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1  |  INTRODUC TION

Red tides are a type of harmful algal bloom that redden seawater 
due to the rapid multiplication of phytoplankton including dino-
flagellates, diatoms, and cyanobacteria (Anderson, 2009). Toxins 

produced by red tides, even at relatively low cell densities, can 
cause illness and mortality in fish, seabirds, and marine mam-
mals (Hallegraeff, 2010). People can also be poisoned if they eat 
seafood contaminated by red tide toxins. Marine algal toxins are 
responsible for >60,000 human toxicity incidents worldwide per 
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Abstract
Blooms of microalgal red tides and macroalgae (e.g., green and golden tides caused by 
Ulva and Sargassum) have caused widespread problems around China in recent years, 
but there is uncertainty around what triggers these blooms and how they interact. 
Here, we use 30 years of monitoring data to help answer these questions, focusing 
on the four main species of microalgae Prorocentrum donghaiense, Karenia mikimotoi, 
Noctiluca scintillans, and Skeletonema costatum) associated with red tides in the region. 
The frequency of red tides increased from 1991 to 2003 and then decreased until 
2020, with S. costatum red tides exhibiting the highest rate of decrease. Green tides 
started to occur around China in 1999 and the frequency of green tides has since 
been on the increase. Golden tides were first reported to occur around China in 2012. 
The frequency of macroalgal blooms has a negative linear relationship with the fre-
quency and coverage of red tides around China, and a positive correlation with total 
nitrogen and phosphorus loads as well as with atmospheric CO2 and sea surface tem-
perature (SST). Increased outbreaks of macroalgal blooms are very likely due to wors-
ening levels of eutrophication, combined with rising CO2 and SST, which contribute to 
the reduced frequency of red tides. The increasing grazing rate of microzooplankton 
also results in the decline in areas affected by red tides. This study shows a clear shift 
of algal blooms from microalgae to macroalgae around China over the past 30 years 
driven by the combination of eutrophication, climate change, and grazing stress, indi-
cating a fundamental change in coastal systems in the region.
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year with a mortality rate of 1.5%, associated with the consump-
tion of contaminated seafood and exposure to aerosols of algal 
toxins (Bourne et  al., 2010). Economic losses in the hotel sector 
at the county level can reach 15% a month when red tides occur 
(Bechard, 2019). Therefore, red tides can be harmful to aquatic 
ecosystems, human health, and the economy. Meanwhile, red 
tides caused by nontoxic species can also lead to fish kills through 
oxygen deprivation in the water column as they decay (Xiao 
et al., 2019). Here we consider blooms as involving cell numbers 
above a given value, dependent on cell size, as defined in the 
Methods section (see below). Red tides have a long history, having 
been recorded in the fossil record, as well as being referenced in 
the Bible (Anderson, 1997). However, several decades ago red tide 
algal blooms were infrequent but nowadays wide areas of coastal 
waters are often impacted by several red tide toxic algal species 
(Gu et al., 2022; Wang et al., 2023). Reasons for this global expan-
sion of red tides include increased eutrophication, algal transport 
by ballast water in ships, and the multiple effects of global climate 
change (Dai et al., 2023; Glibert, 2020).

The recent spread of macroalgal blooms worldwide is causing 
widespread concern (Bermejo et  al., 2023; Lapointe et  al., 2021). 
These extensive seaweed blooms are dominated by the genera Ulva 
and Sargassum, which cause green tides and golden tides, respec-
tively (Bermejo et al., 2023). The biggest green tide ever recorded 
occurred in the Yellow Sea of China in 2009, and covered an area 
of 2100 km2 (Xiao et al., 2021). Since 2011, there have been enor-
mous Sargassum spp. blooms in the Atlantic Ocean basin causing 
serious ecological problems and badly affecting tourism (Lapointe 
et al., 2021). Although bloom-forming macroalgae are not as toxic 
as red tides, their rapid uptake of nutrients from seawater can cause 
nutrient limitation for other photosynthetic organisms (Van Alstyne 
et  al., 2015). In addition, hypoxic conditions can be generated by 
smothering heaps of rotting macroalgal biomass, which is fatal for 
many marine animals (Young et  al.,  2022). The poor water quality 
that results from masses of rotting macroalgae can cause substantial 
aquaculture losses. For instance, a green tide in China in 2008 caused 
economic losses of 760–860 million RMB (104–118 million Euros) for 
just three aquafarms in Shandong province (Ye et al., 2011).

Red tides have a long history in China, and scientific reports date 
back to 1933 (Liang, 2012). Macroalgal blooms, on the other hand, 
have only been recorded as occurring over the past two decades 
in China. At different times, both increasing and decreasing trends 
of red tides are apparent (Xiao et al., 2019; Zeng et al., 2019). The 
reasons that drive the changes have been attributed to water quality 
and warming (Xiao et  al., 2019; Zeng et  al., 2019). Previous stud-
ies have focused on single types (micro or macro) of algal blooms 
(Bermejo et  al., 2023; Dai et  al.,  2023; Xiao et  al., 2019), ignoring 
their co-evolution and interactions. However, we assume that red 
tides and macroalgal blooms may interact with each other along 
with the changing environment. To test this hypothesis, we compiled 
data on micro- and macroalgal blooms during 1991–2020 and ex-
amined long-term patterns in their frequency, distribution, and du-
ration. A tipping point for algal blooms was identified, a correlation 

of micro- and macroalgal blooms was found and potential drivers 
were explored. To the best of our knowledge, this is the first study 
to investigate the interaction between algal blooms and the shift be-
tween micro- and macroalgae over a long period, contributing to an 
understanding of algal bloom trends in the Anthropocene.

2  |  MATERIAL S AND METHODS

2.1  |  Algal bloom data

Data on red tides were acquired from the Bulletin of Chinese Marine 
Disasters for 1991–2020 issued by the Ministry of Natural Resources 
of China (former State Oceanic Administration of China) that is pub-
licly available in Chinese (https://​www.​mnr.​gov.​cn/​sj/​sjfw/​hy/​gbgg/​
zghyz​hgb/​), and from the literature (Guo et al., 2015; Li et al., 2023; 
Liang, 2012; Zhao, 2010). In addition to the overall trends in red 
tides, the patterns of four main red tide species, Prorocentrum dong-
haiense, Karenia mikimotoi, Noctiluca scintillans, and Skeletonema cos-
tatum, which contribute about 70% of red tide occurrences in China, 
were also analyzed (Li et al., 2023). Systematic monitoring of Harmful 
Algal Blooms (HABs) has been conducted in China since 1964 fol-
lowing the establishment of China's State Oceanic Administration. 
There are 34 red tide monitoring areas across the country. The 
HABs monitoring standard includes four surveys per month during 
high-risk seasons and one to two surveys per month during other 
seasons, with surveys every 3 days when harmful algal blooms are 
expected to occur, and daily monitoring when blooms are detected. 
The same methods have been used annually within these monitoring 
areas since 1970 (Xiao et  al., 2019). All monitoring tasks included 
sample collection to determine phytoplankton species density. The 
occurrence of a bloom is determined to be when cell density exceeds 
a size-dependent threshold set in the standard procedure, which is 
>107, >106, >2 × 105, >105, and >3 × 103 cells dm−3 for algae with cell 
lengths of <10, 10–29, 30–99, 100–299, and 300–1000 μm, respec-
tively (HY/T 069-2005). Red tide events that occur outside of the 
monitoring areas are not included in this study. This may lead to the 
underestimation of red tide occurrence. However, the monitoring 
areas cover the coastal waters across China where red tides usually 
occur, based on historical records. Therefore, the underestimation 
should be limited and would not impact the variation trend of red 
tides.

Data on transregional and local green tides were collated from 
the Bulletin of Chinese Marine Disasters 2008–2020 and the pub-
lished literature (He et al., 2019; Song et al., 2011; Wei et al., 2011; 
Xiao et  al.,  2021; Xing & Hu, 2016; Zeng et  al.,  2023). Data on 
golden tides were acquired from Qi et al. (2017), Xing et al. (2017), 
Ding et al. (2019), Liu, Xia, et al. (2021), Lei et al. (2022), Song, Yan, 
et al. (2022), and Zheng et al. (2022). After integrating the thresholds 
in China and abroad, the occurrence of a local green tide is deter-
mined to be when coverage exceeds 10,000 m2 and coverage per-
centage (the ratio of coverage to distribution) exceeds 1%. Hereafter, 
‘frequency’ means the number of algal outbreaks during a particular 
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period, ‘distribution’ is the regional area over which blooms spread, 
while ‘coverage’ is the size of the blooms themselves and excludes 
bloom-free areas in the regional distribution.

2.2  |  Environmental data

Nutrient loads from rivers were obtained from Wang et al.  (2021) 
who used an Integrated Model to Assess Global Environment-Global 
Nutrient Model (IMAGE-GNM) (0.5° × 0.5° resolution). Nutrient load 
from mariculture includes that from fish, prawn, and crab farms. 
The nutrient load from fish farms was calculated according to Xiong 
et al. (2022) and that from prawn and crab farms was calculated ac-
cording to the N and P budget (Ban, 2015). The total nitrogen (TN) 
and total phosphorus (TP) loads were used to calculate the molar 
N:P each year for riverine and mariculture inputs. The production 
of fish, prawns, and crabs was obtained from the China Fishery 
Statistical Yearbook for the years 1991–2020 (Table S1). The ratios 
of dissolved silicate (DSi) to dissolved organic nitrogen (DIN) were 
obtained from Liu et al.  (2022) and Zhang et al.  (2022). Carbon di-
oxide data were acquired from China Greenhouse Gas Bulletin 
for the years 1991–2020, issued by the China Meteorological 
Administration. Atmospheric CO2 concentrations were measured 
at Mount Waliguan, the only station of the World Meteorological 
Organization/Global Atmosphere Watch in Eurasia. Sea surface 
temperature (SST) data (1991–2020) were derived from the Met 
Office Marine Data Bank (Table  S2) (http://​www.​metof​fice.​gov.​
uk/​hadobs/​hadis​st/​data/​downl​oad.​html), which has a resolution of 
1.0° × 1.0°. Monitoring data for SST in all 11 coastal administrative 
areas of China were used to calculate annual means in coastal areas 
(Table S2).

2.3  |  Grazing rate

The grazing pressure on phytoplankton is mainly from microzoo-
plankton that are defined as heterotrophic and mixotrophic or-
ganisms with a size range of 20–200 μm. The microzooplankton 
consists of ciliates, heterotrophic, and mixotrophic dinoflagellates, 
as well as mesozooplankton nauplii (Liu, Chen, et al., 2021; Sieburth 
et al., 1978). It has been reported that microzooplankton consume 
about 59%–75% of daily primary production (Calbet, 2008; Calbet 
& Landry, 2004). As such, we used their grazing rates to evaluate 
the top-down controls on phytoplankton by grazers. The micro-
zooplankton grazing rate was estimated using a machine-learning 
technique known as a Boosted Regression Trees (BRT) model, 
which has been increasingly used in ecological studies (Elith & 
Leathwick, 2017). The BRT model was based on a published data 
set consisting of microzooplankton grazing rate and related envi-
ronmental parameters in China's marginal seas, including the South 
China Sea, the East China Sea, and the Yellow Sea (Liu, Chen, et al., 
2021). As temperature and Chl a concentrations have been reported 
as the primary factors determining microzooplankton grazing rate, 

we used them as predictors for the BRT model. The BRT was imple-
mented using the function “gbm.step” in the R package “dismo.” The 
tree complexity was set as 1 and the learning rate was set as 0.001 
to allow the model to approach the best performance slowly with 
more trees to reduce error. Other settings remained as the defaults 
in “gbm” (Elith & Leathwick, 2017). To evaluate the prediction ac-
curacy of the model, 20% of data from the data set were randomly 
selected as testing data and excluded from the model fitting. The 
final fitted BRT models for the training data had 3700 trees, ena-
bling the model to approach the plateau very slowly (Figure S1). The 
model performs well, and Pearson's correlation coefficient (r) for the 
model predictions and the testing data is .52 (p < .001, Figure S1). 
We then used this model to predict the microzooplankton grazing 
rate of each Province in each year (1997–2020). The SST and Chl a in 
all 11 coastal administrative areas of China were input to the model 
as predictors. SST (Table S2) and Chl a (Table S3) data were derived 
from the Met Office Marine Data Bank and NOAA, respectively. 
Microzooplankton grazing rate (day−1) in each coastal administrative 
area (Table S4) was weighed based on their area proportion to calcu-
late annual means. The data after 1997 were presented since Chl a 
data were not monitored before 1997.

2.4  |  Statistical analysis

The method used to identify trends in red tide coverage around 
China followed Ban et al. (2022). We used the Mann–Kendall trend 
test to analyze whether trends changed significantly (p < .05) due 
to a sustained increasing trend switching abruptly to a decreasing 
trend, that is, a tipping point.

Linear and nonlinear regressions were used for our time series 
analysis. Pearson correlations of multiple variables were used to 
analyze potential relationships between microalgal and macroalgal 
blooms and the environmental factors including TN, TP, atmospheric 
CO2, annual average SST, and grazing rate. Adjusted R-squared was 
used to avoid the false improvement of the model due to increased 
independent variables.

3  |  RESULTS

Figure 1 shows the widespread distributions of micro- and macroal-
gal blooms around China in 1991–2020. Red tides have occurred 
off all coasts of China, with the East China Sea having the highest 
frequency (58%) and the Yellow Sea having the lowest frequency 
(10%) during the period 1991–2020. Since 2006, huge transregional 
green tides occurred in the Yellow Sea while golden tides have af-
fected large areas in the East China Sea and the Yellow Sea. More 
localized green tides have occurred in coastal waters of the Bohai 
Sea (Yingkou, Qinhuangdao, Tangshan), the Yellow Sea (Yantai, 
Nantong), the East China Sea (Ningbo, Xiamen), and the South China 
Sea (Shantou, Shenzhen, Zhanjiang, Beihai, Lingshui, Sanya) where 
red tides also occurred.
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To show more detail on red tides, the distribution of red tides 
caused by the four main species in China is shown (Figure 2). The 
occurrence of red tides caused by Prorocentrum donghaiense was 
confined to the coastline of the East China Sea (Figure 2a). Karenia 
mikimotoi dominated red tides also occurred mainly in the coastal 
waters of the East China Sea but could also be found in the Bohai 
Sea and the South China Sea (Figure 2b). In contrast, Noctiluca scintil-
lans red tides mainly occurred in the Bohai Sea, although they could 
be detected in the other three seas (the Yellow Sea, the East China 
Sea, and the South China Sea) (Figure 2c). Skeletonema costatum red 
tides had a relatively even distribution along the coastline of China 
(Figure 2d) and could be detected in the southernmost location of 
Hainan province.

The frequency (number of blooms in a given year) of red tides 
first decreased and then exponentially increased during 1991–
2003 (F(3,12) = 92.142, p < .001, r

2 = .907), with an overall increasing 
rate of seven times year−1 (Figure 3a). After 2003, their frequency 

decreased yearly until 2020 at a decreasing rate of five times year−1 
(F(1,16) = 46.825, p < .001, r2 = .729). Red tide coverage (Figure  3b) 
increased by 1896 km2 year−1 during 1991–2005 (F(3,14) = 101.754, 
p < .001, r2 = .918) then decreased by 1687 km2 year−1 from 2005 to 
2020 (F(1,14) = 51.204, p < .001, r

2 = .770). The Mann–Kendall Tau test 
(Z = −4.187, p < .001) shows that a tipping point in the trend of red 
tides occurred in 2005.

No macroalgal blooms were recorded in China until 1999 
when transregional green tides started to occur in the Yellow Sea 
(Figure  3c). Thereafter, the frequency of macroalgal blooms in-
creased linearly (F(1,21) = 596.319, p < .001, r

2 = .964) and reached 13 
blooms per year in 2020. Local green tides have occurred annually 
since 2003, while transregional golden tides have occurred annually 
since 2012, stretching across the East China Sea and the Yellow Sea. 
The increasing frequency of macroalgal blooms with year is mainly 
due to local green tides because no local golden tides have been re-
ported. When analyzing outbreaks of micro- and macroalgal blooms 

F I G U R E  1 Distribution of marine algal blooms around China during 1991–2020. Red and green circles represent localized red and green 
tides, respectively. Green and brown dashed lines show the extent of very extensive transregional green and golden tides, respectively. The 
pie chart shows the percentage occurrence of red tides in four seas (BS: Bohai Sea, YS: Yellow Sea, ECS: East China Sea, SCS: South China 
Sea) during 1991–2020. CRE and PRE represent the Changjiang River estuary and Pearl River estuary, respectively. Map lines delineate 
study areas and do not necessarily depict accepted national boundaries.

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17018 by X

iam
en U

niversity, W
iley O

nline L
ibrary on [13/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  5 of 16FENG et al.

(Figure  3d), a significant negative relationship was found for the 
frequency between green+golden and red tides during 2005–2020 
(F(1,14) = 15.426, p = .002 < .05, r2 = .490). The increase in the fre-
quency of green+golden tides was accompanied by a decrease in red 
tide coverage during 2005–2020 (F(1,14) = 42.916, p < .001, r

2 = .736). 
These results suggest competition between micro- and macroalgal 
blooms.

The frequency of red tides caused by the four main species 
during 1991–2020 was further analyzed (Figure  4). Red tide 
events caused by Prorocentrum donghaiense increased exponen-
tially during 1999–2004 (F(3,13) = 29.286, p < .001, r

2 = .831), with 
an overall increase rate of six times year−1 (Figure 4a). After 2004, 
its frequency shows a decreased trend (F(1,15) = 6.211, p = .025, 

r2 = .246). The pattern for Karenia mikimotoi is similar to P. dong-
haiense although the decrease after the peak in 2006 was not 
linear (F(1,13) = 4.298, p = .059, r

2 = .191, Figure 4b). The frequency 
of red tides caused by Noctiluca scintillans decreased first during 
1990–1996 and then increased to a peak in 2003 (F(3,12) = 34.153, 
p < .001, r2 = .821, Figure 4c). Thereafter, it also shows a decreas-
ing trend in spite of large fluctuations (F(1,16) = 3.380, p = .085, 
r2 = .123). In terms of Skeletonema costatum (Figure  4d), its red 
tides increased during 1997–2006 (F(3,15) = 40.468, p < .001, 
r2 = .831) but decreased linearly after that (F(1,13) = 22.803, p < .001, 
r2 = .609). Frequencies of red tides caused by the four species all 
experienced two stages, with an increase in the first stage but a 
decrease in the second stage. In the second stage, S. costatum had 

F I G U R E  2 Distribution of four types of main red tides along with macroalgal blooms around China during 1991–2020. (a) Prorocentrum 
donghaiense dominant red tides, navy circles; (b) Karenia mikimotoi dominant red tides, grey circles; (c) Noctiluca scintillans dominant red 
tides, pink circles; (d) Skeletonema costatum dominant red tides, red circles. Green circles represent localized green tides, respectively. Green 
and brown dashed lines show very extensive transregional green and golden tides, respectively. Map lines delineate study areas and do not 
necessarily depict accepted national boundaries.
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the highest rate of decrease while N. scintillans had the lowest de-
crease rate based on the slope values.

The coverage and distribution of green tides in China are 
shown in Figure  5a. The coverage of green tides during 1999–
2007 was small, ranging from 1.83 to 57 km2. The area affected by 
green tides increased to a coverage of 653 km2 in 2008 and then 
reached a peak of 2103 km2 in 2009. Afterwards it has since fluc-
tuated between 198 and 793 km2 during 2010–2020. The regional 
distribution of green tides was 82 times larger than the coverage 
of the blooms themselves. Golden tides were first recorded off the 
Zhejiang coast in the East China Sea in 2012, with a coverage of 
33.5 km2 (Figure 5b). These golden tides had a coverage of 534 km2 
in Chinese waters in 2017 and are now an annual problem, with a 
coverage of 75.16 km2 in 2020. The regional distribution of these 
golden tides was, on average, 1284 times larger than the coverage 
of the blooms themselves.

Seasonal characteristics of algal bloom occurrences were also 
analyzed (Figure 5c,d). Red tides have occurred in all months of a 
year (Figure 5c). May had the highest frequency (442) of red tides in 
China during 1991–2020, followed by June (334), while December 
had the lowest frequency (4), followed by November (21). The sea-
sonal pattern of coverage is similar to that of bloom frequency, being 
highest in May (105,898 km2) and lowest in December (936 km2). 
Unlike red tides, transregional green tides occurred in specific sea-
sons (Figure 5d). They usually began in March or April and ended 

in July or August. This pattern lasted until September in 2019. 
Compared to transregional green tides, local green tides had a 
shorter duration, usually 2–3 months. Due to their wide distribution, 
from Liaoning province in the North of China to Hainan province in 
the South of China, the overall duration of all local green tides is very 
long, with a narrow temporal gap in October and November. Golden 
tides usually began in March and end in June, but sometimes occur 
in winter (Figure 5d).

Total nitrogen load discharged from rivers into coastal waters 
increased from 5.06 Tg in 1991 to 11.03 Tg in 2018 and levelled-off 
to 10.89 Tg in 2020 (Figure 6a). In contrast, the TN load from mari-
culture has continued to increase during 1991–2020 and reached 
0.33 Tg in 2020 (Figure 6b). The pattern of TP load was similar to TN 
although that from mariculture had a higher percentage of the total 
load (0.19%–8.47%) compared to TN (0.03%–2.92%). The N:P ratio 
of riverine inputs decreased from 30.16 in 1991 to 28.57 in 2020 
(Figure  6c). The total N:P (average from all sources) also showed 
a decreasing trend, from 29.66 in 1991 to 26.94 in 2020. The N:P 
ratio from mariculture effluents was much lower than that of rivers, 
fluctuating from 6.80 to 11.28 during 1991–2020. In 2005, when 
coverage of red algal blooms switched abruptly from an increasing 
to a decreasing trend, the TN, TP, and N:P ratio were 8.61 Tg year−1, 
0.76 Tg year−1, and 29.15, respectively.

The variation trends of DSi/DIN were also analyzed (Figure 7). 
The DSi/DIN ratio in the Bohai Sea linearly decreased from 0.59 to 

F I G U R E  3 Frequency and coverage of red tides and their relationship with macroalgal blooms around China. (a) frequency of red tides; 
(b) coverage of red tides; (c) frequency of macroalgal blooms; (d) relationships between red tide frequency (filled squares), red tide coverage 
(open circles) and macroalgal bloom frequency.
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0.53 during 2003–2020 (F(1,16) = 7.539, p = .014, r
2 = .278, Figure 7a). 

While the DSi/DIN ratio in the Yellow Sea did not show a signif-
icant decrease trend (F(1,16) = 0.004, p = .951, r

2 = −.062, Figure  7b), 
it decreased from 0.69 in 2003 to 0.64 in 2020 in the Changjiang 
River estuary (F(1,16) = 8.039, p = .012, r

2 = .293, Figure  7c) and also 
decreased from 3.69 in 1990 and to 0.88 in 2016 in the Pearl River 
estuary (F(1,16) = 50.101, p < .001, r

2 = .743, Figure  7d). As show in 
Figure 1, the Changjiang River estuary and Pearl River estuary are 
two areas that suffer from severe red tides.

Atmospheric CO2 concentrations increased from 
354.7 ± 0.10 ppm in 1991 to 414.53 ± 0.20 ppm in 2020, with a ris-
ing rate of 1.99 ppm year−1 (F(1,28) = 7637.835, p < .001, r

2 = .996) and 
was at 379.7 ± 0.08 ppm when red tide coverage started to decline 
(Figure  8a). The mean SST for the coastal waters of China during 
1991–2020 (F(1,28) = 6.008, p = .021, r

2 = .147) increased from 18.63°C 
in 1991 to 19.13°C in 2020, in spite of fluctuations (Figure 8b). The 
mean SST of all Chinese coastal waters combined was 18.68°C in 
2005 when the coverage of red tides started to fall and be replaced 
by nuisance macroalgal blooms.

In addition to abiotic factors, biotic factors were also analyzed 
(Figure 9). Chl a concentration of coastal waters around China in-
creased from 3.87 in 1997 to 4.83 mg m−3 in 2020 (F(1,22) = 15.051, 
p < .001, r2 = .379, Figure  9a). Similar to Chl a concentration, zoo-
plankton grazing rate of coastal waters around China also increased 

from 0.548 to 0.583 day−1 during the period of 1997–2020 
(F(1,22) = 45.415, p < .001, r

2 = .659, Figure 9b). The Chl a concentra-
tion and grazing rate were 3.78 mg m−3 and 0.523 day−1, respectively, 
when the coverage of red tides started to fall.

We used Pearson correlation analysis for multiple variables from 
2005 to 2020, the period over which red tides have been diminishing 
whereas macroalgal blooms have increased (Figure 10). The cover-
age of red tides had significant negative correlations with the fre-
quency of macroalgal blooms, TN, TP, CO2, and zooplankton grazing 
rate (p < .01) over this time period. Among them, TN (−0.926) and TP 
(−0.923) had a very high correlation coefficient with the coverage of 
red tides, followed by CO2 (−0.879) and macroalgal blooms (−0.868). 
Prorocentrum donghaiense or Noctiluca scintillans did not have sig-
nificant correlations with biotic or abiotic factors, while Karenia mi-
kimotoi (−0.613) and Skeletonema costatum (−0.826) had significant 
negative correlations with the frequency of macroalgal blooms. In 
contrast, the frequency of macroalgal blooms positively correlated 
with TN, TP, CO2, SST, and zooplankton grazing rate (p < .05 for SST 
and p < .01 for the others). Among them, CO2 (0.962), TP (0.955), and 
TN (0.950) had very high correlation coefficients with the frequency 
of macroalgal blooms. SST positively correlated with rising atmo-
spheric CO2 levels at the 0.01 level of statistical significance and with 
TN and TP at the 0.05 level of statistical significance. Zooplankton 
grazing rate positively correlated with TN, TP, and CO2 (p < .01).

F I G U R E  4 Frequency of red tides caused by four main species around China during 1991–2020. (a) Prorocentrum donghaiense; (b) Karenia 
mikimotoi; (c) Noctiluca scintillans; (d) Skeletonema costatum.
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F I G U R E  5 All plots based on data from the seas around China from 1991 to 2020; (a) coverage and regional distribution of green and (b) 
golden tides; (c) seasonal frequency and coverage of red tides; (d) box plots of the timing of macroalgal blooms. Green tides I and II represent 
transregional and local blooms, respectively. “Distribution” is the regional area over which blooms spread while “coverage” is the actual size 
of blooms and excludes bloom-free areas in the regional distribution.

F I G U R E  6 Total nitrogen (a) and total 
phosphorus (b) contributions from riverine 
and mariculture sources to coastal waters 
and their ratio (c) around China during 
1991–2020. “Total” means the sum of 
river and mariculture contributions. Red 
dashed vertical lines indicate the timing 
of a tipping point in red tides when they 
started to decrease, following a decade of 
increasing frequency.
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4  |  DISCUSSION

4.1  |  Trends of red tides and the associated reasons

The frequency of red tides increased rapidly around China during 
1995–2003, which has been attributed to the rising discharge of 
inorganic nutrients from agriculture, sewage, and other land-based 

sources (Wang et al., 2021). The frequency and coverage of red tides 
have decreased since 2003 and 2005, respectively, despite a con-
tinuing increase in nutrient loads. This decreasing trend was also re-
ported in previous study (He et al., 2021; Sakamoto et al., 2021). A 
large number of studies have shown that eutrophication and warm-
ing can stimulate the occurrence of red tides (Heisler et al., 2008; 
Xiao et  al., 2019). The observed increases in Total Nitrogen, Total 

F I G U R E  7 Variation of molar DSi/DIN ratios in the Bohai Sea (a), Yellow Sea (b), Changjiang River estuary (c) and Pearl River estuary (d).
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F I G U R E  8 Mean sea surface 
temperature of coastal waters around 
China (a) and atmospheric CO2 in this 
region (b) during 1991–2020. Vertical 
red dashed lines indicate when red tides 
started to become less frequent.
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Phosphorus, and temperature would not, therefore, be expected 
to lead to declines in the frequency and coverage of red tides un-
less some other factor has been driving the negative correlations 
between red tides and these environmental factors over the past 
16 years.

Coverage of red tides was significantly negatively correlated 
with macroalgal bloom frequency, suggesting that the shrinkage 
of red tides since 2005 may be caused by increased outbreaks of 
macroalgal blooms around China, particularly because red tides and 
green tides overlap in both their distribution and seasonal occur-
rence. Microalgae and macroalgae are known to compete for nutri-
ents, light, and space in coastal waters (Besterman & Pace, 2018; 
Gao et  al.,  2021). Moreover, Ulva species (commonly responsible 
for green tides) can inhibit photosynthesis and growth of red tide 

microalgae via allelopathic effects (Gao et al., 2019; Sun et al., 2016). 
The inhibitory effects of Ulva species on red tide microalgae have 
been reported, based on both laboratory and field work (Gao 
et al., 2019; Imai et al., 2021; Li et al., 2022). The fastest decrease 
in S. costatum dominated red tides may be related to its distribu-
tion. Compared to P. donghaiense and K. mikimotoi, S. costatum red 
tides have a wider distribution, from the southernmost to the north-
ernmost provinces. The wider distribution suggests that there is a 
greater chance that they would be inhibited by macroalgal blooms. 
Although N. scintillans red tides are also distributed from South to 
North of China seas, N. scintillans is a heterotrophic dinoflagellate 
that does not compete with Ulva and Sargassum species for light 
and inorganic nutrients. Therefore, it is less likely to be inhibited by 
macroalgal blooms, showing the lowest decrease rate. In addition, 

F I G U R E  9 Mean Chl a concentration 
(a) and zooplankton grazing rate (b) in 
coastal waters around China during 
1997–2020. Vertical red dashed lines 
indicate when red tides started to become 
less frequent.
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F I G U R E  1 0 Correlation between 
algal blooms and environmental drivers 
during 2005–2020. Micro and macro 
represent coverage of microalgal blooms 
and frequency of macroalgal blooms, 
respectively. Frequency rather than 
coverage of macroalgal blooms was used 
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N. scintillans feeds on diatoms and the increased temperature could 
stimulate its grazing rate and thus growth (McLeod et  al.,  2012; 
Sheng et al., 2022). Allelopathic inhibition cannot explain the differ-
ential decreases in red tides caused by the four microalgal species 
since allelochemicals from U. prolifera have lower inhibition rates on 
S. costatum compared to P. donghaiense (Sun et al., 2019).

4.2  |  Trends of macroalgal blooms and the 
associated reasons

In contrast to the situation with red tides, the frequency of mac-
roalgal blooms has increased each year since they first began 
around China in 2006. The primary reason for this can be at-
tributed to increases in nutrient load. Large biomass macroalgal 
blooms require exceptionally high levels of nutrients in the surface 
seawater. That is a key reason why most macroalgae are restricted 
to coastal areas where nutrient levels are usually higher than in 
surface waters of the open ocean. Although microalgae have much 
higher growth rates than macroalgae under nutrient-limiting con-
ditions, macroalgae can outcompete phytoplankton at high levels 
of nutrients (Fong & Zedler, 1993; Nan & Dong, 2004). Microalgae 
can acclimate to nutrient-limiting conditions better than macroal-
gae because their larger surface area to volume ratio enhances 
nutrient uptake.

Increased CO2 may also contribute to outbreaks of macroalgal 
blooms around China. Carbon dioxide can limit the photosynthesis 
and growth of algae due to its low concentrations and slow diffu-
sion rates in seawaters (Cornwall et al., 2017; Raven et al., 2017). 
This limitation is particularly serious for macroalgae and larger 
microalgae because they have thicker diffusive boundary layers 
which hinder CO2 uptake by their cells (Finkel et al., 2010; Noisette 
& Hurd, 2018). Therefore, macroalgae or larger microalgae could 
benefit more from increased CO2 (Wu et  al.,  2014). However, 
more dissolved CO2 leads to ocean acidification, which has a 
range of effects on seawater carbonate chemistry that can nega-
tively affect some algae (Flynn et al., 2012; Hong et al., 2017; Shi 
et al., 2019) but stimulate the growth of others, triggering major 
shifts in coastal algal communities (Cornwall et al., 2017; Harvey 
et al., 2019). In the coastal waters of China, where chronic and in-
creasing eutrophication has now combined with rising CO2 levels, 
blooms of fast-growing and opportunistic macroalgae such as Ulva 
spp. have replaced microalgal red tide blooms, that is, one prob-
lem has been replaced by another. In terms of red tide species, it 
has been reported that CO2 enrichment increases the maximum 
population density and carrying capacity of the raphidophyte 
alga Heterosigma akashiwo but decreases these parameters for 
S. costatum (Zheng et al., 2016). Furthermore, growth of P. dong-
haiense is accelerated more strongly than the diatom Conticribra 
weissflogii by simultaneous acidification and eutrophication (Xu 
et al., 2010). These findings indicate that flagellate algae may be 
more adaptable to increased acidification and eutrophication than 
diatoms, which can explain the slower decrease in dinoflagellate 

red tides in frequency compared to diatom red tides shown in this 
study.

Temperature may also contribute to the occurrence and expan-
sion of green and golden tides. Compared to many other macroal-
gae, Ulva and Sargassum species have higher tolerance to increased 
temperature (Jiang et  al.,  2022). While other macroalgae such as 
kelps may die back due to warming or marine heatwaves (Agostini 
et al., 2021; Gao et al., 2021; Straub et al., 2019), increased SST can 
stimulate the growth of Ulva and Sargassum species (Gao et al., 2017; 
Sanchez-Rubio et al., 2018). In addition, increased SST can result in 
the extension of green tides northward, helping to explain the recent 
occurrence of green tides in the Bohai Sea, an example of coastal 
ecosystem simplification in the face of multiple stressors (Agostini 
et al., 2021).

Unlike the continuous increase in the frequency of macroalgal 
blooms over time, the coverage of macroalgal blooms showed large 
interannual variability, which could be attributed to human interven-
tion. Since 2016, Ulva and Sargassum biomass has been collected 
at the early stages of bloom formation in the Southern Yellow Sea, 
limiting large-scale proliferation. Since 2019, some measures have 
also been taken to prevent the outbreak of green tides, such as 
reducing the densities of Porphyra cultivation rafts, and using anti-
fouling chemicals to kill juvenile Ulva (Sun et al., 2022). Competition 
between golden tides and green tides also contributes to annual 
fluctuations because they overlap in their distribution (Song, Kong, 
et al., 2022; Song, Yan, et al., 2022). It is also notable that the golden 
tides are less responsive to eutrophication than green tides and pe-
lagic species of Sargassum are known to be adapted to oligotrophic 
conditions (Devault et al., 2021).

Mean atmospheric CO2 and SST around China have increased 
by 140 ppm and around 1.7°C relative to preindustrial levels, re-
spectively (Xiao et al., 2019). This level of warming above preindus-
trial temperatures already lies within the lower end of five climate 
tipping point uncertainty ranges (Armstrong McKay et  al.,  2022). 
Six climate tipping points, including collapse of the Greenland and 
West Antarctic ice sheets, die-off of low-latitude coral reefs, and 
widespread abrupt thawing of permafrost, become likely within 
the Paris Agreement range of 1.5 to <2°C warming (Armstrong 
McKay et al., 2022). The present study indicates that it is likely that 
increased CO2 and temperature combined with increased nutrient 
load triggered a tipping point in the coastal seas of China, leading to 
a shift from microalgal- to macroalgal-dominated eutrophic blooms. 
Previous laboratory work has also demonstrated that eutrophication 
combined with increasing CO2 and temperature can stimulate the 
settlement, germination, and growth of microscopic propagules of 
bloom-forming Ulva species, suggesting that more intense outbreaks 
of green tides are likely to become the ‘new normal’ around Chinese 
coasts (Gao et al., 2017, 2018). In addition to the environmental fac-
tors mentioned above, the expansion of Porphyra aquaculture may 
also contribute to the increased outbreak of floating green tides in 
the Yellow Sea as the accumulation and disposal of Ulva prolifera 
from Porphyra aquaculture rafts is the most likely source of the initial 
floating biomass (Keesing et al., 2011; Wang et al., 2015).
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4.3  |  The top-down effects on micro- and 
macroalgal blooms

In addition to the bottom-up effect, top-down effects may also 
contribute to the shift of algal blooms. Microzooplankton grazing 
rate rose with year due mainly to the increased SST and Chl a since 
these two factors can influence grazing rate directly (Liu, Chen, 
et  al., 2021). In addition, our result shows that microzooplankton 
grazing rate also correlated positively with CO2 level. This is con-
sistent with the finding of laboratory experiments showing that 
increased CO2 stimulated grazing rate of zooplankton (Li & Gao, 
2012). The increased grazing rate of zooplankton could contribute 
to the decreased occurrence and coverage of red tides. The micro-
zooplankton in this study, that consists of ciliates, heterotrophic and 
mixotrophic dinoflagellates, and mesozooplankton nauplii, can graze 
any phytoplankton smaller than 200 μm. Their grazing activities are 
size dependent rather than species dependent (Hansen et al., 1994; 
Zhou et al., 2015). Therefore, the grazing pressure from microzoo-
plankton may contribute little to the faster decrease in diatom-dom-
inated red tides. In terms of macroalgae, when floating on surface 
seawater they are inaccessible to benthic grazers and benefit from 
reduced grazing pressure. Although some epiphytic animals (e.g., 
gammarid species) feed on floating macroalgae, they only consume 
a very small proportion of increased biomass of floating macroal-
gae (Miao et al., 2021; Wang et al., 2020). In addition, the U. prolif-
era fragments resulting from gnawing by Apohyale sp. had a higher 
growth rate than individual thalli, which may lead to higher floating 
biomass (Miao et al., 2021).

5  |  CONCLUSIONS

Increasing eutrophication combined with rising CO2 and tempera-
ture may play an important role as the cause of widespread out-
breaks in macroalgal blooms around China since 2006, with warming 
expanding the northward distribution of these macroalgal blooms. 
This increased occurrence of macroalgal blooms has been accompa-
nied by a shrinkage of red tides, likely due to competition and inhibi-
tion. In addition, increasing grazing rate of microzooplankton also 
contributes to the decreased frequency and coverage of red tides. 
While smaller phytoplankton will likely increasingly dominate sur-
face waters of the open ocean, due to warming and increasing nutri-
ent limitation (Falkowski & Oliver, 2007; Gao et al., 2021), this is not 
the case in coastal areas where people are more directly affected. 
Around coasts already impacted by eutrophication, due to nutrient 
inputs from land and mariculture, increasing levels of CO2 allow mac-
roalgae to compete strongly for resources (Celis-Plá et  al.,  2015). 
Macroalgal blooms seem less harmful to human health than mi-
croalgal blooms, since they have not been found to excrete toxins. 
However, the massive biomass of seaweed blooms can have severe 
impacts on mariculture and tourism and they can produce toxic hy-
drogen sulfide when decaying, leading to the death of aquatic and 
terrestrial animals (Smetacek & Zingone, 2013). Thus, monitoring the 

development of macroalgal tides is needed. In addition, we have to 
develop strategies to reduce nutrient loads into coastal waters, as 
well as reducing overall CO2 emissions. The improvement of agri-
culture and a more sustainable food system is needed since of nine 
planetary boundaries (PBs) agriculture is the major driver of four PBs 
(biosphere integrity, biogeochemical flows, land-system change, and 
freshwater use) that are in the high or increasing risk zones and a 
significant driver of climate change (Campbell et al., 2017).
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