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Abstract

Understanding the ocean’s capacity potential to store dissolved organic carbon (DOC) is essential for
predicting its role in long-term carbon sequestration and climate regulation. This capacity hinges on the behav-
ior of DOC at elevated concentrations, a critical yet unresolved question that has produced mixed results due to
narrow concentration ranges tested previously and limited molecular insights. This study addresses these gaps
by investigating microbial degradation of DOC across a broad concentration range (2- to 55-fold) in year-long
bioassay experiments using solid-phase extracted DOC (SPE-DOC) from 2000-m-deep waters. Specific SPE-DOC
compounds (combined amino acids) were analyzed to provide a molecular-level understanding of DOC reactiv-
ity at varying concentrations. Our results show that microbial communities rapidly proliferated and became
more uniform following SPE-DOC amendments, with Nitrosococcales, Flavobacteriales, and Alteromonadales domi-
nating. Despite these shifts, microbial utilization of SPE-DOC was constrained, exhibiting a nonlinear relation-
ship with concentration, from < 3% in the control to a maximum of 9% in DOC-enriched groups. Degradation
was predominantly confined to the initial 28 d, with negligible additional removal (0-2%) thereafter.
Compound-specific analysis showed only moderate utilization (7-11%) of amino acid compounds within the
first 3 d, indicating restricted microbial access even when these individual compounds were concentrated. These
results indicate that a fraction of deep-sea DOC molecules can persist for long at elevated concentrations. Our
study demonstrates the ocean’s substantial potential for DOC storage and suggests that modern ocean is capable
of accommodating a larger DOC reservoir than is currently present.

Earth’s oceans hold a vast reservoir of dissolved organic car-
bon (DOC) comparable in magnitude to the atmospheric CO,
inventory, playing a crucial role in the global carbon cycle and
the regulation of atmospheric CO, levels (Hedges 2002; Hansell
et al. 2009; Ridgwell and Arndt 2015). Despite this importance,
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the capacity of the ocean to store DOC, defined here as the
maximum limit or potential of the ocean to accommodate
DOC over long timescales, remains an unresolved question of
critical significance. Paleoceanographic evidence derived from
isotopic records in marine sediment cores reveals that during
the Neoproterozoic period (1000-540 million years ago), the
DOC reservoir in the ocean was up to 1000 times greater than
it is today (Rothman et al. 2003; Ridgwell and Arndt 2015;
Mitchell et al. 2023). These records suggest that the ancient
ocean had an exceptional ability to store DOC, raising the ques-
tion of whether the modern ocean could similarly possess the
potential to accommodate an expanded DOC reservoir under
suitable conditions. However, contemporary measurements of
DOC concentrations, constrained to observational periods
spanning only a few decades, are insufficient to assess the
ocean’s long-term DOC storage potential (Hansell 2002; Wag-
ner et al. 2020; Baltar et al. 2021).
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One approach to addressing this question involves bioas-
say experiments that test microbial utilization of DOC at
elevated concentrations (e.g., Barber 1968; Arrieta
et al. 2015a; Shen and Benner 2018). However, previous
studies have wused variable experimental conditions
(e.g., different concentration factors or/and incubation
durations), leading to inconsistent results (Barber 1968;
Arrieta et al. 2015a; Jiao et al. 2015; Shen and Benner 2018;
Bercovici et al. 2021; Zheng et al. 2022). For example, stud-
ies using a single concentration factor have shown that
deep-sea DOC concentrated up to 10-fold remained largely
resistant to microbial degradation during months-long
incubations (Barber 1968; Shen and Benner 2018; Zheng
et al. 2022). In contrast, experiments utilizing concentra-
tion gradients have suggested that deep-sea DOC at elevated
concentrations (ranging from 2- to 19-fold) could undergo
microbial degradation within weeks (Arrieta et al. 2015a;
Jiao et al. 2015; Bercovici et al. 2021). The extent of degra-
dation in these studies was relatively low (< 6%) and did
not consistently increase with concentration factors. This
low degradation was attributed to the short incubation
duration used (Arrieta et al. 2015b), although the effects of
longer incubation periods on DOC utilization might be lim-
ited (Zheng et al. 2022).

These inconsistencies point to a potential nonlinear
microbial response to DOC concentration. Marine DOC is a
complex mixture of molecules with highly variable reactiv-
ities (Hertkorn et al. 2013; Benner and Amon 2015). The
divergent outcomes of previous studies likely reflect the
intricate interplay between microbial utilization and the
chemical diversity of DOC. The fates of DOC molecules at
elevated concentrations, particularly those with potential
bioactivity (e.g., amino acids), remain largely unknown.
The limited compositional data, narrow concentration
ranges tested, and variable incubation durations in prior
work have left some aspects of DOC behavior at elevated
concentrations not fully clarified.

In this study, we aim to address these uncertainties and
explore the ocean’s DOC storage capacity by investigating
the microbial response and degradation of DOC and its
potentially bioactive components (amino acids) across a
broad range of concentration factors up to 55-fold DOC.
DOC was isolated and concentrated using solid-phase
extraction (SPE) from the deep ocean (2000 m), then
exposed to a natural microbial community collected at the
same depth over a 1-yr period. Changes in microbial abun-
dance, microbial community composition, DOC, and a
series of hydrolysable amino acid compounds were moni-
tored during the incubation. Our results indicate a
nonlinear microbial response to concentrated SPE-DOC,
revealing an upper limit of SPE-DOC degradation regardless
of concentration. These findings suggest that the modern
ocean has a significant potential for additional DOC
storage.

Deep-sea organic carbon persists at high levels

Materials and methods

Sample collection

Seawater samples used in this study were collected in the
South China Sea onboard the R/V Tan Kah Kee in October
2022 (Supporting Information Fig. S1). A total of 1100 L of
seawater was collected at a depth of 2000 m using Niskin bot-
tles mounted on a CTD rosette sampler. Seawaters were dra-
ined directly into acid-cleaned polypropylene carboys and
stored at 4°C until DOC extraction. An additional 10 L of sea-
water was collected from the same depth and filtered through
a pre-combusted (450°C, 4.5 h) 0.7-um GF/F filter for biodegra-
dation experiments.

Solid-phase extraction of deep-sea dissolved organic
carbon

Deep-sea DOC was extracted onboard using a solid-phase
extraction technique within 48 h of collection. Seawater sam-
ples were acidified to pH 2-3 using 6 mol L™ H,S0,. The acid-
ified samples were passed through C-18 cartridges (Agilent
Bond Elut, 5 g) at a flow rate of 30 mL min~', with approxi-
mately 15 L of seawater processed per cartridge. The cartridge
was pre-conditioned with methanol and H,SOj4-acidified
Milli-Q water prior to sample loading. After extraction, the
cartridge was rinsed with H,SO4-acidified Milli-Q water to
remove salts and then stored at 4°C until use. The extracted
DOC was eluted from each cartridge with 40 mL of methanol,
dried under a stream of N, gas, redissolved in 200 mL of
Milli-Q water, and filtered through a pre-combusted 0.7-ym
GEF/F filter. The C-18 extraction recovered 18% of bulk DOC
and 12% of total hydrolysable amino acids, respectively.

Bioassay experiments

Bioassay experiments were conducted to evaluate microbial
utilization of DOC at varying concentrations. Dissolved
organic carbon extracted at 2000 m was added at ambient, 2-,
4-, 8-, 38-, and 55-fold concentrations to microbial inocula
that were collected at the same depth. The experiments were
performed in pre-combusted (450°C, 4.5 h) 1 L glass bottles in
triplicate, maintained at 4°C, under atmospheric pressure, and
in the dark for 365 d.

Subsamples were taken from each bottle on days O, 3,
7, 14, 28, 60, 120, 180, 240, and 365 to determine prokary-
otic abundance, DOC concentration, and dissolved organic
matter composition (combined amino acids). Samples for
prokaryotic abundance were fixed with glutaraldehyde
(0.5% final concentration) for 15 min in the dark, flash-
frozen in liquid nitrogen, and stored at —80°C until analy-
sis. To gain further insights into the microbial community
dynamics, additional water samples were collected from the
8-, 38-, and 55-fold DOC treatments on day O and on days
60, 120, 180, 240, and 365 for analysis of microbial commu-
nity composition. Samples collected after day 60 were com-
bined to ensure sufficient material for the analysis. All
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microbial community samples were filtered using 0.2-um
pore size polycarbonate filters (Millipore, USA). The filters
were flash-frozen in liquid nitrogen and kept at —80°C until
DNA extraction. DOC and amino acids samples were stored
at —20°C until analysis.

Analysis of prokaryotic abundance and microbial
community composition

Prokaryotic abundance was measured using a flow cytometer
(BD Accuri C6). Samples were stained with the fluorescent dye
SYBR Green I (Invitrogen) for 15 min in the dark prior to analysis
(Marie et al. 1997). Prokaryotes were identified on the two-
parameter dot-plot of green fluorescence against sideward scatter.

Microbial community composition was determined by 16S
ribosomal RNA (rRNA) gene sequencing. The total DNA of
microorganisms collected on polycarbonate membranes was
extracted using HiPure Soil DNA Kits (Magen, China) according
to the manufacturer’s protocols. The V4-V5 region of microbial
16S rRNA gene was amplified with bacterial/archaeal primers
515F 5-GTGYCAGCMGCCGCGGTAA-3' and 926R §5'-
CCGYCAATTYMTTTRAGTTT-3' (Parada et al. 2016). The
amplified products were sequenced using the Illumina MiSeq
platform (Illumina, USA). Sequencing data were quality-filtered
using R package DADA2, denoised, and chimera-checked
to obtain amplicon sequence variants (ASVs) (Callahan
et al. 2016).

Analysis of dissolved organic carbon and amino acids

DOC concentrations were measured by high-temperature
catalytic oxidation method using a Shimadzu Total Organic
Carbon analyzer (TOC L-CPN). Samples were thawed at room
temperature and acidified to pH2-3 with 2molL’
hydrochloric acid prior to injection. Hydrochloric acid-
acidified Milli-Q waters and deep-sea DOC reference materials
(collected from the Northwestern Pacific Ocean at a depth of
4000 m) were analyzed along with seawater samples to check
the instrumental blanks and performance (Benner and
Strom 1993). The blanks were negligible and the coefficient of
variation of all measured references was 3% (& 1.3 umol C
LY, n=21).

Concentrations of total hydrolysable amino acids (THAA)
were determined using an ultrahigh performance liquid chro-
matography instrument (Agilent 1260) equipped with a fluo-
rescence detector (Shen et al. 2017). Water samples were
hydrolyzed and derivatized following protocols described pre-
viously (Kaiser and Benner 2005). Briefly, 100 uL of water sam-
ple was transferred into a pre-combusted 400 yL micro insert
and dried under N,. Dried samples were acid-hydrolyzed at
150°C for 32.5 min using a vapor-phase hydrolysis method in
a CEM microwave digestion system. A total of 16 amino acids
were derivatized with a reagent mixture of o-phthaldialdehyde
and N-isobutyryl-i-cysteine, followed by separation on an
Agilent Poroshell 120 EC-C18 column. The following individ-
ual amino acids were quantified in the analysis: asparagine

Deep-sea organic carbon persists at high levels

+ aspartic acid (Asx), glutamine + glutamic acid (Glx), serine
(Ser), histidine (His), glycine (Gly), threonine (Thr), p-alanine
(p-Ala), arginine (Arg), alanine (Ala), y-aminobutyric acid
(y-Aba), tyrosine (Tyr), valine (Val), phenylalanine (Phe), iso-
leucine (Ileu), leucine (Leu), and lysine (Lys). The performance
of the analysis was monitored throughout sample measure-
ments by injecting reference materials (0.2-ym filtered seawa-
ter collected at 100 m in the South China Sea) that were
hydrolyzed in the same way as samples. The relative standard
deviation of reference materials was 6%.

Parameter calculation and statistical analysis

Prokaryotic specific growth rates were calculated as the
slope of the natural logarithm of prokaryotic abundance
against time (Baranyi and Pin 1999) (Eq. 1):

In N;—In N;
specific growth rate (d’1> = %

(1)
where N; and N; are the cell numbers on days i and j, respec-
tively, and At is the time interval between days i and j.

DOC removal percentage was calculated as the difference
in DOC concentration between the initial and final time
points, divided by the initial DOC concentration (Eq. 2):

DOCinitial -D OCfinal

DOCremoval (%) = DOC
initial

x100%  (2)

where DOC;,jtia1 and DOCgp, are the DOC concentrations at
the initial and final time points of incubation, respectively.

The relationship between DOC removal percentage and ini-
tial DOC concentration was fitted using a Michaelis—-Menten-
like function (Eq. 3):

Vmax X DOCO

DOCremoval (%) = K. +DOC
m 0

3)

where V.« is the maximum DOC removal percentage, K, is
the apparent half-saturation constant (DOC concentration
value when the DOC removal is half of V,,), and DOC, is
the initial DOC concentration on day O.

All statistical analyses, including non-linear regression anal-
ysis, correlation analysis (Pearson correlation or Spearman cor-
relation for variables that were normally or not normally
distributed, respectively), principal coordinates analysis
(PCoA), and statistic differences (Mann-Whitney U test,
a = 0.05), were carried out using R software.

Results

Microbial response to elevated concentrations of deep-sea
dissolved organic carbon

Prokaryotic abundance in the original deep-sea waters was
1.2+ 0.1 x 10* cells mL™' and showed minimal changes
throughout the incubation period in the control group
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(Fig. 1). The addition of concentrated SPE-DOC led to a rapid
increase in prokaryotic abundance during the first 14 d across
all treatments, followed by a slow and minor decline in cell
numbers during the rest of the incubations (Fig. 1). The
sustained high prokaryotic abundance during the mid-late
phases of the incubations was likely attributable to a combina-
tion of reduced grazing pressure (due to large removal of
grazers by 0.7-um filtration) and a minor contribution from
chemoautotrophic production (discussed below). Maximum
prokaryotic abundances observed in the control (i.e., ambient
bulk DOC concentration) and the treatments (2-, 4-, 8-, 38-,
and 55-fold DOC concentrations) were 0.1 x 10%, 0.5 x 10°,
0.8 x 10°, 1.0 x 10° 3.1 x 10°, and 4.5 x 10° cells mL™",
respectively.

Microbial community structures were analyzed in selected
treatment groups with notable increases in prokaryotic abun-
dance following SPE-DOC additions (8-, 38-, and 55-fold con-
centrations) (Fig. 2). At the start of incubation, the microbial
community was dominated by two bacterial groups
(Oceanospirillales and Alteromonadales) and an archaeal group
(Nitrosopumilales) (Fig. 2). By days 60-365, the relative abun-
dance of these initially dominant groups declined, while the pre-
viously rare bacterial groups such as Nitrosococcales,
Flavobacteriales, and Rhodobacterales increased, leading to a more
uniform microbial community composition (Fig. 2). During this
period, the five dominant prokaryotic groups were
Nitrosococcales, Flavobacteriales, Alteromonadales, Oceanospirillales,
and Rhodobacterales, which together accounted for 87-95% of
the total microbial community. Principal coordinates analysis
(PCoA) of microbial community composition revealed a broadly
similar community structure across DOC-amended groups, with
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Fig. 1. Changes in prokaryotic abundance during the 365-d incubations
with deep-sea DOC at original DOC concentrations (control) and at 2-,
4-, 8-, 38-, 55-fold DOC concentrations. Error bars represent one standard
deviation of triplicate.
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an exception of the 8-fold DOC group (Supporting Information
Fig. S2).

Several prokaryotic taxa with chemoautotrophic ability
(e.g., ammonium-oxidation, sulfur-oxidation) were identified
during the bioassay experiments (Supporting Information
Table S1). At the start of the incubation, chemoautotrophic
archaea Nitrosopumilales, Woesearchaeales, and Thermoplasmata
constituted 13%, 0.25%, 0.20% of the microbial community,
respectively. Chemoautotrophic bacteria, such as ammonium-
oxidizing Nitrosococcales and sulfur-oxidizing Rhodospirillales and
Burkholderiales, collectively accounted for 2% of the initial micro-
bial community. By days 60-365, the relative abundance of che-
moautotrophic archaea Nitrosopumilales, Woesearchaeales, and
Thermoplasmata had decreased to 0.03-0.16%, 0.0%, and 0.0%,
respectively. In contrast, the relative abundance of bacterial taxa
increased, with Nitrosococcales comprising 18-45%, Rhodo-
spirillales 1-3%, and Burkholderiales 0.04-0.70% of the total
microbial community (Supporting Information Table S1).

Microbial degradation of dissolved organic carbon at
increasing concentrations

The concentration of DOC in the control group with original
deep-sea water was relatively low (43 yumol L") and showed
only a minor decrease (~ 1 umol L") over the 365-d incubations
(Fig. 3). The addition of concentrated SPE-DOC to the amended
groups increased the initial concentrations of DOC by a factor of
2- (78 umol L™Y), 4- (160 ymol L), 8- (347 umolL7Y), 38-
(1605 ymol L), and 55-fold (2323 umol L™1), respectively.
Removal of DOC was observed in all amended groups, with the
majority of the removal occurring during the first 28 d (Fig. 3).
The total removal of DOC concentrations over the course of 1-yr
incubation in the amended groups (2-, 4-, 8-, 38-, and 55-fold
concentration) was 5, 13, 23, 137, and 220 umol L7},
respectively.

The percentage removal (%) of DOC was calculated to eval-
uate the extent of DOC degradation and its relationship with
concentration factors (Fig. 4). The total percentage removal of
DOC ranged from 2.7% £ 0.3% in the control, to 5.5% +
1.3%, 7.4% £ 0.8%, 6.4% + 0.2%, 8.5% =+ 0.7%, and 9.4% +
1.2% in the 2-, 4-, 8-, 38-, and 55-fold DOC groups. Despite
these removals, over 90% of the concentrated DOC remained
resistant to microbial utilization regardless of the DOC con-
centration factor. The percentage removal of DOC showed a
nonlinear relationship with initial DOC concentration, show-
ing an increase at lower concentrations (< 8-fold DOC;
Pearson’s r = 0.6, p < 0.05) and leveling off at higher concen-
trations (38- and 55-fold DOC; Mann-Whitney U test,
p >0.1). The relationship between percentage removal of DOC
and initial DOC concentration was best described by a
Michaelis-Menten-like function (Fig. 4). This function predicts
a maximum DOC removal of 9.1% at higher concentrations.

Considering the observed varying DOC degradation and
prokaryotic growth over time (Figs. 1, 3), the incubation
period was further divided into two stages: days 0-28 (early

85UB01 7 SUOLUWIOD aA 11810 3|qeoljdde ay) Aq pausenob ae Sapiie O ‘8sn JO SaINJ 10} Aeiq1 8UIUO /8|1 UO (SUOTHPUOD-PUR-SLLIBI WD A8 |IMAkeq Ul |Uo//ScIY) SUORIPUOD pUe SWie 1 8y} 88S *[5202/20/2T] Uo Ariqi1auluo /8|1 * AISIBAIUN UsWRIX - UBuS Uen A AQ 0000 OU|/Z00T 0T/I0p/ioo 8] im Arelqijeuljuo'sqndo se//:sdny Woiy pepeojumoqd ‘0 ‘06556E6T



Liu et al.

Deep-sea organic carbon persists at high levels

day 0

100

g

[0}

o

c

©

2

> 50

Qo

@©

o

=

©

]

& 25
0

Initial-R1
Initial-R2
DOCx8-R1
DOCx8-R2
DOCx8-R3
DOCx38-R1

days 60-365

DOCx38-R2

Order
H Others

[ Rhodospirillales
Nitrosopumilales
Rhizobiales
SAR11_clade
Caulobacterales
Alteromonadales
Flavobacteriales

[ |

[ ]

B Nitrosococcales
B Oceanospirillales
[ ]

Rhodobacterales

DOCx38-R3
DOCx55-R1
DOCx55-R2
DOCx55-R3

Fig. 2. Changes in microbial community composition from day 0 to days 60-365 in the 8-, 38-, and 55-fold DOC groups, depicted at the order level.

The horizontal axis label represents the replicate groups (R1, R2, and R3).

phase) and days 28-365 (mid-late phase). Percentage
removal of DOC and specific growth rate of prokaryotes
were calculated and compared between these two stages
(Fig. 5). During the early phase (days 0-28), DOC removal
(%) varied from 2.7% in the control to a maximum of 7.8%
in the treatments, with the highest removal rate reaching
6.0 umol C L~'d™! (Fig. 5a). This phase accounted for most
of the total DOC removal observed over the year in all
groups. The specific growth rates of microorganisms during
the early phase mirrored the pattern of DOC removal,
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Fig. 3. Changes in DOC concentrations during the 365-d incubations.
Data are reported as the mean =+ standard deviation of triplicate experi-
ments. Error bars are not visible as their sizes are smaller than the
symbols.

peaking at about 0.20 d~! in the highest DOC amendment
(Fig. 5¢). In the mid-late phase (days 28-365), the percent-
age of DOC removal (0-2.2%) and DOC removal rate
(< 0.1 umol C L~'d™ ") in all groups were significantly lower
than those in the early phase (Mann-Whitney U test,
p < 0.05) and showed no clear pattern with DOC concentra-
tion factors (Spearman’s p = 0.34, p > 0.1, Fig. 5b). The spe-
cific growth rates during this phase approximated zero and
did not vary with DOC concentrations (Fig. 5d).
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Fig. 4. Percentage removal (%) of DOC during the 365-d incubations
with original (control) and 2-, 4-, 8-, 38-, and 55-fold DOC concentra-
tions. Data were fitted using a Michaelis—-Menten-like function, as
described by the equation in the figure. Data are reported as the mean
and standard deviation of triplicate experiments.
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Fig. 5. DOC removal percentages (a, b) and specific growth rates (¢, d) during days 0-28 and days 28-365 of the incubations for different DOC con-

centrations. Error bars represent one standard deviation of triplicate.

Changes in dissolved organic matter composition

The concentration of THAA in the control group was rela-
tively low, with an initial concentration of 94 nmol L', rep-
resenting 0.8% of the bulk DOC. The addition of SPE-DOC to
the amended groups increased the initial THAA concentrations
to 178 nmol L', 328 nmol L', 615 nmol L™!, 2986 nmol L™!
and 4015nmolL™! in the 2-, 4, 8-, 38-, and 55-fold DOC
groups, respectively (Fig. 6). These concentrations corresponded
to 0.6-0.8% of the SPE-DOC. Notable removal of THAA was
observed across all groups but only within the first 3 d, with
losses ranging from 8 to 330 nmol L' (7-11% of the initial
THAA). The extent of this decrease, however, was not signifi-
cantly correlated with the initial THAA concentrations
(Spearman’s p = —0.26, p > 0.1; Supporting Information Fig. S3).
Following this initial decrease, THAA concentrations increased
between days 3 and 14, with increments ranging from 14 to
654 nmol L™, After day 14, THAA levels plateaued and remained
stable for the remainder of the 365-d incubations (Fig. 6). By the
end of the incubation, the final concentrations of THAA in
DOC-amended groups were either comparable or higher than
their initial values (Fig. 6).
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Fig. 6. Changes in total hydrolysable amino acids (THAA) concentrations
during the 365-d incubations. Error bars denote one standard deviation
of triplicate.
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The composition of THAA was dominated by Asx, GIx, Gly,
and Ala across all experimental groups, collectively accounting
for 63-67% of THAA (Fig. 7). The amino acid composition
remained relatively stable throughout the incubation period
and across all groups (Fig. 7). While individual amino acids
exhibited some variability, no consistent patterns of degrada-
tion were observed during the 365-d incubations (Supporting
Information Fig. $4).

Discussion

Limited microbial degradation of concentrated deep-sea
dissolved organic carbon

Evaluating the fate of marine DOC at increasing concentra-
tions provides valuable insights into the ocean’s capacity for
carbon storage (e.g., Barber 1968; Arrieta et al. 2015a; Zheng
et al. 2022). In this study, ‘capacity’ is referred to as the theo-
retical potential of the ocean to store DOC, rather than the
actual change in DOC reservoir size. Previous bioassay experi-
ments examining microbial degradation of concentrated DOC
have reported mixed results (Barber 1968; Arrieta et al. 2015a,
2015b; Jiao et al. 2015; Shen and Benner 2018; Bercovici
et al. 2021). These inconsistencies arise partially from the lim-
ited range of concentration factors tested (2-19 folds) and/or
the short duration (weeks) of the experiments (e.g., Arrieta
et al. 2015b; Jiao et al. 2015). In this study, we tested a total of
6 concentration factors (up to 55-fold) and extended the dura-
tion of the experiments to over a year with multiple sampling
points to address these limitations. Our results showed that
the extent of DOC degradation did not linearly increase with
initial DOC concentrations, peaking at a maximum removal

Deep-sea organic carbon persists at high levels

of 9.1% at higher concentration factors. Additionally, most
DOC degradation occurred within the first 28 d, with only
marginal increases in degradation (an additional 0-2%)
observed over the extended period. These new results suggest
that microbial degradation of deep-sea DOC is limited, even
under scenarios of increasing concentrations and extended
degradation durations.

The monitoring of multiple time points throughout the
1-yr incubations reveals the presence of different DOC
pools with varying levels of bioreactivity: labile, semi-
labile, and refractory (Hansell 2013). A small fraction (4-
8%) of the concentrated DOC was rapidly utilized (up to
6.0 yumol C L™' d~') within the first 28 d. DOC with a turn-
over time of days to weeks is generally considered labile
(Ogura 1972; Carlson and Hansell 2015). The observed
labile DOC after concentration may consist of labile mole-
cules present in the original seawater DOC and concen-
trated during extraction, or other molecules that were too
diluted to be utilized and became bioavailable after enrich-
ment (Arrieta et al. 2015a). While both sources could con-
tribute to the labile DOC observed, the former appears to
be the primary contributor. Increasing the bulk DOC con-
centrations from 2- to 55-fold did not result in a coherent
increase in the percentage of labile DOC, which would be
expected if dilution were the limiting factor (Jiao
et al. 2015). Consistent with the above assertation, the
original deep-sea DOC used in this study was found to con-
tain a small fraction (1 umol C L™! or 2.7%) of labile DOC
(Fig. 4). Regardless, the relatively low abundance of labile
DOC observed in all amended groups was sufficient to sup-
port rapid prokaryotic growth (Fig. 1).

DOCx2 DOCx4

Control

50 —

Amino acids (mol%)

0 365 0 60 0
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Fig. 7. Changes in composition of total hydrolysable amino acids at the start and end of the incubations. Each colored bar represents the average mole
percentage of individual amino acids from triplicate samples. Abbreviations: asparagine + aspartic acid (Asx), glutamine + glutamic acid (Glx), serine
(Ser), histidine (His), glycine (Gly), threonine (Thr), p-alanine (B-Ala), arginine (Arg), alanine (Ala), y-aminobutyric acid (y-Aba), tyrosine (Tyr), valine (Val),

phenylalanine (Phe), isoleucine (lleu), leucine (Leu), and lysine (Lys).
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An additional but very minor (0-2%) removal of concentrated
DOC was observed from days 28 through the rest of the 1-yr
incubations. DOC utilized on a timescale of months to years is
considered semi-labile (Carlson and Hansell 2015). In contrast to
labile DOC, the semi-labile DOC was detected at much lower
concentrations with significantly slower removal rates
(<0.1 ymol C L7!' d'). During this phase, specific microbial
growth rates declined to nearly zero, suggesting that the slowly
degraded semi-labile DOC was primarily used to maintain pro-
karyotic metabolic demands rather than growth. Potential
sources of this fraction include original seawater DOC, bacterial
transformation on the pre-existing labile DOC (Ogawa
et al. 2001; Lechtenfeld et al. 2015), or minor chemoautotrophic
production (Bayer et al. 2019). Several chemoautotrophic archaea
and bacterial groups (e.g., ammonium-oxidizing Nitrosopumilales
and Nitrosococcales) were detected between days 60-365 in the
experiments (Supporting Information Table S1). Regardless, the
minor additional removal of concentrated SPE-DOC over
extended periods suggests that prolonging incubation does not
lead to substantial further degradation of DOC. This experimen-
tal observation contrasts with a previous study that used a simu-
lation approach to predict a linearly increasing removal (up to
60%) of concentrated DOC when extending the experiment
from 40 d to 1 yr (Arrieta et al. 2015b). Our results illustrate the
complexity of DOC reactivity that cannot be fully captured by
DOC concentration or incubation duration alone.

Refractory DOC, operationally defined as DOC that resists
microbial degradation over the course of incubation, com-
prised over 90% of the concentrated SPE-DOC in all amended
groups. The relationship between DOC removal percentage
and initial DOC concentration was found to be best described
by a Michaelis-Menten-like function (Fig. 4). This function
suggests that no additional DOC removal would occur even
with further increases in concentration. These findings indi-
cate limited microbial degradation of concentrated DOC in
the deep ocean. The consistent predominance of refractory
DOC across varying concentration levels supports previous
experimental and modeling observations indicating that
molecular properties primarily control the microbial utiliza-
tion of DOC in the ocean (Shen and Benner 2020; Zakem
et al. 2021; Zheng et al. 2022).

The responses of microbial community to elevated DOC
concentrations provide new insights about the influence of
microbial community structure on DOC utilization. Our results
indicate that while the amendment of concentrated SPE-DOC
induced a compositional shift in the microbial community, the
overall microbial community composition remained similar
across treatments with different DOC concentrations (Fig. 2). It
has been shown that different substrates could lead to distinct
microbial communities (Nelson and Carlson 2012; Lian
et al. 2021; Xu et al. 2022). As a consequence, the observed
microbial similarity across our study groups suggests that the
DOC being degraded by these microbial assemblages at varying
concentrations shared similar molecular properties.

Deep-sea organic carbon persists at high levels

Several bacterial groups dominant in our experiments (e.g.,
Flavobacteriales, Alteromonadales, and Rhodobacterales) are
known for their specialization in degrading different compo-
nents of DOC (Buchan et al. 2014; Ferrer-Gonzalez et al. 2021;
Xu et al. 2022). Despite this specialization, the extent of DOC
degradation was found to reach a maximum of 9.1%,
suggesting a constrained metabolic capacity within the micro-
bial community under the conditions of these bioassay experi-
ments. Our experiments were conducted under depressurized
conditions. This may have enhanced the activity of some
piezo-sensitive prokaryotes (e.g., Flavobacteriales, one of the
dominant prokaryotes in our DOC-amended groups), com-
pared to in situ conditions with high hydrostatic pressure
(Amano et al. 2022). As such, the observed extent of DOC deg-
radation might be overestimated to some extent. The limited
ability to degrade the remaining refractory DOC fractions
implies that the deep-sea microbial communities residing in a
single location may not have the full metabolic repertoire
required to process the diverse molecules that comprise the
bulk of deep-sea DOC (Sala et al. 2020; Zakem et al. 2021).
Degrading the remaining fractions of DOC likely necessitates
a more diverse array of environmental conditions and micro-
bial taxa (Shen and Benner 2018), which may not be ade-
quately represented in the current experiment setup. These
observations highlight the complexity of DOC degradation in
the deep ocean and suggest that a broader range of environ-
mental factors and microbial diversity are essential for the
complete processing of deep-sea DOC.

Compositional insight into the persistence of concentrated
deep-sea dissolved organic carbon

Hydrolysable amino acids, typically considered more bio-
available than bulk DOC (Amon et al. 2001; Davis and
Benner 2007; Davis et al. 2009), were analyzed to evaluate the
degradation of DOC molecules at varying concentrations. Our
compositional analysis showed that SPE-DOC extracted from
the deep ocean was depleted in hydrolysable combined amino
acids, comprising only 0.6-0.8% of the SPE-DOC. Amino acids
are abundant in freshly plankton-derived organic matter
(>20% of the DOC) and become rapidly depleted as the
organic matter degrades (Amon et al. 2001; Cherrier and
Bauer 2004; Shen et al. 2016). The remarkably low relative
abundance of amino acids in the extracted deep-sea SPE-DOC
suggests its extensive degradation state.

In DOC-amended groups, THAA exhibited moderate degra-
dation (7-11% of the initial THAA) only during the first 3 d of
incubation, followed by an increase at comparable levels
between days 3-14, and then a long-term plateau during the
remainder of the incubation (Fig. 6). The unexpectedly short
period of amino acid removal contrasts with the continuous
degradation of bulk DOC observed during the first 28 d,
suggesting that labile DOC utilized in the early stage consists
of compounds other than amino acids. Previous studies on
deep-sea DOC recovered via solid-phase extraction have
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identified minor fractions of carbohydrates and unsaturated
aliphatic compounds (Zheng et al. 2022), which are enriched
in surface waters with elevated chlorophyll levels and are
potentially bioavailable substrates (Medeiros et al. 2015; Li
et al. 2019).

The lack of substantial utilization of amino acids differs from
the conventional perception of amino acids as readily bioavail-
able compounds (Benner 2003; Carlson and Hansell 2015). The
extent of THAA removal during the first 3 d did not correlate
with their initial concentrations (Supporting Information
Fig. S3), suggesting that the utilization of amino acid compounds
was not solely limited by concentration. Hydrolysable amino
acids measured in this study occurred exclusively in combined
forms, potentially derived from structure-modified proteins or
non-proteinaceous materials that are largely resistant to micro-
bial degradation (Keil and Kirchman 1993; Ianiri et al. 2022).
This resistance associated with the composition and structure
may explain the limited microbial utilization observed.

A subsequent increase in THAA was observed between days
3-14, coinciding with rapid microbial growth. This pattern
reflects the temporary production of amino acid-containing
byproducts during the degradation of other DOC compounds.
Microbes supplied with labile organics can transform sub-
strates into various metabolites, including peptides (Ogawa
et al. 2001; Lechtenfeld et al. 2015). These metabolic
byproducts were found to be resistant to further microbial
degradation. The bioresistant nature of newly produced amino
acids was evidenced by the minimal removal observed after
day 14. By the end of the 1-yr incubations, the final concen-
trations of THAA were either similar to or higher than the ini-
tial values across all DOC-amended groups. Neither THAA nor
individual amino acids exhibited clear degradation or produc-
tion patterns in relation to concentration factors (Fig. 6;
Supporting Information Fig. S3). These molecular observations
provide new insights into the compositional factors that influ-
ence DOC reactivity, indicating that the persistence of DOC
compounds is largely dictated by their molecular properties
(Shen and Benner 2020). They also highlight the critical role
of molecular composition in shaping the long-term stability
and fate of organic carbon in marine environments.

Implications for understanding the storage capacity of
marine dissolved organic carbon

Understanding the ocean’s capacity for DOC storage has
been a longstanding challenge in marine and climate science,
primarily due to uncertainties surrounding the mechanisms
that drive DOC persistence. If DOC molecules become bio-
available at elevated concentrations (Arrieta et al. 2015a; Men-
tges et al. 2019), a dynamic balance between supply and
removal would establish a stable DOC pool size over extended
timescales. In contrast, if DOC molecules can persist at ele-
vated concentrations (Barber 1968; Shen and Benner 2018;
Bercovici et al. 2021), the ocean may possess great potential to
store additional organic carbon under favorable conditions.

Deep-sea organic carbon persists at high levels

Results of this study provide experimental evidence
supporting the latter scenario, revealing a considerable capac-
ity of the ocean for long-term DOC storage. Less than 10% of
the deep-sea SPE-DOC was degraded over the course of a year,
and neither increasing the concentrations nor extending incu-
bation periods led to significantly greater degradation. It is
important to point out that the solid-phase extraction method
used in this study recovered ~ 20% of the bulk deep-sea DOC.
It is uncertain whether the unextracted fraction would exhibit
similar persistence patterns as the extracted SPE-DOC. Future
research employing complementary sorbents or alternative
extraction techniques could further explore the behavior of
the unextracted DOC fraction. Despite these uncertainties, the
robust persistence observed in the extracted fraction suggests
that the marine DOC pool contains components capable of
resisting degradation at elevated concentrations over extended
periods. These results indicate that the modern ocean, much
like its ancient state, has the ability to accommodate substan-
tial quantities of DOC over prolonged timescales.

While the ocean’s potential for long-term DOC storage is con-
siderable, future changes in marine DOC reservoir size are
unclear. Key uncertainties include the effects of global warming
on marine primary production (Laufkoétter et al. 2015; Kwon
et al. 2022) and the associated production rate of refractory
DOC. The removal rate of refractory DOC is anticipated to
decline in response to the observed slowdown in overturning cir-
culation in the modern ocean (Shen and Benner 2018). If assum-
ing stable production rates of refractory DOC, reductions in its
degradation under altered circulation patterns would allow the
ocean to store larger quantities of DOC. A comprehensive under-
standing of the factors governing refractory DOC dynamics is
essential for accurately predicting how the marine carbon reser-
voir will respond to ongoing climate change.

In recent years, various strategies have been proposed to
enhance the ocean’s carbon sink (National Academies of Sciences,
Engineering and Medicine 2022; Zhang et al. 2022; Jiao
et al. 2023). These include minimizing the loss of refractory DOC
by reducing land-based chemical fertilization (Jiao et al. 2011) and
improving wastewater treatment technologies (Lv et al. 2022,
2024), as well as increasing the sequestration of refractory DOC
through large-scale seaweed farming (Krause-Jensen and
Duarte 2016; Zhang et al. 2017; Li et al. 2022) and implementing
techniques such as artificial upwelling and alkalinity enhance-
ment (Pan et al. 2015; Gomez-Letona et al. 2022; Jiao et al. 2023).
Our results suggest that the ocean would be able to store addi-
tional organic carbon introduced through these methods, poten-
tially enhancing its role as a long-term carbon sink.

Overall, the results of this study contribute to a more solid
understanding of the mechanisms behind DOC persistence
and highlight the significant storage potential of marine
DOC. These findings reinforce the critical role of marine DOC
in the global carbon cycle and its potential as a long-term car-
bon reservoir, with implications for climate regulation and
carbon sequestration strategies.
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