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Abstract Deep ocean microorganisms consume particulate organic matter that is produced in the
surface ocean and exported to deeper depths. Such consumption not only enriches inorganic carbon in
the deep ocean but also transforms organic carbon into recalcitrant forms, creating an alternative type of
carbon sequestration. However, estimates of deep microbial carbon demand substantially exceed the
available particulate organic carbon exported from the euphotic zone, resulting in an unbalanced dark ocean
carbon budget. Here, we combined field‐based microbial activity parameters, integrated multiyear particle
export flux data, sinking particle fluxes measured by sediment traps, and optical data from
Biogeochemical‐Argo floats to quantify the main sources of organic carbon to the dark ocean. Laterally
transported particles (including sinking and suspended particles) serve as a major energy source, which
directly provide organic carbon and enhance new organic carbon production by dark carbon fixation,
reconciling the mismatch in the regional carbon budget.

Plain Language Summary Particulate organic matter, produced by phytoplankton in the upper
ocean, can sink through the water column and act as a source of organic matter to the deep ocean. These
particles are decomposed to carbon dioxide by microorganisms, resulting in dissolved inorganic carbon and
organic carbon resistant to decomposition in the deeper ocean. This process controls the biological
sequestration of CO2 by the oceans. However, there is an imbalance between the low amount of organic
carbon exported from the photic zone and the high microbial demand for carbon in the dark ocean. We
attempted to explain how the deep ocean carbon and energy supply can meet the microbial metabolic
demand. Four main organic carbon sources were measured and quantified in the South China Sea: particles
that come from the photic zone, particles that move laterally through the ocean, dark carbon fixation, and
dissolved organic carbon. We found that laterally transported particles from the surrounding margins
provide a direct source of organic carbon and also allow for much new organic carbon production through
dark carbon fixation. These particles, which provide a major energy source to dark ocean ecosystems, help
resolve the mismatch in the regional carbon budget.

1. Introduction

The dark ocean (i.e., below the photic zone) accounts for ~70% of the global ocean volume and represents one
of the largest biomes on Earth (Galand et al., 2009). This realm is characterized by low temperature and high
hydrostatic pressure, andmost of the dissolved organic carbon (DOC) is present as recalcitrant DOC (RDOC;
Arístegui et al., 2009). These conditions seem to inhibit the metabolic capacity of living organisms, but a
growing amount of data indicates that the dark ocean contains diverse and active microbial communities
(Baltar, Arístegui, Gasol, Sintes, et al., 2010; Teira et al., 2006; Zhang, Zhao, et al., 2014). These microorgan-
isms utilize particulate organic matter (POM) sourced from the euphotic zone for respiration to enrich dis-
solved inorganic carbon (DIC) for storage in the deep ocean, constituting the final step of the biological
pump (Herndl & Reinthaler, 2013). Additionally, these microorganisms transform labile POM into RDOC
that allows for a much longer turnover of stored carbon, known as the microbial carbon pump (Jiao
et al., 2010). Therefore, microbial activity at depth essentially controls carbon sequestration by the ocean.
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Sinking POM from the euphotic zone has been thought to provide the most important carbon and energy
source to the dark ocean (Nagata et al., 2000; Suess, 1980). However, studies in the Atlantic Ocean found that
the carbon demand of heterotrophic microbes is one to twomagnitudes higher than the input of sinking par-
ticles (Herndl & Reinthaler, 2013; Reinthaler et al., 2006), which results in a substantial imbalance in the
carbon budget of the dark ocean. To date, it is not known how the deep ocean carbon supply meets microbial
metabolic demand. Two extra carbon sources could partly alleviate this mismatch. The first is suspended
(slow‐sinking and buoyant) particles that are largely underestimated in sediment trap data and difficult to
determine directly (Baltar et al., 2009; Baltar, Arístegui, Sintes, et al., 2010), and the second is DIC fixation
by chemolithoautotrophic archaea and bacteria in the deep ocean (Herndl et al., 2005; Zhang et al., 2020).

There is an unconstrained carbon/energy source supplying microbial carbon demand at depth. Laterally
transported particles from the continental margin to the deep open ocean by hyperpycnal flows, eddies,
and lateral diffusion and intrusion (Gao et al., 2015; Hwang et al., 2008) could provide significant energy
to the dark ocean ecosystems (Burd et al., 2010; Nakatsuka et al., 2004). One model estimated that laterally
transported particulate flux accounted for 28–59% of the total mesopelagic respiration in the Canary Current
region of the subtropical northeastern Atlantic Ocean (Alonso‐González et al., 2009). Despite the importance
of laterally transported particles, we still lack direct observations to test whether this source of carbon bal-
ances the deep ocean carbon budget, as well as a quantitative, mechanistic understanding of key parts of
the dark ocean carbon budget.

The South China Sea (SCS; Figure 1a), located in the (sub)tropical western North Pacific Ocean, is one of the
world's largest marginal seas (Geng et al., 2019). Although it receives input from the Pearl and Gaoping
Rivers in the north and theMekong River in the south, the SCS is an oligotrophic ocean‐dominatedmarginal
sea with a deep basin and a permanently stratified central gyre (Dai et al., 2013; Gong et al., 1992).
Basin‐scale upper‐layer circulation is driven by the East Asian monsoon and the Kuroshio Current, a
North Pacific subtropical western boundary surface current (Wang et al., 2003). Mesopelagic and bathypela-
gic waters are transported westward into the SCS from the western Pacific through the Luzon Strait (Liu &
Liu, 1988) and turn northwestward and then southwestward along the continental margin as a contour cur-
rent (Qu et al., 2006). These ocean currents generally constrain the exchange between the coastal and open
ocean waters. However, strong middeep mixing of the SCS could promote distinctly lateral transports (Wang
et al., 2019). Therefore, the SCS is an ideal environment to determine the contribution of laterally trans-
ported particles to the dark ocean ecosystem.

We performed a comprehensive analysis of organic carbon supply and microbial demand in the deep SCS,
combining bacterial biomass production, dark carbon fixation, and nitrifier abundance measurements with
integrated multiyear particle export flux measurements, sinking particle fluxes measured by sediment traps,
ammonium and nitrite concentrations, and optical‐based particle and fluorescent dissolved organic matter
(FDOM) concentrations collected by Biogeochemical‐Argo (BGC‐Argo) floats. Finally, we estimated the
contributions of the main carbon/energy sources to the dark ocean carbon demand: exported particles, lat-
erally transported particles, dark carbon fixation, and DOC. We found distinct differences in these contribu-
tions between the northern SCS (NSCS; 17–22°N) and the southern SCS (SSCS; 10–17°N).

2. Methods

The study area covered the entire SCS (water depth > 200 m) over six survey cruises from 2014 to 2018
(Figure 1a). Seawater was collected throughout the water column for measurements of bacterial production
(BP), leucine‐to‐carbon conversion factors, microbial DIC fixation rates, and gene abundances of
size‐fractional ammonia‐oxidizing archaea (AOA) amoA and nitrite‐oxidizing bacteria (NOB) Nitrospina
16S rRNA. Bacterial carbon demand (BCD) was estimated using Equation 1 (Del Giorgio & Cole, 1998):

BCD ¼ BP
BGE

; (1)

where BGE is the bacterial growth efficiency. We collated all published BGE values below 100 m from the
Pacific, Atlantic, and Indian Oceans, which were estimated from bacterial respiration rates calculated
from dissolved oxygen concentrations (Baltar, Arístegui, Gasol, & Herndl, 2010; Biddanda et al., 1997;
Mazuecos et al., 2015; Motegi et al., 2009; Reinthaler et al., 2006; Uchimiya et al., 2015; supporting
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Figure 1. (a) Sampling sites in the South China Sea (SCS). Isobaths on the map are used as the background, and the color
bar indicates water depth. Particulate backscattering coefficient at 700 nm (bbp(700)) collected from
Biogeochemical‐Argo floats in the (b) northern SCS (NSCS) basin and (c) southern SCS (SSCS) basin. Black lines
represent the mixed‐layer depth. (d) Vertical distribution of sinking particulate organic carbon (POC) flux (reference data
were combined; see Tables S1 and S2). The seasonal averages (error bars represent standard error) of export flux at 100 m
in the NSCS and SSCS are shown. Theoretical fluxes (red and blue) below 100 m were simulated by the Martin curve.
The sinking fluxes (black lines) of POC measured by sediment traps were also fitted by the Martin curve (411–1,924,
1,925–2,699, and 2,700–4,000 m; p < 0.01). The gray areas show 95% confidence intervals.
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information Figure S1). The mean values of these three oceans (7%) and the Pacific Ocean individually
(3%) were used to estimate BCD.

Two SeaBird Navis‐BGCi floats, equipped with an SBE 41CP conductivity‐temperature‐depth profiler, an
SBE 63 dissolved oxygen sensor, and a WET Labs ECO‐MCOMS optical sensor, were deployed in the
NSCS (float serial number “0347”) on 26 June 2014 and in the SSCS (“0348”) on 10 July 2014 to acquire a
2‐year time‐series data set. Their trajectories are shown in Figure 1a. Particulate backscattering coefficient
at 700 nm (bbp(700)), fluorescence of FDOM, apparent oxygen utilization, temperature, and salinity were
used in this study.

Data on thorium‐derived particulate organic carbon (POC) export at 100 mwere collected from previous stu-
dies (Cai et al., 2008, 2015; Jiao et al., 2014; Yang et al., 2015; Zhou et al., 2013; Table S1). Theoretical POC
and particulate nitrogen (PN) flux values below 100 m were estimated based on a Martin curve (Martin
et al., 1987) using a power law Equation 2:

Fz ¼ FZ0

Z
Z0

� �−b

; (2)

where Fz is the flux at depth z, normalized to flux at some reference depth z0, and b is the coefficient of
flux attenuation. The b value was estimated as 0.95 for POC and 1.02 for PN using the average flux at
100 m and the sinking flux of POC measured by sediment traps in the SSCS where lateral transport of par-
ticles was not observed (Figure 1c).

Particles were collected to estimate sinking POC flux from a combination of lateral and vertical processes
using bottom‐anchored time‐series sediment traps (McLane Mark 7G‐21 and Technicap PPS 3/3) deployed
at 374–3250 m (one to four depth layers) at three stations in the NSCS and two in the SSCS (Table S2).
Additional trap data (367 values for POC and 350 values for PN) from previous studies were also used
(Gaye et al., 2009; Kao et al., 2012; Lahajnar et al., 2007; Ran et al., 2015; Tan et al., 2020; Wei et al., 2017;
Zhang et al., 2019; Table S2). These trap fluxes were also fitted to a Martin curve using Equation 2. The sink-
ing fluxes of laterally transported POC and PN (FLTS) were estimated using Equation 3:

FLTS ¼ ∑
n − 1

n¼1
FTrapMCn Maxð Þ − FTrapMCn Minð Þ
� �þ FTrapMCn Maxð Þ − F Z1ð Þ; (3)

where n represents the number of episodic pulses of laterally transported particles at different depths into
the deep sea, FTrapMCn Maxð Þ and FTrapMCn Minð Þ are the flux maximum and minimum, respectively, on the

Martin curve, and F Z1ð Þ is the theoretical flux calculated from Equation 2 at the depth of the first lateral

pulse (Figure 1d). Other detailed descriptions are provided in the supporting information.

3. Results and Discussion
3.1. POC Flux and Lateral Particle Transport

The NSCS seasonally averaged POC flux at 100‐m depth was 7.7 ± 0.6 (standard error or propagated error;
n ¼ 21) mmol C m−2 day−1 in spring, 3.7 ± 0.2 (n ¼ 41) mmol C m−2 day−1 in summer,
9.0 ± 1.5 (n ¼ 11) mmol C m−2 day−1 in autumn, and 4.2 ± 0.5 (n ¼ 17) mmol C m−2 day−1 in winter
(Table S1). The SSCS seasonally averaged POC flux at 100 m was 5.0 ± 1.1 (n ¼ 13), 4.8 ± 0.7 (n ¼ 23),
and 1.2 ± 0.4 (n¼ 7) mmol C m−2 day−1 in spring, summer, and autumn, respectively. There were few clear
seasonal differences in POC flux; this homogeneity was especially clear in the SSCS because it is the
low‐latitude high‐sunlight region. The only significant differences in POC flux at 100 mwere found in spring
(Mann‐Whitney U test; p < 0.05) and autumn (p < 0.01) between the NSCS and SSCS. Therefore, higher the-
oretical fluxes, based on the Martin curve, below 100 m were observed in the NSCS than the SSCS.
Consistently, the sinking fluxes of POC and PN throughout mesopelagic and bathypelagic waters, estimated
by sediment traps, were also higher in the NSCS than SSCS (p < 0.01; Figures 1d and S2). Notably, the sedi-
ment trap‐based estimated fluxes were mostly higher than the theoretical fluxes in the NSCS (up to ~30×
higher). Episodic fluxes were mainly observed at 374–447 m (average depth 411 m,
10.2 ± 2.7 mmol C m−2 day−1), 1,925 m (1.8 ± 0.5 mmol C m−2 day−1), and 2,700 m
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(1.7 ± 0.3 mmol C m−2 day−1); trap‐based sinking fluxes were statistically fitted by a Martin curve into three
zones split by three depths (411, 1,925, and 2,700 m; Figure 1d). Moored traps, such as those used in this
study, can suffer from advection perturbations, causing particles to be overcollected or undercollected
(Buesseler et al., 2007); however, an analysis of integrated multiyear data from all stations covering the
entire SCS reduces this uncertainty.

The wide gap between the theoretical and observed fluxes in the NSCS suggests that a large portion of the
sinking particles collected by sediment traps could have been laterally transported from the surrounding
margins. We estimated that 60 ± 11% of the sinking POC of the NSCS is derived from laterally transported
particles based on the difference between the export flux at 100 m and simulated curves of trap fluxes below
100 m; this estimate rose to 85 ± 14% below 374 m where lateral transport starts to be considered. The esti-
mates of laterally transported POC were similar to those estimated via the PN flux (50 ± 12% and 81 ± 16%
below 100 and 374m, respectively, in this study; 45–80% in intermediate and deepwaters in Yang et al., 2017).
The strong lateral transport in the SCS has been demonstrated by detrital clay composition, particle mor-
phology and composition, and δ15N in sinking particles (Schroeder et al., 2015; Shih et al., 2019; Yang
et al., 2017). BGC‐Argo floats provide direct evidence of episodic pulses of particles into the deep sea, and
based on 2 years of in situ observations, these pulses occurred almost monthly between the continental shelf
and the deep basin (Figure 1b). In contrast, the particles were attenuated sharply below the euphotic zone in
the SSCS (Figures 1c and S3). In general, transport from ocean margins to the open ocean are dynamically
prohibited because oceanic currents tend to flow along constant depth contours (i.e., contour currents; Spall
& Pedlosky, 2018). Nevertheless, transport in the SCS can be facilitated by wind forcing, eddies (Xiu
et al., 2010; Zhang, Liu, et al., 2014), dense water cascades, and hyperpycnal flows (Kao et al., 2010), as well
as bottom boundary layer processes (Schroeder et al., 2015). For instance, numerous energetic mesoscale
eddies generated in the NSCS each year penetrate into the deep‐sea and transport sediments into deep water
when propagating along the slope (Zhang, Liu, et al., 2014); a typhoon in 2009 triggered storm‐induced
hyperpycnal flows from the Gaoping River (Taiwan), which entrained suspended sediments and directly
transported them to the deep sea (Kao et al., 2010). Water mass characteristics of NSCS versus SSCS and
the distribution of particles among water masses also reflected potential lateral transport in the NSCS
(Figure S4). Apparently, the laterally transported particles supply a significant carbon and energy source
to the deep areas of the SCS.

3.2. Reduced Nitrogen, Nitrifiers, and Dark Carbon Fixation

Significantly higher ammonium concentrations were measured below 200 m in the NSCS (0.9–44.4 nM)
compared with the SSCS (0.7–20.7 nM; p < 0.01; Figure 2a; Zhu, 2015), corresponding to the higher POC
export, strong lateral transport, and resulting higher particle concentrations. This is attributed to the remi-
neralization of particles, since dissolved organic nitrogen exists in a refractory form in the deep ocean (Broek
et al., 2019). Unlike ammonium, nitrite concentrations were equally low in the NSCS and SSCS below 200 m
(Figure 2b; Zhu, 2015). Ammonia oxidation is almost the exclusive source of nitrite in oxygen‐rich deep
water, and nitrite is subsequently rapidly oxidized to nitrate. In the two steps of oxidations, ammonia oxida-
tion has been verified as the rate‐limiting step (Zhang et al., 2020). Therefore, higher abundances of AOA
were observed in both particle‐associated (>3 μm; below 200 m) and free‐living communities (0.22–3 μm;
below 1,000 m) in the NSCS compared with the SSCS (p < 0.01; Figures 2c and 2d), corresponding to the
higher ammonium concentration in the NSCS. Particle‐associated NOB Nitrospina abundances were also
higher below 200 m in the NSCS than in the SSCS (p < 0.05–0.01; Figures 2e and 2f and Text S2).

AOA‐ and NOB‐mediated nitrification sustains dark carbon fixation, which provides new organic matter to
heterotrophic food webs in the deep ocean (Wuchter et al., 2006). The DIC fixation rate showed an expo-
nential decrease with depth from 100 m, ranging from 20.25 to 0.15 μmol C m−3 day−1 in the NSCS and
11.10 to 0.01 μmol C m−3 day−1 in the SSCS. Significantly higher DIC fixation rates were observed below
200 m in the NSCS than those in the SSCS (p < 0.05–0.01; Figure 2g), which was consistent with higher
ammonium concentrations and particle‐associated nitrifier abundances in the NSCS. The integrated DIC
fixation between 100 and 4,000 m was 2.4× higher in the NSCS than the SSCS. The degree of difference
between the NSCS and SSCS in DIC fixation (2.4) was higher than the export flux at 100 m between the
two basins (NSCS was 1.7‐fold higher than SSCS), so there must be additional energy sources beyond
reduced nitrogen from exported POM remineralization to support high DIC fixation rates in the deep
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NSCS. The degree of difference in DIC fixation was lower than the difference in trap flux attenuation where
the NSCS was 3.4‐fold higher than the SSCS. This suggests that laterally transported particles can supply
extra energy to stimulate dark carbon fixation in the NSCS. In addition to reduced nitrogen, POM has
been reported to provide reduced sulfur compounds, urea, and iron to facilitate chemoautotrophic
production (Hsiao et al., 2014; Kitzinger et al., 2018; Swan et al., 2011). Besides nitrifiers, other microbial
groups, such as SAR324 (Deltaproteobacteria), SAR406 (Marinimicrobia), SAR202 (Chloroflexi), and
Alteromonas (Gammaproteobacteria), have demonstrated through microautoradiography combined with
catalyzed reported deposition‐fluorescence in situ hybridization to be capable of DIC fixation (Guerrero‐
Feijóo et al., 2018). Heterotrophs were found to incorporate CO2 via anaplerotic metabolism, which
would be enhanced as the availability of organic carbon increased (Baltar et al., 2016; Erb, 2011).
Therefore, a higher particle flux could promote DIC fixation and supply new organic carbon to meet
microbial demand.

3.3. Microbial Heterotrophic Activity and Carbon Demand

High organic carbon supply could also stimulate high microbial heterotrophic activity. The carbon conver-
sion factor of microbial leucine incorporation was 0.37–0.55 kg C mol Leu−1 in the NSCS and 0.29–
0.43 kg C mol Leu−1 in the SSCS (Figure S5). These values were comparable to those previously reported
in the Pacific and Atlantic Oceans (Alonso‐Sáez et al., 2007; Del Giorgio et al., 2011; Gasol et al., 2009;
Morán et al., 2004; Sherr et al., 1999; Vázquez‐Domínguez et al., 2008; Zubkov et al., 2000; Table S3).
There were no differences across water depths. Therefore, the two average values were used to convert leu-
cine incorporation into BP in the NSCS (0.47 kg C mol Leu−1) and SSCS (0.34 kg C mol Leu−1). Notably, BP
was within the same order of magnitude as DIC fixation at each depth, ranging from 0.02 to
36.79 μmol C m−3 day−1 in the NSCS and 0.01 to 11.89 μmol C m−3 day−1 in the SSCS. Significantly higher
BP was also observed below 100 m in the NSCS than in the SSCS (p < 0.01; Figure 2h).

The estimated BCD, based on BP and BGE (7% or 3%; see section 2), showed a similar depth pattern as the BP
(Figures 3a and 3b). There was also a significant difference in BCD below 100 m between the NSCS and SSCS

Figure 2. Depth profiles of (a) ammonium and (b) nitrite concentrations (data from Zhu, 2015), (c, e) particle‐associated (>3 μm), and (d, f) free‐living
(0.22–3 μm) archaeal amoA (in c and d) and Nitrospina 16S rRNA (in e and f) gene abundances, (g) dissolved inorganic carbon (DIC) fixation rates, and (h)
bacterial production. The red (northern South China Sea; NSCS) and blue (southern South China Sea; SSCS) lines are the fitted curves (p < 0.05–0.01). The
shaded areas show 95% confidence intervals. The gray background indicates a significant difference (Mann‐Whitney U test) for a given depth zone
between the NSCS and SSCS. *p < 0.05; **p < 0.01.

10.1029/2020GL088971Geophysical Research Letters

SHEN ET AL. 6 of 12



(p < 0.01). As expected, the BCD was mostly higher than the theoretical fluxes in the whole SCS and up to 2
orders of magnitude higher in both NSCS and SSCS bathypelagic zones. The depth‐integrated BCD between
100 and 4,000 m was 31.4 ± 2.2 (BGE 7%) to 73.3 ± 5.1 (3%) mmol C m−2 day−1 in the NSCS and 16.2 ± 0.8
(7%) to 37.8 ± 1.9 (3%) mmol C m−2 day−1 in the SSCS. Therefore, there was a greater imbalance in the
carbon budget of the deep NSCS between POC exported from 100 m and the BCD compared with the
SSCS (Table 1). Microbial respiration was not measured in this study, but these values would likely add
some uncertainties in the calculated BCD.

Figure 3. The estimated bacterial carbon demand (BCD) based on bacterial production and bacterial growth efficiency
(BGE) of (a) 7% and (b) 3%. The theoretically available particulate organic carbon (POC; shown in red and blue) and
simulated available POC (black lines) were estimated based on the theoretical flux and sinking particle flux in Figure 1,
respectively (using a differential equation dF/dz, where F is flux and z is depth). For the latter, dissolved inorganic
carbon (DIC) fixation was added to the output of the flux model at 411, 1,925, and 2,700 m. The gray areas show 95%
confidence intervals. (c) Relationships among BCD, particulate backscattering coefficients, intensity of fluorescent
dissolved organic matter (FDOM), and apparent oxygen utilization (AOU; spearman, p < 0.05–0.01 for each pair). The
conceptual diagram in the top right corner of (c) showing decreasing POC and increasing FDOM with remineralization
time suggests labile organic carbon (LOC) degradation and recalcitrant organic carbon (ROC) accumulation in the
ocean's interior with particle remineralization.
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3.4. Contributions of Various Carbon Sources to the BCD of the Dark Ocean

The attenuation of POC flux represents the POC that is theoretically consumed by deep‐dwelling microbes.
The POC exported from 100 m supplied 5.9 ± 1.7 and 3.6 ± 1.4 mmol C m−2 day−1 in the NSCS and SSCS,
respectively, to the deep ocean (100–4,000 m) and contributed 8–22% of the total BCD (Table 1). The differ-
ence between the sinking flux of POC measured in sediment traps and the theoretical flux represents later-
ally derived sinking POC; this was estimated to supply 9.0 ± 1.2 mmol C m−2 day−1 to the deep NSCS,
according to the attenuation of the simulated curves in three zones (Figure 1d), and contributed 12–29%
of the total BCD (Table 1). The depth‐integrated dark DIC fixation was 4.1 ± 0.5 and
1.7 ± 0.1 mmol C m−2 day−1 in the NSCS and SSCS, respectively, which accounts for 5–13% of the total
BCD. Notably, laterally transported POC was the largest carbon source in the NSCS, accounting for 47%
in the water below 100 m and 62% in the bathypelagic zone (1,000–4,000 m).

While a greater imbalance in the carbon budget between POC export and BCD at depth was present in the
NSCS, laterally transported particles supply a substantial proportion of the NSCS BCD. Particularly in the
bathypelagic zone, laterally transported particles contribute an order of magnitude higher amount of organic
carbon to the BCD (up to ~25%) than exported POC. This reconciles a larger part of the imbalance in the car-
bon budget compared to previous studies of the North Atlantic Ocean where a >90% gap remains (Herndl &
Reinthaler, 2013; Reinthaler et al., 2006). In the mesopelagic zone (100–1,000 m), laterally transported sink-
ing particles result in an almost balanced organic carbon supply (up to ~74% of BCD) and demand in the
NSCS, while a 70–90% gap remains in the subtropical North Pacific (Steinberg et al., 2008). In our assess-
ment, an accurate temporal (un)coupling between organic carbon supply and BCD was not considered,
but this might add some uncertainties to the carbon budget (Uchimiya et al., 2018). It could be difficult to
extrapolate the estimated contributions of laterally transported particles in the SCS to a global scale.

Moreover, in our estimation, laterally transported POC has been underestimated because suspended small
(nonsinking) particles are missed by sediment traps. This portion may be important to reconcile the mis-
match in the carbon budget (Baltar et al., 2009; Herndl & Reinthaler, 2013). The BGC‐Argo optical sensors
measured backscattering of both sinking and suspended particles in the ocean (Briggs et al., 2020).
Significantly positive correlations were observed between BCD and the particle backscattering coefficient
(Spearman, p < 0.05–0.01; Figure 3c), suggesting that particles (including both sinking and suspended) serve
as labile carbon and energy sources for microbial metabolism in the dark ocean. This finding is consistent
with previous studies in the Atlantic where relationships were found between suspended POC and respira-
tion rates (Baltar et al., 2009), as well as macroscopic particles and oxygen consumption (Bochdansky

Table 1
Supply of Organic Carbon and Contributions to Total Bacterial Carbon Demand (BCD) at 100–4,000 m Depth

Area Depth (m)

Supply of organic carbon (mmol C m–2 day–1)

Integrated BCD
(mmol C m−2 day−1)

Contribution to BCD (%)

POC
exported

from 100 ma

Laterally
transported
sinking POC

Integrated
DIC

fixation

POC
exported

from 100 m

Laterally
transported
sinking POC

Integrated
DIC

fixation Total

NSCS 100–4,000 5.9 ± 1.7 9.0 ± 1.2 4.1 ± 0.5 31.4 ± 2.2 (7%)b 18.8 ± 5.6 28.8 ± 4.2 13.1 ± 1.8 60.7 ± 8.0
73.3 ± 5.1 (3%) 8.1 ± 2.4 12.3 ± 1.8 5.6 ± 0.8 26.0 ± 3.4

100–1,000 5.4 ± 1.7 5.9 ± 1.2 2.6 ± 0.4 18.9 ± 1.5 (7%) 28.7 ± 9.3 31.4 ± 7.0 13.8 ± 2.4 73.8 ± 12.8
44.0 ± 3.4 (3%) 12.3 ± 4.0 13.5 ± 3.0 5.9 ± 1.0 31.7 ± 5.5

1,000–4,000 0.5 ± 0.2 3.1 ± 0.7 1.4 ± 0.2 12.6 ± 1.6 (7%) 4.0 ± 1.6 24.6 ± 6.1 11.1 ± 2.1 39.7 ± 7.6
29.3 ± 3.8 (3%) 1.7 ± 0.7 10.6 ± 2.7 4.8 ± 0.9 17.1 ± 3.3

SSCS 100–4,000 3.6 ± 1.4 nd 1.7 ± 0.1 16.2 ± 0.8 (7%) 22.2 ± 8.7 nd 10.5 ± 0.8 32.6 ± 8.8
37.8 ± 1.9 (3%) 9.5 ± 3.7 4.5 ± 0.3 14.0 ± 3.8

100–1,000 3.3 ± 1.4 nd 1.2 ± 0.1 11.9 ± 0.7 (7%) 27.6 ± 11.9 nd 10.1 ± 1.0 37.7 ± 12.1
27.7 ± 1.7 (3%) 11.9 ± 5.1 4.3 ± 0.4 16.2 ± 5.2

1,000–4,000 0.3 ± 0.2 nd 0.5 ± 0.1 4.4 ± 0.3 (7%) 6.9 ± 3.7 nd 11.4 ± 2.4 18.3 ± 4.5
10.2 ± 0.8 (3%) 3.0 ± 1.6 4.9 ± 1.1 7.9 ± 2.0

Note. The associated error is the standard error. nd ¼ no data.
aEstimates based on the mean of seasonally averaged particulate organic carbon (POC) fluxes at 100 m. bThe 7% and 3% in brackets represent the bacterial
growth efficiency (BGE) values used in estimating BCD.
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et al., 2010). In addition, DOC can also be transported laterally from the margins where some of this dis-
solved carbon could be fresh (Nakatsuka et al., 2004), resulting in a relatively smaller RDOC pool. This is
evidenced by the lower FDOM (a proxy for refractory DOM) in the deep NSCS and negative correlations
between BCD and FDOM (p < 0.01; Figure 3c). Furthermore, the observed positive correlation between
apparent oxygen utilization and FDOM (P < 0.01) indicates that refractory FDOM was produced in situ in
association with particle remineralization on the time scale of this correlation (Yamashita & Tanoue, 2008).

We also estimated the contribution of DOC to the BCD of the deep ocean. The DOC decay rate was estimated
as 0.06 μmol kg−1 yr−1 in SCS intermediate water (~1,000–1,500 m), based on differences in total organic car-
bon (an approximation of DOC) between the SCS (42.9 ± 0.9 μmol L−1) and the West Philippine Sea
(40.3 ± 0.6 μmol L−1; Wu et al., 2015) and ~42‐yr residence time of the intermediate water (Liu &
Gan, 2017). Hence, DOC contributed approximately 2–5% to the BCD at 1,000–1,500 m in the SCS, while
no clear differences in total organic carbon were observed between the northern and southern basins (Dai
et al., 2009). Similarly, Kim et al. (2015) estimated the DOC decay rates as 0.04, 0.08, and
0.14 μmol kg−1 yr−1 in the East Japan Sea (>1,000 m), high‐latitude North Atlantic Ocean (>1,500 m),
and Mediterranean Sea (>1,000 m), respectively. Carlson et al. (2010) reported DOC decay rates ranging
from 0.13 to 0.93 μmol kg−1 yr−1 in mesopelagic and bathypelagic realms of the North Atlantic using a
single‐end member mixing model and multiple linear regression; this estimate contributed less than 5% to
the deep BCD in the North Atlantic (Reinthaler et al., 2006).

4. Conclusions

We quantified the contributions of four main carbon sources to the dark ocean carbon demand; of these, lat-
erally derived sinking particles were quantified for the first time. Our results showed an unbalanced carbon
budget between POC exported from the euphotic zone and dark ocean BCD, but strong and perennial lateral
particle transport throughout mesopelagic and bathypelagic water masses provided an organic carbon
source that contributed a substantial proportion of the BCD. Additionally, a high concentration of reminer-
alized particles resulted in high ammonium concentrations and nitrifier abundances. Consequently, dark
carbon fixation sustained primarily by nitrifiers also provided a high amount of new organic carbon to het-
erotrophic food webs in the deep ocean. Such sequential physical‐chemical‐biological processes could occur
globally in marginal seas, given widespread lateral transport processes that redistribute a diverse array of
substances. Therefore, these processes have a significant impact on deep sea ecosystems and carbon storage.

Collectively, our measurements and estimations quantitatively support the hypothesis that laterally trans-
ported particles in the deep open ocean provide amajor carbon and energy source for dark ocean ecosystems.
These results further imply that lateral particle transport from margins need to be incorporated into the
mechanistic understanding of the biological carbon pump to resolve the imbalance in the carbon budget
of the dark ocean.

Data Availability Statement

All data in this study are available online (https://pan.xmu.edu.cn/s/ZMIBZasuTFI).
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