shear maxima shown in Fig. 13b. We de-

scribe a method for dealing with this additional

complexity. At each (k, u), rather than retain only the

fastest growing of the 2N eigenmodes, we collect all

modes having positive growth rates. After scanning

the k–u plane, we are typically left with several

thousand modes.

Following Smyth et al. (2013), we compute the critical

level for each mode and plot a histogram of the results

(Fig. 13d). For the case analyzed here, the histogram

reveals eight peaks, each of which corresponds roughly

to one of the shear maxima shown Fig. 13b. Local min-

ima of the histogram (blue triangles in Fig. 13d) con-

veniently delineate the set of modes corresponding to

each shear maximum. We call these sets mode families.

Each mode family has its own fastest-growing mode

(e.g., pentagrams in Fig. 14a) and critical level (Fig. 14c).

The depth of the critical level for each family is ap-

proximately independent of wavelength. Eight depths

are found and shown by horizontal lines on Fig. 14c. The

shallowest critical level, located at z 5 49m, is denoted

as mode 1. Successive mode families with critical levels

at z5 45, 31, 23, 19, 12, 7, and 1m are denoted as modes

2–8, respectively. Thesemode families represent distinct

FIG. 10. Growth rate s on the u–l space for case 5. Here, u is the

wave vector direction and l is the wavelength. For each k, growth

rate is calculated using the Fourier method with high resolution

with N 5 801. The black dot indicates the fastest-growing mode.

The title shows the maximum value of s and the corresponding

wavenumbers.

FIG. 11. Relative error in the growth rate s for the FD, Fourier, and

Chebyshev methods applied to case 5.

FIG. 12. Relative error in the growth rate s for the FD and

FDc methods of different order applied to case 5. The value

of s is computed by Eq. (7) with targeted u and l shown

in Fig. 10.
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physical processes (Sun et al. 1998). For example, the

uppermost mode family may represent shear at the base

of the surface mixed layer, while others might represent

breaking depths of the internal wave field. The growth

rates of these mode families are shown on Fig. 14a.

Three mode families stand out are mode 1, mode 5

and mode 6. The growth rates of their FGMs are

39.31, 39.76, and 34.21 h21, respectively, so their ampli-

tudes grow by a factor e 5 2.718 in about 2min. The

corresponding wavelength are 7.78, 12.04, and 25.43m,

about 7 times the thickness of their shear layer, that is, 1,

2, and 4m.

Figure 15 shows the eigenfunctions of the three

dominant modes. The solutions were normalized

by scaling the maximum magnitude to unity. The

vertical structure of eigenfunctions have signifi-

cant magnitude at their critical-level depth, while

the magnitude decreases to zero away from these

layers.

We use mode 6 to test the accuracy of different

numerical methods in computing the growth rate of

fastest-growing mode s, the wavelength l, the wave

vector direction u, and the critical-level height zc. All

methods converge to the same values (blue arrows in

Fig. 16). At large N, the FD4c method performs as well

as the Fourier–Galerkin method and even better than

the Chebyshev method. At low N, FD4c achieves the

highest accuracy.

6. Internal gravitywaves in inviscid, nondiffusive fluid

Internal gravity waves arise from the same Eqs. (1)

and (2) that describe instabilities. The phase speed

of internal gravity waves is c 5 is/k 5 cr 1 ici, where

s is the eigenvalue of Eq. (5). Here, we look for the

stable wave solutions (ci 5 0) and test the abilities

of various numerical methods to approximate the

phase speed cr in the long-wave (or hydrostatic)

limit k / 0.

We consider a viscous stratified fluid with stratifi-

cation given by (11) as in case 3 but with Rib 5 1 and

no background flow, U 5 0. Eddy coefficients are

FIG. 13. Case 6: Background profiles observed at a mooring station (558210N, 5840W) in the Clyde Sea at

0300 LT 30 Jun 2002. (a) Zonal (u) and meridional (y) velocities. (b) Squared shear S2, fourfold squared

buoyancy frequency 4Bz, and the gradient Richardson number, which is below a quarter. (c) Turbulent

viscosity and diffusivity. (d) Histogram of the critical level having positive growth rates. The red and blue

triangles show all mode families that are found. The horizontal dash–dotted lines in (a)–(c) show the high-

shear layers induced by extrapolated velocity. The dashed lines in (b) represent the critical-level depth of

mode families found in (d).
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uniform and equal: Ay 5 Ky 5 Ah 5 Kh 5 1/Re with

Re 5 1010.

Figure 17 shows the relative error of phase speed.

The accuracy of high-order finite-difference methods

and global methods is high. Unlike the behavior in

Fig. 1, the Fourier method works very well at low N.

To achieve 1% accuracy, only 12 grid points are re-

quired. The FD4, FD6, and Chebyshev methods have

FIG. 15. Eigenfunctions of modes 1, 5, and 6 for case 6. (a) Vertical velocity eigenfunction. (b) Vertical velocity

eigenfunction magnitudes. (c) Buoyancy eigenfunction. (d) Buoyancy eigenfunction magnitudes. The maximum

magnitude of the vertical velocity and buoyancy of each mode is normalized to unity.

FIG. 14. (a) Growth rates, (b) wave vector direction, and (c) critical-level depths vs wave-

length for the eight mode families for case 6. Pentagrams show the fastest-growing mode of

three main mode families.
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similar accuracy at low N. These methods all outper-

form FD2, which requires N . 80 to achieve 1%

accuracy.

The optimal value of a (Fig. 18b) is generally

smaller than the values computed for the homoge-

neous shear layer (case 1; Fig. 2). The phase speed of

internal waves does not seem to require highly clus-

tered grid points; in fact, the FD6 method gives better

results with no clustering except when the resolution

is very coarse (Fig. 18b; compare green and yellow

diamonds). We understand this by recalling that, for

shear instability, a high value of a ensures high reso-

lution around the critical level, where the instability

is most likely to occur. The neutral modes found here

are not singular and are therefore less tightly local-

ized than the instabilities discussed previously. The

Fourier method (black curve on Fig. 17) provides

reliably accurate solutions.

7. Summary

The conventional Taylor–Goldstein equation is ex-

tended to include effects of turbulence represented by

the eddy viscosity and diffusivity. The resulting ‘‘viscous

T-G’’ (vT-G) equation, together with appropriate bound-

ary conditions, is a linear eigenvalue problem that can be

solved using matrix-based methods. We have tested

the most commonly used matrix methods including

the second-, fourth-, and sixth-order finite-difference

methods, the Chebyshev-collocation method, and the

Fourier–Galerkin method. The accuracy of the finite-

difference method is greatly improved by using adaptive

grid spacing.

FIG. 16. Numerical methods’ ability to catch the characteristic parameter of mode family 6 for case 6. (a) Growth

rate of the fastest-growing mode s vs number of grid points N. (b) Corresponding wavelength l vs N.

(c) Corresponding wave vector direction u vsN. (d) Critical level zc vsN. The blue arrows and values on the right-

hand edge of each plot indicate the convergency values of s, l, u, and zc.

FIG. 17. Relative error in the internal gravity wave speed c. The

target speed c0 is defined using the Fourier–Galerkin method with

N 5 801. For other methods with smaller N, c is computed from

Eq. (5) with Eq. (11), k 5 1026, U 5 0, Re 5 1010, Pr 5 1, and

Rib 5 1.
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We have tested these methods using both idealized

models and observational data. At high resolution, the

global methods (i.e., the Fourier–Galerkin and Chebyshev-

collocation methods) converge most rapidly. At coarse

resolution, however, the finite-difference methods

with optimal grid spacing can achieve higher accuracy

than the global methods. The optimal value of clustering

strength depends on the order of themethods. High-order

finite-difference methods usually need only slight clus-

tering. Overall, we recommend the FD4c method with

a 5 0.6 or the FD6c method with a 5 0.4 for sheared

flows. If shear is judged to be unimportant, the Fourier–

Galerkin method is a reliable alternative.
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APPENDIX A

Creation of an Efficient Clustered Grid

Efficient solution of Eqs. (1)–(4) requires an efficient

means of discretization; that is, grid spacing can vary

with z such that the spacing is fine in regions where the

solution is expected to vary most rapidly. Since insta-

bility tends to be focused in high-shear layers, it is nat-

ural to seek for a discretization with clustering in these

regions.

We begin with a set of points spaced evenly between

the boundaries zB and zT:

z
i
5 z

B
1 (i2 1)D, where i5 1, 2, . . . ,N

and

D5
z
T
2 z

B

N2 1
.

Now suppose, for example, that we want to con-

centrate resolution in parts of the profile where

the shear is strong. We therefore define the abso-

lute shear

s
i
5

jU
i11

2U
i
j

z
i11

2 z
i

, for i5 1, 2, . . . ,N2 1

and a transformed version

z
i
5

ln(s
i
/s
min

)

ln(s
max

/s
min

)
.

The latter variable approaches 0 and 1 when the abso-

lute shear is at its minimum and maximum values, smin

and smax, respectively. We now define the new grid

increment

FIG. 18. (a) Relative error in the internal gravity wave speed c for the FD and FDc methods of different

order. (b) Relative error in the internal gravity wave speed c for the FDc, Fourier, and Chebyshev

methods.
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h
i
5

z
T
2 z

B

�
N21

k51

(12 az
k
)

(12 az
i
), i5 1, 2, . . . ,N2 1,

where the stretching parameter a is an adjustable con-

stant such that 0 # a , 1. If a 5 0, hi 5 D; that is, the
original uniform grid is recovered. As a / 1, the clus-

tering becomes extreme. The new grid points are

Z
1
5 z

B
; Z

j
5 z

B
1�

j21

i51

h
i
; j5 2, . . . ,N .

APPENDIX B

The Finite-Difference Method

The most commonly used local method is the finite-

difference (FD) method, since it is well suited to prob-

lems in complex geometries and boundary conditions.

On regular grids (a 5 0), the FD method is simple. The

(i, j)th component of the derivative matrix, D
(K)
i,j , is

derived using Taylor series expansions and tabulated

(e.g., Abramowitz and Stegun 1964; Bickley 1941). However,

it becomes difficult to construct the differencing formula

using Taylor’s expansion on irregular grids, especially for

high-degree and high-order derivatives. Instead, we use

polynomial interpolation, which is suitable for calculating

derivative matrices of any degree with any order of accu-

racy on an arbitrary grid. For barycentric Lagrange inter-

polation (Klein and Berrut 2012; Berrut and Klein 2014),

we expand the function to be differentiated, f(Z), as

f (Z
i
)5

�
j2

j5j1

b
j

Z
i
2Z

j

f (Z
j
)

�
j2

j5j1

b
j

Z
i
2Z

j

, i5 1, 2, . . . ,N , (B1)

where j1 and j2 are identify neighboring grid points

around the derivative point i. For example, the fourth-

order central finite-difference scheme for first deriva-

tives involves the grid points from j15 i2 2 to j25 i1 2.

The stencil width is J5 j22 j11 1 (5, in this case). When

J , N, Eq. (B1) is a local method, whereas it is a global

method when J 5 N. The values bj 5

"
P
i 6¼ j

(Zj 2Zi)

#21

are called the barycentric weights. TheKth derivative of

f(Z) is then given by

f (K)(Z
i
)5 �

j2

j5j1

D
(K)
i,j f (Z

j
), i5 1, 2, . . . ,N , (B2)

where the differentiation matrix D(K)

~ has components

D
(1)
i,j 5

b
j

b
i

1

Z
i
2Z

j

, i 6¼ j

2 �
N

m5 1
m 6¼ i

D
(1)
i,m, i5 j

,

8>>>>>>><
>>>>>>>:

D
(K)
i,j 5

K

Z
i
2Z

j

�
b
j

b
i

D
(K21)
i,i 2D

(K21)
i,j

�
, i 6¼ j

2 �
N

m51
m 6¼ i

D
(K)
i,m , i5 j

, K$ 2:

8>>>>>>><
>>>>>>>:

(B3)

Boundary conditions are expressed via a matrix C
~

and a vector b such that

C
~
x5 b ,

where x is the vector of eigenfunctions as defined

in section 3. If the total number of boundary condi-

tions is Nbc, then C
~

is an Nbc 3 2N matrix with each

row specifying one boundary condition. Similarly,

b is an Nbc 3 1 column vector. For example, if the

boundary condition requires that the first element

of x vanish (a homogeneous Dirichlet condition),

then the top row of C
~
is [1, 0, 0, . . .] and the top value

of b is 0. If the boundary condition involves deriva-

tives, then C
~
will include elements of the appropriate

derivative matrix.

Now, we decompose x into xk, the part of x that we

will keep, and xr, the part that we will remove. The

decomposition is chosen so that the boundary condi-

tions become

C
k
~

0

0 C
r
~

2
64

3
75� xk

x
r

�
5 b , (B4)

Solving Eq. (B4), xr can be expressed as a function of xk:

x
r
52C

r
~

21C
k
~|fflfflfflfflfflffl{zfflfflfflfflfflffl}

G~

x
k
1C

r
~

21

|ffl{zffl}
H~

b. (B5)

The matrix H
~

allows for possible nonhomogeneous

boundary conditions. In the present applications the

boundary conditions are homogeneous (b 5 0) and

Eq. (B5) is simply

x
r
5G
~
x
k
. (B6)

The matrix G
~

is called the ‘‘give-back’’ matrix, since it

gives back the removed degrees of freedom.
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The eigenvalue Eq. (7) can likewise be separated into

two parts:

s

A
kk
~

A
kr
~

A
rk
~

A
rr
~

2
64

3
75� xk

x
r

�
5

A
kk
~

A
kr
~

A
rk
~

A
rr
~

2
64

3
75� xk

x
r

�
. (B7)

We are only interested in xk, since xr can be recov-

ered using Eq. (B6). Beginning with the upper part

of Eq. (B7),

s

 
A

kk
~

x
k
1A

kr
~

x
r

!
5B

kk
~

x
k
1B

kr
~

x
r
,

we substitute Eq. (B6), obtaining

s

 
A

kk
~

1A
kr
~

G
~

!
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
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x
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B

kk
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1B
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~

G
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!
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

B0
~

x
k
,

whereA0
~

andB0
~

are matrices modified to account for the

boundary conditions. The generalized eigenvalue to be

solved is then

sA0
~
k5B0

~
x
k
. (B8)

After s and xk are obtained from Eq. (B8), we can re-

cover xr using Eq. (B6), and finally assemble the eigen-

vector x.

APPENDIX C

The Chebyshev-Collocation Method

Polynomial (including the Chebyshev polynomials) in-

terpolation on equally spaced points is known to suffer

from the Runge phenomenon (Fornberg and Zuev 2007).

The best way to overcome this problem is to use irregular

distributed interpolation points, such as the most common

and simplest one, the Chebyshev–Gauss–Lobatto points,

c
i
5 cos

�
i2 1

N2 1
p

�
, i5 1, . . . ,N , (C1)

which is the extrema of Chebyshev polynomials Ti(c)5
cos[i cos21(c)]. We can visualize these points as the

projections on [21, 1] of equispaced points zi on the

upper half of the unit circle (see Fig. 5.1 of Trefethen

2000). They are clustered at boundaries and should be

very effective to analyze the boundary layer insta-

bility. Substituting Eq. (C1) into Eq. (B3), we get the

Chebyshev derivative matrix

C
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i,j 5

b
j

b
i

(21)i1j

c
i
2 c

j

, i 6¼ j

2 �
m51
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c
i
2 c

j

"
b
j
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b
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D
(K21)
i,i 2D
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i,j

#
, i 6¼ j

2 �
m51
m 6¼ i

D
(K)
i,m , i5 j

, K$ 2,

8>>>>><
>>>>>:

8>>>>><
>>>>>:

(C2)

where bj 5 1/2 if j 5 1 or N, and bj 5 1 otherwise. The

Chebyshev points and matrices are defined on [21, 1];

they can be extended to [ZB, ZT] by using Zi 5 ZB 1
[(ZT 2 ZB)/2](ci 1 1) and D(K) 5 C(K)/[(ZT 2 ZB)/2]

K.

We find that the collocation method is nothing other

than the barycentric Lagrange interpolation based on

the Chebyshev collocation points. The boundary con-

ditions can be incorporated using the same approach

discussed in the last section.

APPENDIX D

The Fourier–Galerkin Method

Here we describe a Fourier–Galerkin method in which

the solution is expanded in terms of sine functions:

F
n
(Z)5

ffiffiffiffiffi
2

H

r
sin

np

H
Z .

Then

ŵ(Z)5 �
N

n51

w
n
F
n
(Z), b̂(Z)5 �

N

n51

b
n
F
n
(Z) . (D1)

Here, Fn(Z) automatically satisfies the frictionless

boundary conditions x̂5 x̂00 5 0 at Z 5 0 and Z 5 H.

This choice of basis functions is natural for imper-

meable, frictionless, constant-buoyancy boundaries, and

may be adapted for insulating boundaries by expanding b̂

in terms of cosines rather than sines. But the method is

not well-suited for rigid boundaries.

The orthogonality of Fn(Z) is expressed by

MAY 2020 L I AN ET AL . 773



ðH
0

F
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, (D2)

where dm,n is the N 3 N identity matrix. Substituting

Eq. (D1) into Eqs. (1) and (2) gives
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where primes indicate differentiation with respect to

Z. Using the fact that F 00
n 52(np/H)2Fn, the Laplacian

=2Fn becomes DnFn, where
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Now multiply Eqs. (D3) and (D4) by Fm and integrate,

remembering Eq. (D2):
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The summation on the left-hand sides of Eqs. (D5) and

(D6) can be done explicitly, resulting in wmDm and bm,

respectively. Then Eqs. (D5) and (D6) now become the

algebraic eigenvalue problem;
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The eigenvalue is the growth rate s as usual, but the

eigenvector is now composed of the coefficients wn and

bn in the expansion (D1).

APPENDIX E

List of Symbols

k Wave vector

k Wave vector magnitude

U Background flow parallel to the wave vector

Bz Squared buoyancy frequency

r Density

r0 Characteristic value of density

r Mean density

r0 Density perturbation

b Buoyancy

b0 Buoyancy perturbation

w0 Vertical velocity perturbation

ŵ Complex vertical structure function of vertical velocity

b̂ Complex vertical structure function of buoyancy

s Exponential growth rate of instability

Rib Bulk Richardson number

Re Reynolds number
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