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ABSTRACT:
The dispersion and attenuation characteristics of Arctic Ocean guided waves have significant applications in the

analysis of under-ice acoustic fields and the inversion of acoustic parameters of ice, water, sediment, and seafloor.

However, determining the complex dispersion relationship of guided waves propagating in a damped medium

presents significant challenges. In this study, the Arctic Ocean was modeled as a viscoelastic ice–water–sediment–-

seafloor coupled system. Moreover, a spectral method was introduced to investigate the dispersion and attenuation

of Arctic guided waves. The wave equations and boundary conditions were discretized, resulting in a generalized

eigenvalue problem for guided waves propagating in this viscoelastic coupled system. A numerical program was

then constructed to calculate the dispersion and attenuation curves of the guided waves. Furthermore, the influence

of ice thickness, damping properties, and seawater depth on dispersion and attenuation was analyzed. The results

obtained in this study provide theoretical guidance for Arctic Ocean acoustic detection, navigation, and trans-ice

acoustic communication. VC 2025 Acoustical Society of America. https://doi.org/10.1121/10.0036568
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I. INTRODUCTION

As global climate change leads to the decline of ice and

snow, the strategic military value of the Arctic is becoming

increasingly evident, alongside its commercial exploitation

and scientific research potential (Collins et al., 2019; Chen

et al., 2021; Li et al., 2021). Acoustic techniques are partic-

ularly important in seafloor exploration, resource exploita-

tion, and environmental monitoring, as they are among the

most effective means of transmitting information in marine

environments. In recent years, the study of acoustic propa-

gation characteristics in Arctic ice–water coupled systems

has become a critical area of focus (Pelekanakis et al., 2021;

Ananiev et al., 2022; Choi et al., 2022), as it is foundational

to many acoustic technologies used in the Arctic.

In our previous work, we investigated the transient

propagation of guided waves across the ice layer in the

Arctic Ocean (Zeng et al., 2024), where the ice layer was

modeled as a general elastic solid without damping, and the

seafloor was modeled as a rigid interface. We also investi-

gated the dispersion characteristics of guided waves in a

more complex stratified Arctic Ocean system using the

transfer matrix technique (Liu et al., 2024), which consid-

ered the seafloor as a liquid sedimentary layer overlying a

rigid bottom. Moreover, theoretical and experimental stud-

ies of acoustic propagation in the Arctic Ocean have been

conducted using methods, such as the normal mode theory,

ray theory, and the wavenumber integral method (Lepage

and Schmidt, 1994; Gavrilov and Mikhalevsky, 2006; Hope

et al., 2017; Baggeroer and Collis, 2022; Barclay et al.,
2023). However, there remains a gap in the study of guided-

wave attenuation in the Arctic, as the complex dispersion

within a damping medium has proven challenging to

determine.

Most previous studies have assumed that the ice layer is

a thin, plate-like elastic solid (Timco and Weeks, 2010),

without considering its viscous damping effects. However,

the acoustic properties of the Arctic ice layer and seafloor in

real-world conditions are highly complex. For example, vis-

cous damping parameters cannot be ignored, as they signifi-

cantly influence the propagation of transverse waves (Wang

and Shen, 2010; Li et al., 2015; Cheng et al., 2017; Åstr€om

and Benn, 2019; Zhang and Zhao, 2021). By considering

wave attenuation (complex wave velocity), Collins (2015)

generalized the parabolic equation method and rotated ratio-

nal approximations (Milinazzo et al., 1997) to an ocean

environment with varying ice layer and sediment thick-

nesses. Furthermore, Collis et al. (2016) investigated the

seismo-acoustic wave propagation in the ocean with ice

layers, combining the normal mode method. The presencea)Email: liusx@xmu.edu.cn
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of damping leads to complex characteristic equations, which

shifts the numerical solving domain from a one-dimensional

real axis to a two-dimensional complex plane. This makes

traditional numerical methods, such as the bisection method

(Liu et al., 2024), ineffective, as the root-finding direction

becomes indeterminate. Additionally, complex root-finding

schemes, such as the Muller method (Muller, 1956), which

rely on quadratic interpolation, often encounter difficulties

in finding or solving roots because they assume that each

computational grid in the complex plane contains at most

one complex root. Another complex root-finding approach,

the minimum peak method proposed by Lowe (1995), has

been used for ultrasonic non-destructive evaluation of com-

plicated structured media. The method involves first assum-

ing that the medium is elastic and calculating the dispersion

data using the traditional bisection method. Next, the acous-

tic parameters of the elastic system are replaced with those

of the corresponding viscoelastic medium, and the slope-

tracking method is used to locate the new data point that

minimizes the modulus of the complex dispersion equation.

This approach is then updated to reflect the complex disper-

sion data of the viscoelastic waveguide. The real and imagi-

nary parts of the complex dispersion data represent the

propagation and attenuation characteristics, respectively.

Barshinger and Rose (2004) applied the minimum peak

method to calculate the dispersion and attenuation curves of

guided waves in hollow cylindrical pipes with damping

materials and verified its reliability by comparing the

numerical results with experimental measurements.

Although the minimum peak method can solve disper-

sion and attenuation curves in viscoelastic structures, its

numerical implementation involves multiple complex proce-

dures, including those of the traditional bisection method

and iterative minimization of the modulus of the complex

dispersion equation, resulting in a substantial amount of

coding. Moreover, because of the complexities of the disper-

sion equations for large-scale multi-layer structured wave-

guides and the lack of proof regarding the convexity of their

characteristic equations, the computational results obtained

using the minimum peak method may not be globally opti-

mal. Meanwhile, the KrakenC normal mode program, devel-

oped by Porter and Reiss (1984, 1985), also requires

extensive coding due to its reliance on a combination of

numerical methods, such as the finite difference method,

Sturm sequence, and the Richardson extrapolation.

To address these challenges in determining the disper-

sion relationship, the spectral method (Shen et al., 2011)

offers an effective approach for solving complex roots as

one of the weighted residual methods. This method provides

several advantages, including high numerical accuracy, min-

imal coding requirements, and fast computational speed

(Liu and Qu, 1998; Valle et al., 1999). Moreover, the spec-

tral method rarely encounters the issue of missing roots. It

begins by using the roots of orthogonal polynomials as inter-

polation points to discretize the physical space, transforming

the continuous partial differential equations into a matrix

eigenvalue problem that can be solved. Since its introduction

to fluid dynamics computations in the 1970s, the spectral

method has been applied to the study of seismic waves and

the dispersion of small-scale elastic guided waves (Orszag,

1972; Fornberg, 1975; Carcione et al., 2002; Karpfinger

et al., 2008a, 2008b, 2010), becoming the third major numeri-

cal technique for solving partial differential equations after

the finite difference and finite element methods. A widely

cited work on the application of spectral methods to guided-

wave dispersion is that of Adamou and Craster (2004), who

examined the dispersion and attenuation in two-dimensional

circumferential in-plane motion and radial axisymmetric

motion in elastic circular waveguides, and the attenuation of

waves in multilayered and anisotropic damping media.

However, there is limited research on the application of spec-

tral methods to the dispersion and attenuation characteristics

of guided waves in the Arctic Ocean. Compared to small-

scale circular waveguides, the ice–water composite structures

of the Arctic Ocean are much larger in scale, making the con-

struction of generalized eigenvalues significantly more com-

plex. Furthermore, the treatments of ice–water interfaces and

seafloor boundary conditions are intricate. The numerical sta-

bility of large-scale models also poses a greater challenge

compared to smaller-scale models, especially in the study of

ocean waveguides, where modal confusion must be carefully

avoided.

In this study, the Arctic Ocean was modeled as a visco-

elastic ice–water–sediment–seafloor coupled system. The

ice layer was treated as a viscoelastic solid, the seawater

layer as a non-viscous fluid, and the seafloor as a composite

structure consisting of a damped liquid sediment layer over-

lying a viscoelastic solid half-space. During the implementa-

tion of the spectral method, Chebyshev orthogonal

polynomials were used as the interpolation basis to construct

the Chebyshev–Gauss collocation points and differential

matrices for the ice, seawater, and sediment layers. For the

seafloor, the Laguerre–Gauss collocation points and differ-

ential matrix were constructed using Laguerre orthogonal

polynomials. The wave equations and boundary conditions

were discretized and incorporated into a generalized eigen-

value problem for the coupled system. A numerical program

was then developed to solve this eigenvalue problem,

enabling an analysis of the attenuation characteristics of

guided waves in the viscoelastic coupled system.

II. GOVERNING EQUATIONS AND CONSTRAINTS

The Arctic Ocean is usually covered by an ice layer;

therefore, from an acoustic point of view, it is composed of

ice, seawater, sediment, and seafloor layers, as shown in

Fig. 1. The xoz Cartesian coordinate system was used for

this study. The roughness of both the ice–water interface

and the seafloor was neglected. The ice layer was modeled

as a viscoelastic solid with a thickness of h1, the seawater

layer as a viscous fluid with a thickness of h2, and the bot-

tom layer as a composite structure consisting of a viscous

liquid sediment layer of thickness h3 overlying a viscoelastic

solid half-space seafloor.
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The Lam�e constants of the ice layer, seawater, sedi-

ment, and seafloor are denoted by ki and li; i ¼ 1; 2; 3; 4ð Þ,
with the wave velocities in each layer given by the follow-

ing equations:

cip ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki þ 2li

qi

s
; cis ¼

ffiffiffiffi
li

qi

r
: (1)

It is important to note that only the first Lam�e constant ki is

applicable for liquid layers, as acoustic waves propagate as

longitudinal motion in liquids. Therefore, li ¼ 0; i ¼ 2; 3ð Þ.
In elastic media, the Lam�e constants are real. However,

in an acoustic medium with damping, they become complex,

resulting in complex acoustic velocities (Lowe, 1995;

Barshinger and Rose, 2004), indicating acoustic propagation

with attenuation. The dissipation factor d and attenuation

coefficient a are used to describe the damping effect quanti-

tatively (Jensen et al., 2011), and they relate to the acoustic

velocity c as follows:

a ¼ 54:58d; Im cð Þ ¼ dRe cð Þ: (2)

The unit of the attenuation coefficient a is dB=K½ �, where K
is the wavelength of the acoustic wave. The dissipation fac-

tor d depicts the ratio between the real and imaginary parts

of the complex acoustic velocity.

The longitudinal displacement potential ui; i ¼ 1; 2;ð
3; 4Þ and the transverse displacement potential wi; i ¼ 1; 4ð Þ
in each layer are expressed as follows (Eringen and

Suhubi, 1975):

ui ¼ Ui zð Þej kx�xtð Þ; (3)

wi ¼ Wi zð Þej kx�xtð Þ; (4)

where Ui and Wi are functions of depth z, j ¼
ffiffiffiffiffiffiffi
�1
p

is the

imaginary unit, k and x are the wavenumber along the x

direction, and angular frequency, respectively. The longitu-

dinal potentials Ui zð Þ; i ¼ 1; 2; 3; 4ð Þ satisfy the Helmholtz

equation as follows:

d2

dz2
� k2

� �
Ui ¼ �

x2

c2
ip

Ui: (5)

Transverse potentials WiðzÞ; i ¼ 1; 4ð Þsatisfy

d2

dz2
� k2

� �
Wi ¼ �

x2

c2
is

Wi: (6)

Equations (5) and (6) govern the acoustic waves in the ice–wa-

ter–sediment–seafloor coupled system. However, they describe

only the spatial distribution of the acoustic waves, while the

coupled effects arise from the boundary conditions.

Let ui ¼ ux
i ; u

z
ið Þ and ri ¼ rzz

i ; r
xz
ið Þ denote the displace-

ment and stress tensors in each layer. The boundary conditions

are as follows: the upper surface of the ice layer is traction-free,

the normal displacement and stress are continuous, and the shear

stress is zero at the ice–water interface. Similarly, the normal

displacement and stress are continuous at the water–sediment

interface. In the interface between the sediment and the sea-

floor, the normal displacement and stress are continuous, and

the shear stress in the viscoelastic seafloor is zero. In addition,

the radiation condition is applied to the half-space seafloor,

meaning that the potential functions at infinity are zero. These

constraints can be formulated as follows:

rzz
1 x;�h1ð Þ ¼ 0; rxz

1 x;�h1ð Þ ¼ 0; (7)

uz
1 x; 0ð Þ ¼ uz

2 x; 0ð Þ; rzz
1 x; 0ð Þ ¼ rzz

2 x; 0ð Þ;
rxz

1 x; 0ð Þ ¼ 0;
(8)

uz
2 x; h2ð Þ ¼ uz

3 x; h2ð Þ; rzz
2 x; h2ð Þ ¼ rzz

3 x; h2ð Þ; (9)

uz
3 x; h2 þ h3ð Þ ¼ uz

4 x; h2 þ h3ð Þ;
rzz

3 x; h2 þ h3ð Þ ¼ rzz
4 x; h2 þ h3ð Þ;

rxz
4 x; h2 þ h3ð Þ ¼ 0; (10)

U4 þ1ð Þ ¼ 0; W4 þ1ð Þ ¼ 0: (11)

During the implementation of the spectral method, the

governing equations [Eqs. (5) and (6)] and the boundary

constraints [Eqs. (7)–(11)] were discretized and formulated

as a well-posed boundary eigenvalue problem. This problem

was solved to obtain the dispersion and attenuation charac-

teristics of guided waves in the coupled system, representing

the nonlinear relationship between the angular frequency x
and wavenumber k.

III. SPECTRAL METHOD AND NUMERICAL
PROCEDURES

The spectral method, a weighted residual method, is a

global method used to solve differential equations. It offers

several advantages, including arbitrary-order convergence

with high accuracy, fewer code requirements, and the

FIG. 1. Viscoelastic ice–water–sediment–seafloor coupled system for the

Arctic Ocean. Thickness, density, and longitudinal and transverse wave

velocities corresponding to ice layer are h1, q1, c1p, and c1s, respectively;

thickness, density, and longitudinal wave velocity corresponding to seawa-

ter are h2, q2, and c2p, respectively; thickness, density, and longitudinal

wave velocity corresponding to sediment are h3, q3, and c3p, respectively;

and thickness, density, and longitudinal and transverse wave velocities cor-

responding to seafloor are h4, q4, c4p, and c4s, respectively. The origin of

the coordinates is located at the boundary between the ice and seawater

layers, representing the horizontal x direction and vertical z direction.
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capability to solve equations in complex domains (Adamou

and Craster, 2004; Zharnikov et al., 2013). These features

are important for the numerical computation of large-scale

models involving damping. The implementation of the spec-

tral method involves discretizing the physical space to con-

vert continuous differential equations into algebraic

eigenvalue problems. Zeros of orthogonal polynomials, such

as Jacobi, Chebyshev, Legendre, and Laguerre type polyno-

mials, are used as interpolation points to generate computa-

tional grids (Hesthaven et al., 2007; Shen et al., 2011).

These polynomial zeros are more densely distributed near

the spatial boundaries, which helps avoid the Runge phe-

nomenon (Epperson, 1987) compared to using equally

spaced grids.

The objective of this study was to numerically deter-

mine the dispersion and attenuation of acoustic waves in the

Arctic ice–water–sediment–seafloor coupled system

described in Sec. II using the spectral method. By discretiz-

ing Eqs. (5) and (6) and applying the boundary conditions

specified in Eqs. (7)–(11), a generalized eigenvalue problem

was constructed and solved to obtain the dispersion and

attenuation curves of guided waves in the coupled system.

A. Collocation point

In the finite physical spaces of the ice, seawater, and

sediment layers, Chebyshev–Gauss collocation points were

used, while in the half-space seafloor, Laguerre–Gauss col-

location points were used.

Denoting Ni; ði ¼ 1; 2; 3Þ as the number of collocation

points in each layer, the Chebyshev–Gauss collocation

points were generated using the following expression:

rli
i ¼ cos

li � 1ð Þp
Ni � 1

; li ¼ 1; 2;…;Ni; (12)

where the superscript and subscript of r represent the layer

index and the collocation point index, respectively. As evi-

dent from Eq. (12), the value of the Chebyshev–Gauss collo-

cation points decreases with increasing superscript, and all

points are distributed within the interval �1; 1½ �.
The Laguerre–Gauss collocation points are the zeros of

the Laguerre polynomial. Denoting fN4

l4
as the first N4 zeros

of the Laguerre polynomial, the Laguerre–Gauss collocation

points in the half-space seafloor are given by the following:

rl4
4 ¼ fN4

l4
; l4 ¼ 1; 2;…;N4: (13)

It should be noted that the zeros of the Laguerre polynomial

are distributed within the interval 0;1½ �. Therefore, in prac-

tical calculations, the value of N4 must be sufficiently large

to effectively truncate the physical space for computational

purposes.

B. Differential matrix

The differential matrix in the spectral method is used to

approximate continuous derivative operations with discrete

algebraic operations. A function f is discretized into a vector

f at the collocation points, and its m-th order derivative can

be calculated by multiplying f with an m-th order differen-

tial matrix Dm, as follows:

f mð Þ ¼ Dmf: (14)

The elements of the differential matrix depend on the choice

of collocation points, and the construction and structure of

the Chebyshev–Gauss differential matrix are presented in

Appendix A. Further detailed explanations of the construc-

tion and derivation of the differential matrix can be found in

the works of Shen et al. (2011), Trefethen (2000), Canuto

et al. (2007), Fornberg (1998), Hesthaven et al., 2007, and

Funaro (2008).

The collocation points described in Sec. III A and the

corresponding differential matrices must be transformed

into a practical physical space (Adamou and Craster, 2004).

The scaled collocation points and differential matrices are

denoted by zli
i and Dm

i ; i ¼ 1; 2; 3; 4ð Þ; respectively.

C. Construction of generalized eigenvalue problem

For a given wavenumber k, a generalized eigenvalue

equation was constructed, in which the complex angular fre-

quency x serves as the eigenvalue. This scheme enables

effective mode control of guided waves during the computa-

tional process.

Analytical solutions for motion in anisotropic or bending

waveguides typically involve special functions, such as

Hankel, Bessel, and Neumann functions, which can be chal-

lenging to compute accurately. One advantage of the spectral

method is that it circumvents the need for these special func-

tions, enhancing computational efficiency and numerical stabil-

ity by converting continuous differential equations into

discrete algebraic eigenvalue problems (Gridin et al., 2003).

Using the collocation points and differential matrices,

Eqs. (5) and (6) can be discretized as follows:

D2
i � k2Ii

� �
Ui ¼ �

x2

c2
ip

Ui; i ¼ 1; 2; 3; 4; (15)

and

D2
i � k2Ii

� �
Wi ¼ �

x2

c2
is

Wi; i ¼ 1; 4; (16)

respectively, where Ii is an identity matrix of order Ni.

Defining the matrix operator

Li ¼ D2
i � k2Ii; (17)

and the matrix function

Mi hð Þ ¼ hIi: (18)

The discretized Eqs. (15) and (16) can then be integrated

into a matrix form as follows:
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LH ¼ �x2MH; (19)

where the operator L ¼ diag L1;L1;L2;L3;L4;L4ð Þ, the

eigenvector H ¼ U1;W1;U2;U3;U4;W4ð ÞT, and the

matrix function M ¼ diag M1 c�2
1p

� �
;M1 c�2

1s

� �
;M2 c�2

2p

� �
;

�
M3 c�2

3p

� �
; M4 c�2

4p

� �
;M4 c�2

4s

� �
Þ. The angular frequency x is

the eigenvalue.

The generalized eigenvalue problem described by Eq.

(19) does not yet account for boundary constraints. The

boundary conditions specified in Eqs. (7)–(11) must be dis-

cretized and embedded into Eq. (19) to formulate a well-

posed boundary eigenvalue problem. The construction of

this eigenvalue problem follows these steps.

First, discretized displacement and stress matrices,

denoted as U and S, respectively, were constructed. The

detailed construction procedures and expressions for each

element are provided in Appendix B. Next, the correspond-

ing rows of U and S were embedded into the generalized

eigenvalue problem, i.e., Eq. (19), according to the bound-

ary conditions outlined in Eqs. (7)–(11). The embedding

regularities are shown in Appendix C. The boundary eigen-

value problem with embedded constraints is denoted as

follows:

eLH ¼ �x2 eMH: (20)

The wavenumber k is implied as an internal parameter in

operator eL. The real part of the complex eigenvalue x
describes the propagation characteristics of the guided

waves, while the imaginary part reflects their attenuation

characteristics.

D. Numerical procedures

Given a series of wavenumbers k, solving Eq. (20) for

the eigenvalue x yields the x� k dispersion curves and

attenuation curves of guided waves in the coupled system.

The implementation steps are as follows:

(1). Computation initialization: System acoustic parameters,

such as density, acoustic velocity, thickness, and attenu-

ation coefficient for each layer, were defined. The num-

ber of collocation points Ni; i ¼ 1; 2; 3; 4ð Þ was set.

Furthermore, the corresponding collocation points and

differential matrices were generated and scaled to

match the actual physical spaces.

(2). Solution of the generalized eigenvalue problem: For

each given wavenumber, the discrete displacement and

stress matrices U and S were constructed with embed-

ded boundary conditions, as outlined in Appendices B

and C. The complex eigenvalues x were then obtained

by solving the eigenvalue problem in Eq. (20).

(3). Processing of numerical results: The number of eigenval-

ues obtained from solving Eq. (20) depends on the order

of the eigenvalue problem, which corresponds to the

order of the operator eL. Not all returned eigenvalues rep-

resent actual guided-wave modes; some are outliers

generated during discretization and numerical calcula-

tions that lack physical significance (Adamou and

Craster, 2004). The outliers vary with the number of col-

location points, while the eigenvalues corresponding to

those propagating modes remain relatively stable. To

eliminate outliers, the number of collocation points was

adjusted and compared across several calculational oper-

ations. Moreover, at least two collocation points should

be at each wavelength to ensure sufficiently high numeri-

cal accuracy according to the sampling theory, which

states that the number of collocation points in each layer

of the coupled system must satisfy the following:

Ni �
2pf

cip
; (21)

where f ¼ x=2p is the frequency of the acoustic waves.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this study, a numerical program was developed using

MATLAB (The MathWorks Inc., Natick, MA, R2024a) to cal-

culate guided-wave dispersion and attenuation using the

spectral method. Collocation points and differential matrices

were generated using the subroutines provided by

Weideman and Reddy (2000). The eigenvalue problem was

solved using the built-in eig function of MATLAB, which is

based on the QZ matrix factorization algorithm (Moler and

Stewart, 1973).

The Arctic Ocean varies geographically and seasonally.

Geographic influences are mainly characterized by differ-

ences in seawater depth at various locations, while seasonal

influences are reflected in variations in ice layer thickness.

Liu et al. (2021) investigated the influence of ice and seawa-

ter thicknesses on the phase- and group-velocity dispersion

curves of guided waves in an elastic ice–water coupled

system.

To verify the accuracy and efficiency of the spectral

method, the dispersion curves of guided waves in an elastic

ice–water system were calculated and compared with those

obtained using the bisection method. Furthermore, the influ-

ences of ice and seawater layers on the propagation and

attenuation of guided waves in a viscoelastic system were

simulated and analyzed.

A. Dispersion of guided waves in elastic ice–water
coupled system

In an elastic ice–water coupled system (Liu et al.,
2021), the ice is modeled as elastic, and the seafloor as rigid;

thus, there is no dissipation within the ice or leakage from

the seafloor.

According to Sturm–Liouville theory (Stakgold and

Holst, 2011), all eigenvalues x in this scenario are nonnega-

tive real numbers. Moreover, the boundary conditions must

be slightly adjusted. Specifically, Eqs. (10) and (11) are

removed, while Eqs. (7) and (8) remain unchanged, and Eq. (9)

is replaced by the following:
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uz
2 x; h2ð Þ ¼ 0; (22)

which indicates a rigid seafloor boundary.

The acoustic parameters used in this computation were

as follows: the depths of the elastic ice and seawater layers

were 2 and 100 m, respectively; the densities of the ice and

seawater were 917 and 1000 kg/m3, respectively; the longi-

tudinal and transverse wave velocities in the ice were

3593.4 and 1809.8 m/s, respectively (McCammon and

McDaniel, 1985); and the longitudinal wave velocity in sea-

water was 1500 m/s.

Figure 2 shows the first 10 orders of guided waves in

the elastic ice–water coupled system. The red solid lines

represent calculations obtained using the adaptive step-size

bisection method developed by Liu et al. (2021), while the

blue dotted lines represent calculations obtained using the

spectral method developed in this study. The lowest curve

corresponds to the first-order mode, with the second-, third-,

and subsequent modes up to the tenth-order appearing pro-

gressively above it.

The bisection and spectral methods are two different

numerical methods for calculating the dispersion relation. The

former solves the potential functions satisfying the wave equa-

tion, obtains the analytical expression of the displacements and

stresses, constructs the characteristic equation according to the

boundary conditions, which is a determinant implicit function

comprising the frequency x and wavenumber k, and then sol-

ves it to obtain the system dispersion relationship. The latter

method discretizes the wave equation directly, constructs a

generalized eigenvalue equation to solve, and obtains the sys-

tem dispersion relationship. The results from both methods

show excellent agreement, demonstrating the validity of the

spectral method.

Phase-velocity cp and group-velocity cg are given by

the expression cp ¼ x=k and cg ¼ @x=@k, respectively.

Figure 3 shows the phase- and group-velocity curves for the

first 10 orders of guided waves in the elastic ice–water

coupled system. A detailed analysis of the dispersion of

guided waves in such a system in the Arctic Ocean was pre-

sented by Liu et al. (2021). In this section, we focus on the

differences between the bisection and spectral methods.

Although both methods can be used to obtain the dis-

persion curves of guided waves in elastic systems, they

approach the wave equation and boundary conditions in fun-

damentally distinct ways. Their computational efficiencies

also vary significantly. The key differences between the two

methods are as follows: (i) The bisection method searches

for roots by progressively narrowing the interval in which

the zeros of the dispersion equations are located. Each inter-

val requires function evaluations at end points to determine

the bisection strategy, meaning the subroutine for calculat-

ing the function value must be called frequently. This

demands a high level of function continuity. In contrast, the

spectral method converts the continuous differential opera-

tions into generalized eigenvalue problems in algebraic

matrix form, which does not require high function continu-

ity; (ii) the bisection method, even with adaptive step-size

improvements, has high computational complexity. In the

FIG. 2. x� k relationship curves of the first 10 orders of guided waves in

the elastic ice–water coupled system, where the red solid and blue dotted

lines were calculated using the adaptive step-size bisection method devel-

oped by Liu et al. (2021) and spectral method, respectively.

FIG. 3. (a) Phase- and (b) group-velocity curves of the first 10 orders of

guided waves in the elastic ice–water coupled system. The red solid and

blue dotted lines were calculated using the adaptive step-size bisection

method developed by Liu et al. (2021) and spectral method, respectively.

The numbers near the curves denote the mode order.
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same computational environment (Intel Core i7-7700,

3.6 GHz, 16 GB RAM, Intel, Santa Clara, CA), the bisection

method required 72 s to calculate the dispersion curves pre-

sented in Fig. 2, whereas the spectral method completed the

task in 1.24 s; (iii) The time cost for the bisection method

scales linearly with the order of the eigenvalue problem,

while the spectral method scales cubically (Adamou and

Craster, 2004), i.e., the time complexity is O N3ð Þ. This

makes the spectral method more efficient for calculating

low-order modes; and (iv) the spectral method has a wider

application range than the bisection method. It can solve

complex eigenvalue problems because the QZ algorithm

used in the spectral method handles both real and complex

numbers seamlessly (Moler and Stewart, 1973; Adamou and

Craster, 2004). In contrast, the bisection method is limited

to solving real eigenvalue problems.

B. Influence of thickness of viscoelastic ice layer

The thickness of the viscoelastic ice layer in the Arctic

Ocean varies with geographic location, typically ranging

from 2 to 6 m (Haas et al., 2010; Hope et al., 2017).

Variations in ice thickness lead to changes in the dispersion

curves of the guided waves in the system and affect the

attenuation of these waves.

For the complex angular frequency x, the phase-

velocity is defined as follows:

cp ¼
Re xð Þ

k
: (23)

The attenuation, as defined by Sinha et al. (1992), is given

as follows:

c ¼ Im xð Þ
cp

; (24)

where the physical unit of attenuation c is [Np/m]. When

expressed in [dB/m], the transformation is as follows:

A ¼ 20log10ec: (25)

The physical meaning of attenuation A is the propagation

loss per unit propagation distance.

In the numerical simulations, the real parts of the longi-

tudinal and transverse acoustic velocities in the viscoelastic

ice layer were 3600 and 1800 m/s, respectively (Laible and

Rajan, 1996). The density was 900 kg/m3 (Laible and Rajan,

1996), and the attenuation coefficients were a1p ¼ 0:216 and

a1s ¼ 0:648 dB=K (McCammon and McDaniel, 1985; Rajan

et al., 1993), respectively. The seawater layer was modeled

as a non-viscous fluid with a density of 1000 kg/m3, and a

longitudinal acoustic velocity of 1500 m/s. The fluid sedi-

ment layer had a depth of 2 m, a density of 1500 kg/m3, a

longitudinal acoustic velocity of 1550 m/s, and an attenua-

tion coefficient a3p ¼ 0:2 dB=K (Jensen et al., 2011). The

seafloor was modeled as a viscoelastic solid half-space with

a density of 2900 kg/m3, longitudinal and transvers acoustic

velocities of 2200 and 1500 m/s, respectively, and corre-

sponding attenuation coefficients a4p and a4s both of

0.5 dB=K (Jokat et al., 1995).

The seawater depth was set to 100 m, and the ice layer

depths were varied at 2, 4, and 6 m, respectively. Figure 4

shows the phase-velocity dispersion curves for the first 10

orders of guided waves. The longitudinal acoustic velocity

c2p of the seawater layer was used to normalize the phase-

velocity. The black, red, and blue lines correspond to the

phase-velocity curves of guided waves in the coupled sys-

tem with ice layer depths of 2, 4, and 6 m, respectively. The

bottom lines represent the first-order modes, while the

curves progressing from left to right represent the second-

through tenth-order modes.

Figure 4 indicates that ice thickness has a significant influ-

ence on the phase-velocity dispersion curve of the first-order

mode. As the frequency increases, the phase-velocities of the

first-order mode for ice layer depths of 2, 4, and 6 m converge

to approximately 0.8 c2p, 0.76 c2p, and 0.63 c2p, respectively.

Moreover, the phase-velocity curves of higher-order modes

(the second order and above) exhibit minimal variation and

display a ladder-like structure at approximately 2.1 c2p. These

findings align with the results reported by Liu et al. (2021).

The attenuation of the guided waves is determined by

the imaginary part of the angular frequency x and phase-

velocity cp. Figure 5 shows the attenuation curves calculated

using Eqs. (24) and (25) for the first 10 orders of guided

waves in the 0–1100 Hz range, presented in three panels as

the low-, middle-, and high-frequency bands. The black,

red, and blue lines correspond to ice layer depths of 2, 4,

and 6 m, respectively. The numbers near the curves denote

the order of the guided-wave mode.

Figure 5 shows that, although the attenuation coefficient

a in the waveguide is small, it still leads to significant

guided-wave attenuation. As shown in Fig. 5(a), the attenua-

tion of the first-order mode increases rapidly and monotoni-

cally with frequency and is considerably larger than those of

FIG. 4. Phase-velocity curves of the first 10 orders of guided waves in the

coupled system, where the black, red, and blue lines correspond to ice

layers with depths of 2, 4, and 6 m, respectively. The numbers near the

curves denote the mode order.
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the higher-order modes. The curves for the higher-order

modes (the second order and above) display a fluctuating

pattern, with each mode exhibiting a corresponding attenua-

tion peak that shifts to a higher frequency as the mode order

increases. Moreover, higher-order modes tend to have larger

attenuation peak values. In addition, the thickness of the ice

layer influences the attenuation of the guided waves. When the

ice layer is thicker, the attenuation of the first-order mode

decreases significantly, and the attenuation of the higher-order

modes decreases only slightly. In the 100–500 Hz range, each

mode presents a sub-peak, where higher orders exhibit higher

sub-peak values, as shown in Fig. 5(b). Moreover, thicker ice

layers result in a narrower frequency band for the sub-peaks.

At frequency bands of 300–500 Hz, the attenuation curves tend

to flatten. Furthermore, in the high-frequency band, i.e., the

500–1100 Hz band shown in Fig. 5(c), the attenuation of each

mode decreases monotonically, with slight differences in the

values.

The larger attenuation of the first-order mode, compared

to the higher-order modes, supports the Liu et al. (2021)

argument that the first-order mode in the ice–water coupled

system is mainly influenced by the ice layer, whereas the

higher-order modes result from the coupling between the ice

and seawater layers.

Figure 5 also shows that guided-wave attenuation in the

coupled system exhibits frequency-selective characteristics,

concentrated mainly in the low-frequency band. As the fre-

quency increases, the attenuation of the higher-order modes

tends to stabilize.

C. Influence of damping of viscoelastic ice layer

The acoustic properties of the ice layer vary depending on

geographic locations and environmental factors (Schwarz and

Weeks, 1977; Alexander et al., 2016; Hope et al., 2017). In

this study, we focus on the effect of ice damping properties on

the attenuation curves of guided waves in the coupled system.

Rajan et al. (1993) reported that the compression wave

attenuation within the ice layer typically ranges from 0.06 to

0.282 dB/m/kHz, which corresponds to 0.216 to

1.1015 dB=K. A commonly observed ratio between the

shear wave attenuation coefficient as and the compression

wave attenuation coefficient ap is as ¼ 3ap (McCammon

and McDaniel, 1985). In the numerical simulation, the ice

layer thickness was set to 8 m, and the attenuation coeffi-

cients of the longitudinal wave were set to 0.3, 0.5, and

0.7 dB=K, respectively. The attenuation coefficients of the

transverse wave were set to three times the corresponding

FIG. 5. Attenuation curves of the first 10 orders of guided waves in the coupled system, where the black, red, and blue lines correspond to ice layers with

depths of 2, 4, and 6 m, respectively. The numbers near the curves denote the mode order. The three panels correspond to the (a) low-frequency band

(0–100 Hz), (b) middle-frequency band (100–500 Hz), and (c) high-frequency band (500–1100 Hz), respectively.
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longitudinal wave values. All other parameters remained the

same as those described in Sec. IV B.

Figure 6 presents the attenuation curves for the first 10

orders of guided waves in the ice–water–sediment–seafloor

coupled system with different ice damping properties. The

black, red, and blue lines correspond to longitudinal wave

attenuation coefficients of 0.3, 0.5, and 0.7 dB=K, respec-

tively. A comparison between Figs. 5 and 6 reveals that the

effect of ice damping properties on the attenuation curves of

guided waves is more significant than the effect of ice thick-

ness. As the attenuation coefficient increases, the propaga-

tion attenuation for all modes also increases. This is because

the primary source of attenuation in the coupled system is

the damping from the ice layer, with significantly less con-

tribution from the spreading loss in the half-space seafloor.

Furthermore, it is clear that the first-order mode is the most

affected by changes in damping, showing a substantial

increase in attenuation as the frequency rises.

D. Influence of depth of seawater layer

In addition to geographic and seasonal variations in ice

thickness and acoustic properties, significant differences in

seawater depth exist across various regions of the Arctic

Ocean. These variations inevitably affect the dispersion

characteristics of guided waves, such as the phase- and

group-velocity curves (Liu et al., 2021), and their propaga-

tion attenuation.

FIG. 6. Attenuation curves of the first 10 orders of guided waves in the cou-

pled system, when attenuation coefficients of longitudinal wave were set to

0.3 (black lines), 0.5 (red lines), and 0.7 dB=K (blue lines), and attenuation

coefficients of transversal wave were set to three times corresponding longi-

tudinal wave. The numbers near the curves denote the mode order.

FIG. 7. Phase-velocity dispersion curves of the first 10 orders of guided waves in the coupled system. The seawater depths are 100 m (a), 500 m (b), and

1000 m (c), respectively. The numbers near the curves denote the order index.
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Figure 7 presents the phase-velocity dispersion curves for

guided waves in the coupled system with an ice layer depth of

6 m and seawater depths of 100, 500, and 1000 m, respectively.

The figure shows that, as the seawater depth increases, the

strong dispersion region of the dispersion curve for the i-th
(i > 1) guided-wave mode shifts toward lower frequencies. In

addition, the thicker the seawater layer, the lower the cutoff

frequency for the i-th (i > 1) guided-wave mode. The phase

velocity of the first-order guided wave converges to approxi-

mately 0.81 c2p, while all higher-order guided waves converge

to c2p. Moreover, the thicker seawater layer results in a greater

number of guided-wave modes within the same frequency

band, enriching the wave behavior in the system.

As shown in Figs. 5(a) and 6, the attenuation curve of

the first-order mode increases monotonically with the fre-

quency, while other higher-order modes exhibit strong

frequency-selective characteristics. Hence, modes 2–10

were used to demonstrate the influence of the seawater depth

on the attenuation curves. Figure 8 presents the effect of sea-

water depth on the propagation attenuation of guided waves

in a viscoelastic ice–water–sediment–seafloor coupled sys-

tem at seawater depths of 100, 500, and 1000 m, respec-

tively. The seawater depth has a relatively weak influence

on the curve structures of the guided waves in each order.

However, the seawater depth significantly influences the

attenuation values and frequency bands of higher-order

modes. As the mode order increases, the attenuation peak

value of each mode attenuation increases and changes

almost linearly with the mode order. In addition, a thicker

seawater layer leads to a greater number of guided-wave

modes within the same frequency band, further enriching

the propagation characteristics of the system. As shown in

Fig. 8, the frequency band of peak values was between 0

and 80, 0 and 18, and 0 and 10 Hz for the 100, 500, and

1000 m seawater depths, respectively.

Notably, although no more than 1000 m of seawater

depth was used for the numerical simulation, the spectral

method developed in this study can also be applied to deeper

marine environments without increased complexity or loss

of computational efficiency, which is one of the apparent

advantages of the spectral method in calculating the disper-

sion and attenuation curves.

V. CONCLUSION

In this study, the spectral method was used to determine

the complex dispersion relation and attenuation of guided

waves in a viscoelastic ice–water–sediment–seafloor coupled

FIG. 8. Attenuation curves of higher-order modes 2–10 of the guided waves in the coupled system. The seawater depths are 100 m (a), 500 m (b), and

1000 m (c), respectively. The numbers near the curves denote the order index.
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system proposed for the Arctic marine environment.

Compared to other numerical techniques used to simulate the

complex dispersion relation of guided waves in a coupled vis-

coelastic system, such as the Muller method (Muller, 1956)

and the minimum peak method (Lowe, 1995; Barshinger and

Rose, 2004), the spectral method demonstrated advantages in

terms of efficiency, numerical accuracy, and code simplicity.

In addition, when compared to the finite difference method

used in the Kraken program (Porter and Reiss, 1984, 1985),

the spectral method exhibited a higher order of convergence

and avoided the Runge phenomenon.

The generalized eigenvalue problem for guided-wave prop-

agation in the coupled system was constructed by discretizing

the wave equations and boundary conditions, and by using the

collocation points and differential matrices. A numerical pro-

gram was developed to solve the eigenvalue equations.

Moreover, the attenuation characteristics of the guided waves

were analyzed, with particular focus on the effects of ice thick-

ness, damping property, and seawater depth on the phase-

velocity dispersion and attenuation curves. The numerical

results showed that the attenuation of the first-order guided

wave was significantly greater than that of the higher-order

modes and increased monotonically with frequency. The attenu-

ation curves for the higher-order modes (greater than or equal to

the second order) displayed a characteristic fluctuation pattern.

Compared to ice layer thickness, the damping property of the

ice layer had a more pronounced influence on the attenuation of

guided waves in the coupled system. Additionally, an increase

in seawater depth caused an overall shift in the attenuation

curves of the higher-order guided waves to lower frequencies.

Owing to the complexity of theoretical derivation and

numerical calculation, the Arctic Ocean was modeled as a four-

layer coupled system of ice–seawater–sediment–seafloor in this

study. Although the modeling differs from the actual Arctic, the

conclusions obtained, such as the coupling mechanism, fre-

quency dispersion, and attenuation characteristics of the guided

waves, are still of significant value. In future studies, the spectral

method may be extended to address the problem of transient

acoustic wave propagation in a viscoelastic ice–water–sedi-

ment–seafloor coupled system, specifically by solving the non-

homogeneous wave equations. While this presents significant

challenges, it is a crucial step toward understanding the influ-

ence of acoustic source properties on the excitation of guided

waves in a coupled system. Moreover, in addition to environ-

mental characteristics, such as the isotropic property and rough

boundary of the ice layer, the acoustic velocity profile can be

considered when modeling the waveguide in the Arctic Ocean.
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APPENDIX A: CONSTRUCTION AND STRUCTURE OF
THE DIFFENERTIAL MATRIX

As shown in Eq. (14), the role of the differential matrix

is to convert continuous derivative operation into a discrete-

matrix algebraic operation. The following example of

Chebyshev–Gauss interpolating with N collocation points

on a standard interval ½�1; 1� was demonstrated to illustrate

the effect and structure of a differential matrix.

The collocation points were generated using Eq. (12):

1 ¼ x1 > x2 > � � � > xN ¼ �1: A differentiable function f
defined on the interval �1; 1½ � can be discretized at each

collocation point as f1; f2;…; fN , respectively. Then, the cor-

responding Lagrange interpolating function LN xð Þ can be

formulated as follows:

LN xð Þ ¼
XN

i¼1

/i xð Þfi; (A1)

where the interpolating basis function

/i xð Þ ¼
YN

j¼1; i 6¼j

x� xj

xi � xj
: (A2)

Equations (A1) and (A2) exhibit the equivalent relation

that LN xið Þ ¼ fi; furthermore, let the derivative of LN xð Þ be

the approximate value of f 0, then Eq. (A1) becomes as

follows:

f 01
f 02

..

.

f 0N

0BBBBB@

1CCCCCA ¼
d11 d12 � � � d1N

d21 d22 � � � d2N

..

. ..
. ..

.

dN1 dN2 � � � dNN

0BBBBB@

1CCCCCA
f1

f2

..

.

fN

0BBBBB@

1CCCCCA; (A3)

where the element

dij ¼
d/i xð Þ

dx

				
x¼xj

; i; j ¼; 1; 2;…;N: (A4)

Since the node xj in Eq. (A4) was the collocation point

defined by Eq. (12), then the matrix formed by dij can be

determined for the given N, which was the differential

matrix denoted as D, indicating the relation between the

function and derivative values. Moreover, the element dij

can be explicitly expressed as follows:
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d11 ¼
2 N � 1ð Þ2 þ 1

6
; (A5)

dNN ¼ �
2 N � 1ð Þ2 þ 1

6
; (A6)

dii ¼
�xi

2 1� x2
i

� � ; i ¼ 2; 3;…;N � 1; (A7)

dij ¼
ei

ej

�1ð Þiþj

xi � xj
; i; j ¼ 1; 2;…;N; i 6¼ j; (A8)

where the parameter

ei ¼
2; and i ¼ 1;N;
1; and i ¼ 2; 3;…;N � 1:



(A9)

APPENDIX B: CONSTRUCTION AND STRUCTURE OF
DISCRETIZED DISPLACEMENT AND STRESS MATRIX

According to the constitutive relation (Achenbach,

1975), the relationships between the displacement

components and displacement potentials are given by the

following:

ux
i ¼ jkUi þ

d

dz
Wi; (B1)

uz
i ¼

d

dz
Ui � jkWi: (B2)

The relationships between the stress components and

the displacement potentials are as follows:

rzz
i ¼ ki þ 2lið Þ d2

dz2
� kik

2

� �
Ui � 2jkli

d

dz
Wi; (B3)

rxz
i ¼ 2jkli

d

dz
Ui þ li

d2

dz2
þ k2

� �
Wi: (B4)

By discretizing Eqs. (B1) and (B2) at the corresponding

collocation points and replacing the derivative operations

with differential matrices, the discretized displacement

matrix is obtained as follows:

bux
1

uz
1bux
2

uz
2bux
3

uz
3bux
4

uz
4

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
¼

�k2I1 D1 0 0 0 0

D1 �I1 0 0 0 0

0 0 �k2I2 0 0 0

0 0 D2 0 0 0

0 0 0 �k2I3 0 0

0 0 0 D3 0 0

0 0 0 0 �k2I4 D4

0 0 0 0 D4 �I4

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA

U1bW1

U2

U3

U4bW4

0BBBBBBBBBB@

1CCCCCCCCCCA
; (B5)

where bux
i ¼ jkux

i and bWi ¼ jkWi are adopted for notational convenience. The first matrix on the right-hand side of Eq. (B5)
is denoted by U. Similarly, by discretizing Eqs. (B3) and (B4), the following is obtained for the stress components:

rzz
1brxz
1

rzz
2

rzz
3

rzz
4brxz
4

0BBBBBBBBBB@

1CCCCCCCCCCA
¼ l1

S11 S12 0 0 0 0

S21 S22 0 0 0 0

0 0 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 S56

0 0 0 0 S65 S66

0BBBBBBBBBB@

1CCCCCCCCCCA

U1bW1

U2

U3

U4bW4

0BBBBBBBBBB@

1CCCCCCCCCCA
; (B6)

where brxz
i ¼ jkrxz

i . The first matrix on the right-hand side of

Eq. (B6) is denoted by S, with its elements defined as

follows:

S11 ¼
k1 þ 2l1ð Þ

l1

D2
1 �

k1

l1

k2I1; (B7)

S12 ¼ �2D1; (B8)

S21 ¼ �2k2D1; (B9)

S22 ¼ D2
1 þ k2I1; (B10)

S33 ¼
k2

l1

D2
2 � k2I2

� �
; (B11)
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S44 ¼
k3

l1

D2
3 � k2I3

� �
; (B12)

S55 ¼
k4 þ 2l4ð Þ

l1

D2
4 �

k4

l1

k2I4; (B13)

S56 ¼ �2D4; (B14)

S65 ¼ �2k2D4; (B15)

S66 ¼ D2
4 þ k2I4: (B16)

It should be noted that the second Lam�e constant l1 is

used for normalization to improve numerical stability.

APPENDIX C: REGULARITY OF EMBEDDING
BOUNDARY CONDITIONS INTO OPERATOR

The sizes of the discretized displacement and stress

matrices were 2N1 þ 2N2 þ 2N3 þ 2N4ð Þ � 2N1 þ N2 þ N3ð
þ2N4Þ and 2N1 þ N2 þ N3 þ 2N4ð Þ � 2N1 þ N2 þ N3ð
þ2N4Þ, respectively. The size of the matrix operator L in

Eq. (19) was 2N1 þ N2 þ N3 þ 2N4ð Þ � 2N1 þ N2 þ N3ð
þ2N4Þ. To embed the boundary conditions from Eqs.

(7)–(11), the embedding regularities are provided in Table I.

At the same time, the rows of matrix M in Eq. (19) cor-

responding to the row indices of operator L must be set to

zero to satisfy the homogeneous boundary conditions.
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