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Coccolithophores, a type of unicellular calcifying algae, are widely distributed across the global ocean. 
They contribute to the ocean carbon cycle by producing organic and inorganic carbon. Hence, they 
function as multifaceted contributors to oceanic carbon pumps, the biological carbon pump (BCP) and 
the carbonate counter pump (CCP). Global climate change profoundly impacts ocean environments, 
leading to ocean acidification, increased sea surface temperature, and nutrient depletion, all of which 
influence the physiology of coccolithophores. The accumulation and subsequent sinking of carbon 
produced by coccolithophores contribute to the total carbon export in the water column. This article 
reviews the physiology and distribution of coccolithophores, expounds on the intricate contribution 
of coccolithophores to BCP and CCP separately, and summarizes how climate-induced alterations in 
environmental factors (e.g., temperature, nutrient supply, light, and carbonate chemistry) affect the 
carbon accumulation and sinking rate of coccolithophores on the basis of culture experiments and field 
investigations. This study provides a foundation for assessing the contribution of coccolithophores to 
carbon export under potential future global warming scenarios.

Introduction
Coccolithophores are a type of marine unicellular calcifying 
nannoplanktons that belong to the phylum Haptista [1,2] and 
class Prymnesiophyceae [3]. A coccolithophore cell is sur-
rounded by orderly arranged calcite scales called coccoliths. 
Coccolithophores are widely distributed across the global 
oceans, commonly forming large-scale blooms at high latitudes, 
and are a dominant part of the global carbon biogeochemical 
cycle. Coccolithophores can produce both organic and inor-
ganic carbon, serving as producers for both marine biological 
carbon pumps (BCPs) and carbonate counter pumps (CCPs) 
[4]. Field investigations have shown that coccolithophores can 
account for ~20% of total carbon fixation in unproductive cen-
tral subtropical gyres [5] and almost all calcium carbonate 
production during a bloom in the Southern Ocean [6,7].

Global climate change has substantially altered the physical 
and chemical properties of seawater, exerting strong influences 
on coccolithophore physiology and ecology. For example, 
ocean acidification (OA) and warming have changed cocco-
lithophore communities and their cellular organic and inor-
ganic carbon production. Such a change in coccolithophores 
may greatly impact global ocean carbon cycling, which is an 
important issue to be considered by the scientific community. 
To this end, the present paper reviewed the characteristics of 
coccolithophore-based marine carbon pumps (i.e., BCP and 

CCP), as well as the responses of coccolithophores to OA, ocean 
warming, and nutrient depletion of the surface ocean, which 
could occur in future climate change scenarios.

Overview of Coccolithophores
Coccolithophores exhibit various morphological features and 
sizes, with cell sizes typically ranging from 3 to 40 μm [8]. The 
test formed by coccoliths (known as coccosphere) may be cylin-
drical, ellipsoidal, fusiform, obpyriform, ovoid, or spherical [9]. 
Coccoliths are produced intercellularly in the Golgi apparatus 
[10], serving as an important basis for taxonomy. The size of 
coccoliths commonly ranges from 0.5 to 20 μm [9,11]. Although 
coccoliths come in various shapes and architectures in plan 
view, they can be morphologically categorized into 3 main types 
in vertical cross-section: Murolith, Placolith, and Planolith [9]. 
Most coccolithophores exhibit haplo-diplontic life cycles, with 
the haploid stage of the coccolithophore producing holococ-
coliths or nannoliths and the diploid stage producing hetero-
coccoliths. In the transitional state between 2 life-cycle phases, 
a coccolithophore-bearing combination coccosphere can be 
observed [12,13].

Some coccolithophore species have been extensively studied 
in culturing, with their cellular physiological processes com-
prehensively understood, serving as “model species”. For exam-
ple, Emiliania huxleyi is widely distributed in global oceans as 
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a cosmopolitan species, usually forming blooms that can be 
detected by satellite [14,15]. Gephyrocapsa oceanica, another 
type of “model species” common at midlatitudes and coastal 
regions [16], is slightly larger and more heavily calcified than 
E. huxleyi [12,17]. By 2005, over 280 coccolithophore species 
had been identified in modern oceans [11,12]. Coccolithophores 
prefer physicochemical conditions characterized by relatively 
high nitrate, low phosphate, and sufficient light availability 
[18,19]. Satellite remote sensing data from 1997 to 2010 indi-
cate that coccolithophores frequently formed blooms [15], such 
as those documented in the Bering Strait [20,21], the North 
Atlantic [15,22–24], the Black Sea [25,26], and the Southern 
Ocean [15,27]. From 1979 to 1985, the global annual average 
area of coccolithophore blooms was estimated at 1.4 × 106 km2, 
with over two-thirds occurring in high-latitude waters [27]. 
Using a threshold abundance of 1 × 106 cells/l for defining 
coccolithophore blooms [18,26,28], we identified more than 
30 bloom events that were synchronically confirmed by field 
investigation and sampling. The global occurrences of cocco-
lithophore blooms have been reviewed from 1955 to 2017 
(Fig. 1 and Table 1). E. huxleyi was the most commonly bloom-
forming species, followed by G. oceanica, and other species 
include Pleurochrysis pseudoroscoffensis, Syracosphaera halldalii, 
and Umbellosphaera irregularis. E. huxleyi blooms commonly 
occur on the east coast of the North Atlantic. Berge [29] recorded 
a cell abundance of 1.2 × 108 cells/l in 1955. In comparison, a 
G. oceanica bloom was found with a cell abundance of 1.8 × 
107 cells/l in Jervis Bay in 1992 [30]. E. huxleyi and G. oceanica 
are common coccolithophores in the Chinese seas (the East 

and South China Seas); however, almost no such blooming 
events have been recorded [31,32].

Ecological Effects of Coccolithophores on the 
Marine Carbon Cycle
The ocean, as a large carbon reservoir, plays an indispensably 
pivotal role in the global carbon cycle. Between the early 1960s 
and the late 2010s, the oceans have absorbed about 25% ± 2% 
of anthropogenic CO2 emissions, with an average sinking rate 
of 2.7 ± 0.3 pg C per year [33]. The process that transfers carbon 
to the deep sea is known as carbon export. The processes that 
facilitate oceanic carbon absorption include the solubility 
pump, CCP, BCP, and microbial carbon pump (MCP) [34,35]. 
Importantly, coccolithophores contribute to both BCP and CCP 
as an essential component of the marine carbon cycle given 
their considerable biomass.

BCP and CCP
BCP denotes the process where phytoplankton photosynthesis 
converts dissolved inorganic carbon (DIC) into particulate 
organic carbon (POC) (Eq. 1), which is subsequently exported 
to the deep sea via processes such as self-sedimentation and 
food webs [36–38].

Coccolithophores and other autotrophic marine planktons 
absorb seawater aqueous CO2 through photosynthesis, converting 

(1)CO2 +H2O↔
(

CH2O
)

+O2

Fig. 1. Global distribution and cell abundance of coccolithophore blooms between 1955 and 2017. In the case of multiple records in a region, only the record with the highest 
abundance is labeled. Opaque circles with a black stroke indicate that no cell abundance data are available.
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Table 1. Records of coccolithophore blooms from 1955 to 2017. Bold texts indicate satellite-based observations.

Sampling period Area Dominant species Bloom area (km2) Abundance (cells/l) Reference

July 1955 Western Norway E. huxleyi — 1.2 × 108 Berge [29]

November 1977 Eastern Bering Sea 
Shelf

E. huxleyi 2.0 × 105 2.1–2.8 × 106 Sukhanova and Flint 
[20]

1979 Western North  
Atlantic Ocean

E. huxleyi 4.4 × 105 — Brown and Yorder 
[23]

1980 Western North  
Atlantic Ocean

E. huxleyi 8.1 × 105 — Brown and Yorder 
[23]

1981 Western North  
Atlantic Ocean

E. huxleyi 1.6 × 105 — Brown and Yorder 
[23]

1982 Western North  
Atlantic Ocean

E. huxleyi 4.6 × 105 — Brown and Yorder 
[23]

May 1982 Northeast Atlantic E. huxleyi — 8.5 × 106 Holligan et al. [14]

1983 Western North  
Atlantic Ocean

E. huxleyi 1.7 × 105 — Brown and Yorder 
[23]

1984 Western North  
Atlantic Ocean

E. huxleyi 2.0 × 104 — Brown and Yorder 
[23]

1979–1985 Yellow Sea — 7.3 ± 10.7 × 104 — Brown and Yorder 
[27]

1979–1985 Arafura Sea and Gulf 
of Carpentaria

— 1.1 ± 0.89 × 106 — Brown and Yorder 
[27]

1979–1985 Gulf of Mexico — 2.3 ± 1.1 × 105 — Brown and Yorder 
[27]

1985 Western North  
Atlantic Ocean

E. huxleyi 5.1 × 104 — Brown and Yorder 
[23]

July 1988 Gulf of Maine E. huxleyi 5.0 × 104 1.8 × 106 Balch et al. [158]

June 1989 Gulf of Maine E. huxleyi 5.0 × 104 1.6 × 106 Balch et al. [158]

June 1991 Northeast Atlantic E. huxleyi 2.5 × 105 — Fernández et al. [22]

August 1991 Nova Scotian Shelf 
and Grand Bank

E. huxleyi — 1.5 × 106 Brown and Yorder 
[159]

May 1992 Western Norway E. huxleyi — 7.0 × 106 Kristiansen et al. 
[160]

June 1992 Western English 
Channel

E. huxleyi — 2.0 × 106 Garcia-Soto et al. 
[161]

November 1992 Big Glory Bay E. huxleyi — 9.6 × 106 Rhodes et al. [162]

December 1992 Jervis Bay G. oceanica — 1.8 × 107 Blackburn and 
Cresswell [30]

June 1993 Northern North Sea E. huxleyi — 3.5 × 106 Buitenhuis et al. 
[163]

July 1993 North Sea E. huxleyi — 1.2 × 106 van der Wal et al. 
[164]

June 1994 Northern North Sea E. huxleyi — 4.5 × 106 Head et al. [165]

April 1998 Bay of Biscay E. huxleyi 3.2 × 106 Lampert et al. [28]

June 1999 North Sea E. huxleyi — 1.5 × 106 Rees et al. [166]

June 1999 Salton Sea  
(California)

P. pseudoroscoffensis — 1.0 × 106 Reifel et al. [167]

June 1999 Northern North Sea E. huxleyi 2.0 × 103 2.3 × 106 Widdicombe et al. 
[168]

February 2000 Equatorial Indian 
Ocean

U. irregularis — 1.4 × 106 Guptha et al. [169]

(Continued)
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DIC into POC, which is mostly used in the euphotic zone. With 
seasonal variations, approximately 1%–40% of net primary 
productivity is transported below the euphotic zone through 
the BCP [39]. Ultimately, only 0.3% of the POC produced in 
the surface ocean is buried in seafloor sediments [40]. BCP 
plays an instrumental role in the process of oceanic sequestra-
tion of atmospheric CO2. Furthermore, active dissolved organic 
carbon, associated with coccolithophores or food webs, can be 
transformed into recalcitrant dissolved organic carbon (RDOC) 
through MCP, which is resistant to degradation and serves as 
a more stable organic carbon reservoir [41].

CCP refers to the process by which marine calcifying organ-
isms (e.g., foraminifera, pteropods, and coccolithophores) syn-
thesize calcium carbonate shells (also known as particulate 
inorganic carbon [PIC]) from calcium and bicarbonate ions. 
PIC is then precipitated in the water column, where it partially 
dissolves and is partially buried in marine sediments. The term 
“counter” actually reveals that the biological production of 
CaCO3 coincides with the release of CO2 (Eq. 2) [42].

The theoretical formula posits that producing one unit 
of CaCO3 requires the release of one unit of CO2, whereas 
field observation data indicate that the actual ratio of CO2 
gas to precipitated CaCO3 is 0.6 (Ψ) in surface seawater at 
25 °C. Therefore, an improved equation (Eq. 3) has been 
proposed [43]:

The overall equation indicates that despite CO2 being emit-
ted from the reaction, not all carbon atoms return to the atmo-
sphere. Instead, because of the buffering of the seawater 
carbonate system, a portion of the released CO2 is reconverted 
to HCO3

−.
In addition to the functions of BCP and CCP, coccolitho-

phores also consume dissolved organic matter (DOM) as a 
carbon source. Coccolithophores are often recognized as pho-
toautotrophs, but heterotrophic types (e.g., osmotrophic) are 
also found in coccolithophores. For example, Syracosphaera 
spp. can use lactate as a carbon source [44]. In this regard, 
Thomsen et al. [45] found that some coccolithophores in polar 
water are plastidial heterotrophic. DOC absorbed by cocco-
lithophores through osmotrophy can be further transformed 
into both PIC and POC. Heterotrophic or osmotrophic ecology 
is a strategy in low-light conditions, such as in the lower eupho-
tic zones; more importantly, the captured DOC becomes a part 
of particulate carbon, accelerating their sinking velocity (or 
increasing carbon cycling) [46]. It also represents an easily 
overlooked part of the coccolithophores’ contribution to the 
ocean carbon biogeochemical cycle. However, the quantities of 
carbon that originate in the DOM via coccolithophore assimila-
tion must be further investigated.

CCP is instrumental in preserving the disparities in the ver-
tical gradient of oceanic DIC and total alkalinity. PIC precipita-
tion, which consumes bicarbonate in the ocean’s surface layer, 
reduces the DIC and total alkalinity in the ocean’s upper layers. 
The calcium carbonate produced redissolves into bicarbonate 
ions under low temperatures and high pressures in the deep 

(2)Ca
2+ + 2HCO

−
3
↔ CaCO3 ↓ + CO2 ↑ +H2O

(3)
Ca

2+ + 2HCO
−
3
↔CaCO3 ↓ + �

(

CO2 ↑ + H2O
)

+ (1−� )
(

CH2O + O2

)

� = CO2 ↑ ∕CaCO3 ↓

Sampling period Area Dominant species Bloom area (km2) Abundance (cells/l) Reference

February 2000 Equatorial Indian 
Ocean

G. oceanica 1.0 × 106 Guptha et al. [169]

May 2002 Black Sea E. huxleyi 3.8 × 106 Mikaelyan et al. [26]

May 2002 Northeast Atlantic — — 3.9 × 106 Moore et al. [15]

March/April 2003 Namibian coast E. huxleyi — — Siegel et al. [170]

June 2004 Northern Bay of 
Biscay

E. huxleyi — 8.0 × 106 Harlay et al. [171]

June 2004 Black Sea E. huxleyi — 8.2 × 106 Mikaelyan et al. [26]

June 2005 Black Sea E. huxleyi — 2.7 × 106 Mikaelyan et al. [26]

May 2006 Black Sea E. huxleyi — 4.4 × 106 Mikaelyan et al. [26]

June 2007 Black Sea E. huxleyi — 1.3 × 106 Mikaelyan et al. [26]

December 2008 Patagonian Shelf E. huxleyi — 1.0 × 106 Balch et al. [172]

June 2012 Black Sea — — 1.6 × 107 Kubryakov et al. [25]

June/July 2012 North Atlantic E. huxleyi — 3.3 × 106 Sheyn et al. [24]

June 2015 Santa Barbara 
Channel

E. huxleyi 1.2 × 103 5.7 × 106 Matson et al. [173]

June 2017 Black Sea — — 2 × 107 Kubryakov et al. [25]

October 2017 Mediterranean Sea S. halldalii — 2.3 × 106 Skejić et al. [174]

Table 1.  (Continued)
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sea, thereby releasing DIC and total alkalinity in deeper sea-
water layers. Meanwhile, BCP can synergize with CCP to pro-
mote oceanic carbon storage; that is, during gravitational 
settling, PIC can encapsulate and carry POC (including POC 
produced by noncalcareous organisms) because of its high den-
sity and sinking rate, thus accelerating the export of POC and 
protecting POC from remineralization through the ballast 
effect [47]. The White Cliffs of Dover (UK) is a landscape 
formed by carbonate precipitation and fossilization caused by 
coccolithophore blooms [48]. In marine anoxic sediment envi-
ronments, microorganisms such as denitrifying bacteria can 
increase the HCO3

− alkalinity of the interstitial water. Conversely, 
RDOC can become a carbonate crystal nucleus, and the result-
ing coupling of MCP with CCP can increase microbial-driven 
carbonate precipitation, which adds to inorganic carbon storage 
in marine sediments [41].

Contribution of coccolithophores to marine  
carbon export
As depicted in Fig. 2, coccolithophores convert DIC to POC 
via photosynthesis, whereas PIC is produced and precipitated 
through calcification. Because of their considerable biomass 
(Table 1), coccolithophores contribute substantially to the 
global ocean’s POC export, and they have long been acknowl-
edged as a major contributor to the export of marine calcium 
carbonate to the deep sea [6,7]. In the Southern Ocean waters, 
PIC derived from coccolithophore blooms constitutes a crucial 

part of calcium carbonate production and its deep-sea export. 
Notably, the sinking flux of calcium carbonate from E. huxleyi 
accounted for 85% of the annual PIC export in this area from 
2011 to 2012 [49]. In this respect, Sprengel et al. (2002) ana-
lyzed coccolithophore fluxes in waters off the Canary Islands 
in the North Atlantic in 1997. They discovered that in this 
region, coccolithophore calcium carbonate fluxes could be up 
to 2.8 g m−2 a−1, representing 31%–33% of the annual carbonate 
flux [50]. Meanwhile, Jin et al. [51] found that E. huxleyi and 
G. oceanica, the most predominant coccolithophores, contrib-
uted ~18% to the surface PIC inventory in the South China Sea.

Within the euphotic zone, coccolithophores produce a high 
amount of particulate carbon. However, their impact on oceanic 
carbon sequestration is complex. One primary mechanism 
involves calcification, which reduces both ocean total alkalinity 
and DIC in upper seawater, thereby decreasing atmospheric CO2 
uptake by this ocean layer. Conversely, POC generated by coc-
colithophore photosynthesis is transported to deeper ocean lay-
ers, enhancing oceanic carbon sequestration [52]. Simultaneously, 
because of their density and slow dissolution rate, coccoliths can 
ballast POC sinking or other organic carbon forms (e.g., detritus 
and excreta) to the deep sea, thereby increasing the BCP effi-
ciency [47]. Evidently, assessing coccolithophores’ contribution 
to carbon export requires a comprehensive understanding of 
their cellular carbon production.

The physiology associated with coccolithophores’ POC and 
PIC production serves as a crucial metric for assessing their 
contribution to ocean particulate carbon export. Carbons are 

Fig. 2. Contribution of coccolithophores to marine carbon export.
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transported to the deep sea via BCP and CCP, respectively, 
representing the “quantity” of carbon stored by the coccolitho-
phore under ideal conditions. In practical experiments, the 
parameters measured for monitoring coccolithophore physiol-
ogy consist of growth rate, PIC and POC quota per cell, and 
the PIC-to-POC ratio (PIC:POC). However, owing to bacterial 
remineralization and other factors, only ~0.3% of POC can sink 
to the seabed [40]. Therefore, the sinking rate must be consid-
ered. This parameter characterizes the efficiency of coccolitho-
phores in exporting carbon [53]; higher sedimentation rates 
can mitigate POC attenuation due to remineralization. By 
combining particulate cellular carbon production with the 
sinking rate, we can quantify the contribution of coccolitho-
phores to carbon export to a certain degree. Coccolithophore 
PIC:POC is an important parameter in the global carbon cycle 
[54], determining the relative strength of BCP versus CCP at 
the cellular level. When coccolithophore PIC:POC is lower than 
a critical value that depends on the ambient seawater carbon 
chemistry, the net effect of coccolithophore growth is a source 
of CO2 and vice versa [55]. For example, such a threshold value 
can be 1.65 with a seawater pCO2 of 360 μatm at 25 °C [56]. 
The PIC:POC of coccolithophores can vary from 0.1 to 3.0 due 
to species differences and environmental changes [17].

Potential Changes in Carbon Accumulation  
and Sinking Rate of Coccolithophores under 
Global Change
Since the Industrial Revolution, human activities have led to 
drastic changes in the physical and chemical properties of the 
ocean. The surge in carbon dioxide emissions due to fossil fuel 
combustion has directly resulted in OA, elevated surface water 
temperatures, and nutrient limitation. Various environmental 
factors greatly impact marine organisms and perpetually trans-
form marine ecosystems. These diverse environmental factors 
account for the changes in coccolithophores, and coccolitho-
phores respond in multiple aspects, encompassing regulatory 
effects on their photosynthesis and calcification. Based on cul-
ture experiments and field investigations, the impacts of OA, 
surface water warming, alterations in light intensity, and nutri-
ent limitation on coccolithophore cellular carbon production 
are discussed, with E. huxleyi serving as a model species for 
illustration. Furthermore, a brief description of the combined 
effects of environmental factors is given. Although coccolitho-
phores can exhibit species- or strain-specific responses to cer-
tain environmental changes, some general physiological features 
can be summarized.

Ocean acidification
Serving as an important atmospheric carbon “sink”, the ocean is 
the fate of most anthropogenic CO2 [57]. Since 1750, atmospheric 
CO2 concentrations have increased by 47% and will continue to 
rise in the future [58]. The CO2 absorbed by seawater has caused 
intensified OA, as suggested by a decrease in seawater pH and 
CO3

2− concentration, an elevation in HCO3
− concentration, and 

a shallowing in the carbonate compensation depth (CCD) 
[59,60]. If CO2 emissions are not effectively curtailed, atmo-
spheric CO2 levels are expected to reach 950 ppm by the end of 
this century, with pH continuing to drop by 0.3 to 0.5 [61].

OA leads not only to a decrease in seawater pH but also to 
changes in the composition of seawater carbonate chemistry. 

The combined effects of these 2 processes on coccolithophore 
photosynthesis and calcification are dual-faceted. Because of the 
species and strain specificity of coccolithophores, along with 
variations in laboratory culture conditions, the responses of coc-
colithophore organic and inorganic carbon production to acidi-
fication have inconsistent results. For example, Iglesias-Rodriguez 
[62] experimentally demonstrated a significant increase in both 
PIC and POC contents of E. huxleyi NZEH with CO2 increase 
from 490 to 750 ppmv, whereas the cellular PIC:POC ratio 
remained unchanged. Meanwhile, de Bodt’s [63] study revealed 
a decrease in cellular PIC production and PIC:POC, with no 
significant change in POC production for E. huxleyi AC481 
under OA conditions. In contrast, Bach et al.’s [64] results on 
E. huxleyi PMLB92/11A exhibited an optimal curve response 
for PIC production, characterized by a sharp increase from the 
lowest to 40-Pa CO2, followed by a decline with increasing pCO2 
and a decreasing trend in PIC:POC. Overall, most studies found 
that acidification leads to reduced PIC productivity [65,66] and 
lower PIC:POC of coccolithophores [63,64,66,67].

Additionally, variations in the growth period of coccolitho-
phores can also contribute to discrepancies in the experimental 
results. In the long-term acidification acclimation experiment 
of Jin and Gao [68], G. oceanica’s POC production from genera-
tions 670 to 1,564 under high CO2 levels was 7.8% higher than 
that under low CO2 partial pressure, whereas this difference 
became insignificant when culturing cells from generation 
1,564 to 2,000. Schlüter et al. [69] discovered that the continu-
ous cultivation of E. huxleyi for 2,100 generations in an acidified 
environment decreased PIC production. However, when the 
culture conditions were restored to normal levels, calcification 
remained consistent with the control, indicating the adaptive 
evolution of coccolithophores in response to OA.

Biermann and Engel investigated variations in the sinking 
rate of E. huxleyi aggregates under diverse CO2 levels, reveal-
ing a roughly 3.5-fold decrease under high CO2 conditions. 
Furthermore, they found that high CO2 levels increased the 
formation of calcite aggregates and their bacterial content [70]. 
Similarly, Xi’s study [71] showed a 39.6% reduction in the 
sinking rate of coccolithophores when the CO2 concentration 
increased from 800 to 1,500 ppm.

From the perspective of ancient oceans, Beaufort et al. [72] 
discovered a long-term decrease in coccolith mass from the last 
glacial maximum (~20 kyr before the present) to the Holocene. 
This period coincides with an increase in atmospheric CO2 con-
centration from 180 to 280 ppm [72,73]. Their results indicate 
that (a) individual coccoliths become less calcified in response 
to OA and (b) the decrease in coccolith mass results from a 
transition of the coccolithophore community from heavier to 
lighter coccoliths due to increased seawater CO2.

Increased sea surface temperature
Temperature is a critical factor for phytoplankton growth, and 
phytoplankton growth rates reach their peak at optimal tem-
peratures [74]. The phytoplankton response to temperature 
encompasses genotypic [75] and phenotypic variations [76,77]. 
Temperature influences the phytoplankton community, leading 
to modifications in community composition and succession 
[78]. Concurrently, a rise in surface seawater temperature inevi-
tably intensifies seawater stratification, resulting in a decrease 
in nutrient supply from the deep sea to the surface layer [79,80].

Commonly, phytoplankton growth rates positively respond 
to temperature, but a continuous rise in temperature beyond 
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the optimal range for various coccolithophore species and 
strains can cause a decline in cellular growth rate [65,77,81–83]. 
Therefore, it can be predicted that with warming surface waters, 
coccolithophore species with low optimum temperatures would 
move toward the poles. Paleofossil evidence shows significant 
shifts in coccolithophore biogeography and abundance during 
the rapid warming event of the Paleocene–Eocene turnover 
(56 Ma). Coccolithophores vanished entirely at lower latitudes, 
restricting themselves to colder waters [84]. In addition, recent 
observations (from 1947 to 2009) indicated a poleward migra-
tion of E. huxleyi coccolithophore blooms [85–88].

Pooled analysis of data from species and strains of cocco-
lithophores revealed that the highest value of PIC:POC com-
monly occurs when the temperature ranges from 15 °C to 
20 °C [17,66,81,89]. The POC content of different strains of 
E. huxleyi was often observed to be insensitive [81,89] or decreas-
ing [89,90] in response to warming, and similarly decreasing 
trends were observed for Syracosphaera pulchra [91] and 
Coccolithus pelagicus [92]. Coccolithophores tend to reveal a 
pronounced decrease in warming in PIC contents [81,89,90,92,93]. 
In terms of sinking rate, calcified strains of coccolithophores 
responded differently from noncalcified strains. The sinking 
rate of calcified strains decreased when the temperature was 
increased from 15 °C to 25 °C. However, the noncalcified strains 
reached a maximum sinking rate at 20 °C [71,81]. Genotype 
differences in various coccolithophores were one of the reasons 
why studies on the effect of temperature on photosynthesis 
and calcification in coccolithophores did not yield consistent 
results.

Ocean warming is associated with fluctuating temperature 
changes. Wang et al. [82] examined the physiological and eco-
logical responses of E. huxleyi to warming and temperature 
variations, revealing a reduction in the growth and calcification 
rates of E. huxleyi due to these factors. Similarly, Wang et al. 
found that for E. huxleyi RCC1266, warming and temperature 
variations notably decreased the sinking rate. According to 
Stokes’ law, cell density and size are the key determinants of the 
sinking rate. A decrease in cellular PIC content due to warming 
indirectly lowers cell density, reducing the sinking rate and 
diminishing the carbon export capacity of coccolithophores [81].

Light
Light serves as the primary energy source for phytoplankton 
growth. Coccolithophore blooms frequently occur in areas and 
seasons with high light intensity (≥25 μmol photons m−2 s−1). 
Climate-change-induced alterations in light intensity affect 
coccolithophores in 2 ways. First, surface water warming inten-
sifies seawater stratification, leading to increased light avail-
ability for phytoplanktons in the euphotic zone [94,95]. The 
augmentation of photosynthetically active radiation (PAR) 
boosts E. huxleyi’s photosynthetic rate or POC production 
[96–99]. However, fluctuating outdoor light (without UV radia-
tion) decreases the growth rate of coccolithophores [100]. The 
effect of PAR on coccolithophore calcification has yielded 
varied conclusions among researchers (Table 2). Nimer and 
Merrett [99] and Zondervan et al. [101] found that E. huxleyi’s 
calcification rate was amplified with increased PAR. However, 
some researchers noted a decrease in PIC production [102,103] 
and PIC:POC values [66,102,103] when PAR was elevated from 
50 to 400 μmol photons m−2 s−1—a phenomenon that can be 
explained by the fact that the energy requirement for calcifica-
tion in coccolithophores is only 19% of that for photosynthesis 
[104]. In contrast, Xi’s research [71] indicated a significant 
increase in E. huxleyi’s PIC content and PIC:POC with an 
increase in light from 50 to 500 μmol photons m−2 s−1, corre-
sponding to an approximately 6-fold increase in E. huxleyi’s 
sinking rate.

Second, ozone layer depletion has increased the amount 
of medium-wave ultraviolet radiation (UVR, 280 to 400 nm) 
reaching Earth’s surface, comprising UV-A (280 to 315 nm) 
and UV-B (315 to 400 nm). UVR (especially UV-B) tends to 
inhibit photosystem II [105], damages DNA molecules [106], 
and influences biological growth rates [107]. In this respect, 
coccoliths can serve as a protector for UVR resistance. Calcified 
coccolithophores can grow up to 3.5 times faster than noncalci-
fied cells under UVR (twice as fast under indoor light) [108]. 
However, UVR irradiation in nature also significantly reduces 
calcified coccolithophore growth rates [100,108,109]. This may 
reflect E. huxleyi’s trade-off between growth rate and cellular 
self-repair under UVR, accompanied by the production of 
UV-absorbing compounds [100]. E. huxleyi’s calcification rate 

Table 2. Summary of available research on diverse responses of coccolithophores to PAR. Symbols: ↑ represents positive effects; ↓ repre-
sents negative effects; → represents no significant effect; ∩ represents optimal response; / represents data loss; * indicates data calcu-
lated based on PIC and POC production rate and growth rate (μ) from the article in the following formulas: PIC production = (PIC/cell) × μ, 
POC production = (POC/cell) × μ.

Species/Strain Light intensity (μmol photons m−2 s−1) POC content PIC content PIC/POC Reference

E. huxleyi PML B92/11 15–150 ↑ ↑ ↑ Zondervan et al. [101]

E. huxleyi B92/11 30, 300, 800 ∩* ↑* ↑* Trimborn et al. [96]

E. huxleyi CCMP 371 50, 400 → ↓ ↓ Feng et al. [103]

E. huxleyi CS–369 150, 300, 500 ↑* ∩* ∩ Xu and Gao [97]

G. oceanica NIES-1318 50, 190, 400 ∩ ↓ ↓ Tong et al. [102]

E. huxleyi NIWA1108 14–650 ↑* →* ↓ Feng et al. [66]

E. huxleyi PML B92/11 80–480 ↑ ∩ ∩ Zhang et al. [98]

E. huxleyi NIWA1108 50–1,000 → ↑ ↑ Xi [71]
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also declines with increasing UVR. Gao et al. [109] reported 
that UVR could inhibit E. huxleyi’s calcification rate by 45%, 
with UV-A and UV-B contributing 14% and 31%, respectively. 
Thus, we infer that higher UVR from a shallower oceanic mixed 
layer and ozone layer depletion reduces coccolithophores’ PIC 
and POC production.

Nutrients
Nutrient levels govern phytoplankton growth, and cells’ nutri-
tional state impacts their photochemical capacity [110]. Climate-
driven ocean warming exacerbates seawater stratification, 
impeding nutrient transfer from deeper waters to the surface 
layer and intensifying nutrient limitations for coccolithophore 
growth [80]. Calcification exhibits increased sensitivity to light 
and CO2 levels when coccolithophores are limited by nutrients 
[111]. In nutrient limitation, cells prolong the G1 phase, which 
is the initial stage for calcification, typically resulting in an 
increased PIC:POC ratio [112]. In this regard, Paasche [113] 
reported that both nitrogen and phosphorus limitations resulted 
in an increase in total coccolith numbers for a cell, which can 
compensate for and even increase the cellular PIC quota as a 
potential loss in PIC may be caused by decreased calcite content 
per coccolith in N-limitation. Coccolithophores’ remarkable 
nutrient uptake capacity gives rise to their critical role in the 
marine carbon cycle.

Phosphorus
Dissolved inorganic phosphate (DIP) plays a crucial geo-
chemical role in marine ecosystems, supporting phytoplankton 
growth [114]. Marine phosphate originates from both natural 
and artificial sources. Natural phosphate encompasses biologi-
cal lipids, nucleic acids, proteins, and polysaccharides, whereas 
synthetic phosphates primarily consist of herbicides and pes-
ticides discharged into the sea [115–117]. Contrary to nitrogen 
in oceans, which can be replenished through biological nitro-
gen fixation, there is no similar source for marine phosphate. 
Consequently, DIP levels in the open ocean are exceptionally 
low—surface seawater phosphate exists only at nanomolar con-
centrations—making it an essential limiting factor for marine 
algal growth [118]. Phosphorus starvation leads to diminished 
phytoplankton growth rates and decreased CO2 fixation via 
photosynthesis, theoretically resulting in a reduced capacity 
and efficiency of the BCP. However, coccolithophores have 
often been observed to form algal blooms in phosphorus-limited 
waters. For instance, Tanioka et al. found a positive correlation 
between high C:P ratio and coccolithophore abundance in 
polar and subpolar areas [119,120]. This suggests that certain 
adaptive strategies employed by coccolithophores can offset the 
diminished BCP capacity caused by slower growth rates and 
thus enhance carbon export efficiency.

Coccolithophores use various adaptive strategies under 
phosphorus-limited conditions. Coccolithophores can reduce 
phosphorus demand by restructuring cell membranes and 
facilitate phosphate release by up-regulating the transcription 
of phospholipase C and A [121]. The proportion of phospho-
lipids in E. huxleyi’s cell membrane can decrease from 33% to 
2%, concurrently minimizing its nitrogen requirement to pre-
vent significant intracellular C/P fluctuations [122]. In this 
regard, Wang et al. [123] reported that under phosphorus-
limited conditions, the up-regulation of C4 photosynthesis 
mRNA led to a 3.4-fold increase in POC content, a 5-fold 
increase in PIC content, and a 37% increase in coccolithophore 

sinking rate due to cell division inhibition. Müller et al. [112] 
also found that the Ca content of E. huxleyi was elevated by 
about 4-fold under P-limitation. Similar responses of PIC and 
POC contents were also presented in additional studies of 
E. huxleyi [67,113,124,125] and Calcidiscus leptoporus [126]. In 
laboratory conditions, coccolithophores under P-limitation 
often exhibit increased PIC:POC. This is attributed to the cells’ 
inability to synthesize nucleic acids for cell division due to 
phosphorus scarcity, even as calcification persists [127].

Additionally, phytoplankton can utilize dissolved organic 
phosphorus to mitigate DIP deficiencies [128]. In the absence 
of DIP, E. huxleyi can utilize phosphorus-containing pesticides 
discharged into the sea, such as glyphosate, as its exclusive phos-
phorus source. Despite the low utilization efficiency of approxi-
mately 33%, attributed to energy costs and pesticide toxicity, 
E. huxleyi grown with glyphosate demonstrated an experimental 
increase in C content, C:P ratios, and sinking rate. The observed 
increase in cellular stoichiometry C and C:P suggests an enhanced 
carbon export per unit of phosphorus support, indicating 
improved carbon export efficiency of E. huxleyi [129].

Nitrogen
In marine environments, the accessibility of inorganic nitrogen 
sources such as NO3

−, NH4
+, and NO2

− plays a crucial role in 
phytoplankton growth [130]. Increased stratification dimin-
ishes the nitrogen supply from deeper waters, whereas changes 
in pCO2 substantially impact the marine nitrogen cycle, leading 
to a reduction in the NO3

− to NH4
+ ratio in seawater [131]. 

According to Feng et al. [66], N-limitation is predicted to be 
the most significant factor influencing the growth, photosyn-
thesis, and calcification process of E. huxleyi.

N-limitation resulted in a reduction in growth rate 
[66,71,132,133] and chlorophyll a and c contents [134] and 
decreased efficiency in O2 release through photosynthesis and 
HCO3

− uptake during calcification [135]. Under nitrogen-
limited conditions, the PON content of coccolithophores was 
reduced by one-third [135]. However, the carbon concentration 
mechanism regulated the rate of CO2 fixation per unit of nitro-
gen by the Rubisco enzyme, maintaining a constant C:N ratio 
(8.3 to 8.5) in coccolithophores to ensure its adequate growth 
[135,136].

A decreasing trend in the POC content of E. huxleyi and 
G. oceanica was observed in various research [71,133,137,138], 
whereas C. leptoporus revealed the opposite trend [126]. None-
theless, the impact of N-limitation on the PIC production of 
coccolithophores remains somewhat contentious. Through 
experiments with C. leptoporus, Langer et al. [126] demon-
strated that this species could counteract nutrient stress by 
augmenting PIC production, as found in G. oceanica [133]. 
However, this was not corroborated in subsequent experiments 
with E. huxleyi. In response, Langer et al. [139] posited that the 
observed increase in PIC during the experiments could be 
attributed to variations in experimental methodology, asserting 
a lack of evidence to support the notion that N-limitation 
enhances particulate carbon export. Furthermore, akin to 
P-limitation, an upward trend was observed in the PIC:POC 
ratio of coccolithophores under nitrogen-limited conditions 
[71,126,127,135].

Guo et al. [138] and Xi [71] demonstrated that N-limitation 
led to a substantial decrease in the sinking rate of E. huxleyi. 
Meanwhile, according to Pantorno et al., E. huxleyi exhibited 
varying sinking rates at different growth stages. Specifically, 
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cells in the stationary stage sank faster under nitrogen-limited 
conditions compared with unrestricted cells, whereas cells in 
the exponential stage demonstrated a contrasting trend. In gen-
eral, coccolithophores in the exponential stage exhibited the 
highest sinking rate under nitrogen-replete conditions [134]. 
However, Jiang et al. [133] found that N-limitation enhanced 
the sinking rate of G. oceanica. In contrast to Pantorno’s view 
that cell size is the major factor that influences the sinking rate, 
he suggested that the ballast effect contributes more to POC 
sinking.

Iron
Iron is an essential element for all living things because of 

its ubiquitous presence in oxidoreductases and other enzymes, 
especially in respiration and photosynthesis [140]. Because the 
limited amount of iron in the ocean presents as highly insoluble 
minerals or polymeric oxidized hydrates [140], the open ocean 
contains less iron than most terrestrial environments, and the 
availability of iron has greatly restricted the primary production 
of marine phytoplankton [121]. When the iron concentration is 
reduced from 1,000 to 0 nM, the growth rate of coccolithophores 
decreases to one-third, whereas the carbon fixation efficiency 
concomitantly decreases [141]. However, coccolithophores can 
thrive even under limited iron availability, and blooms of coc-
colithophores have been observed in some iron-restricted areas. 
For instance, Muggli and Harrison discovered that E. huxleyi 
could sustain growth in naturally low-iron seawater while main-
taining a constant cell size and a cellular C:N ratio. In contrast, 
diatoms ceased division after 3 generations [142]. Muggli and 
Harrison [143] found that iron limitation, while reducing the 
cell size of E. huxleyi, resulted in increased PIC and POC content 
and stabilized chlorophyll synthesis. The underlying mechanism 
of iron absorption remains to be investigated.

Combined effects of environmental factors
Marine organisms are exposed to complex and closely linked 
environmental factors. Multifactorial culture experiments have 
been conducted, which are essential and fundamental to under-
standing how the future marine environment may affect coc-
colithophores (Fig. 3).

Coccolithophores, as typical calcifying planktons, have drawn 
great attention from many scholars because of their susceptibility 
to OA. Thus, the interaction between acidification and various 
environmental factors has been extensively investigated. Liao et al. 
explored the impact of both dual and multifactorial interactions 
on the physiology and elemental composition of E. huxleyi, with 
a focus on OA. They found that the combined influences of acidi-
fication and nitrogen limitation synergistically reduced E. huxleyi’s 
PIC content while antagonistically decreasing its POC content. 
The sinking rate of coccolithophores was significantly reduced 
under high pCO2–low N conditions [144]. Acidification and high 
light increased the POC content of E. huxleyi [101,145], which 
was further enhanced in a phosphorus-limited environment 
[145]. A combination of 5 factors, acidification, irradiance, tem-
perature, nitrogen, and phosphorus, had the most significant 
negative synergistic effects on E. huxleyi’s physiology and ele-
mental composition [146]. As discussed above, PIC:POC values 
were supposed to be increased under nitrogen and phosphorus 
limitation, but Rouco et al. [147] found that the addition of acidi-
fication decreased it. Changes in carbonate chemistry can also 
affect the bioavailability of micronutrients. Lorenzo et al. dem-
onstrated that in current marine environments, increases in dis-
solved iron enhance E. huxleyi’s carbon fixation and stimulate 
coccolithophore bloom production. However, they projected that 
carbon production from coccolithophore blooms would be 
relatively lower in future marine environments modeled with 
increased pCO2 levels [148].

Fig. 3. Effects of multiple environmental factors on carbon accumulation and sinking rate of coccolithophores.
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The extent to which coccolithophore PIC production 
responds to pCO2 is usually dependent on temperature 
[149,150]. At optimal temperatures, increased heat can offset 
the adverse effects of high pCO2. Milner’s experiment showed 
that the combined effects of acidification and warming boosted 
E. huxleyi’s POC production rate [149]. Furthermore, the 
PIC:POC decrease in E. huxleyi resulting from increased pCO2 
became insignificant with rising temperature [149,150]. However, 
Sett concluded that the response of POC to pCO2 was indepen-
dent of temperature elevation, implying that high pCO2 levels 
enhance POC production irrespective of thermal conditions 
[151]. The interplay between temperature and carbonate chem-
istry influences E. huxleyi’s density, subsequently reducing 
its sinking rate and diminishing carbon exportation [149]. 
Meanwhile, Jin et al. [152] examined how G. oceanica’s physi-
ological traits (noncalcified strain domesticated for 400 genera-
tions under 1,000 μatm CO2) respond to various environmental 
factors under greenhouse conditions. Their findings revealed 
an enhanced photosynthetic carbon sequestration capacity of 
G. oceanica, but survival pressures increased with UV radiation 
intensification.

Furthermore, the combined influence of light and diverse 
environmental factors has been extensively investigated. At a 
moderate light intensity of 150 μmol photons m−2 s−1, the growth 
rate of E. huxleyi cultured with different nitrogen sources was 
substantially increased. Moreover, the sinking rate during the 
senescent phase was most significantly diminished under nitrate 
cultivation [137]. Increased light intensity and NO3

−-limiting 

conditions would have a significantly negative impact on the 
calcification of G. oceanica [102]. The joint impact of acidifica-
tion (pH = 7.6) and UVR inhibited E. huxleyi’s calcification by 
99% and photosynthesis by 15% [109]. The effectiveness of nitro-
gen sources played a crucial role in coccolithophore resistance 
to UVR exposure, with G. oceanica’s growth rates decreasing by 
58% under both UVR exposure and nitrogen starvation [153].

Conclusions and Outlook
Coccolithophores are unicellular calcifying algae widely distrib-
uted across the global ocean. Through photosynthesis, coccolitho-
phores contribute to the upper ocean BCP, accounting for up to 
20% of total carbon fixation in unproductive central subtropical 
gyres [5]. Additionally, through calcification, they contribute to 
the CCP, and more than 50% of surface CaCO3 sediments are 
derived from their contributions [6,154]. Environmental factors 
such as temperature, carbonate chemistry, and nutrient conditions 
are critical for the photosynthesis and calcification of coccolitho-
phores, driving changes in their carbon accumulation and sinking, 
which, in turn, affects ocean–atmosphere CO2 fluxes. The primary 
conclusions can be found in Fig. 4.

Studies involving field observations and laboratory cultures 
of coccolithophore carbon export have shown progress, yet the 
following challenges remain:

1.  Previous studies mainly focused on the physiological 
parameters of coccolithophores in response to envi-
ronmental factors. However, their molecular regulatory 

Fig. 4. Changes in carbon accumulation and sinking rate of coccolithophores under variable environmental factors.
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mechanisms are yet to be discovered. A combination 
of transcriptomics, metabolomics, and other emerging 
research methods can help reveal the physiological 
responses of coccolithophores. This approach can also 
help investigate how key gene expressions and meta-
bolic pathways change and clarify underlying regulatory 
mechanisms. Additionally, researchers should pay atten-
tion to the differences in carbon sequestration pathways 
between marine phytoplankton and land plants.

2.  E. huxleyi is a common subject for studying the physiological 
response of coccolithophores to environmental change, but 
different species or strains of coccolithophores may have dif-
ferent response patterns [72,155,156]. In some areas, E. huxleyi 
does not contribute much to the export of PIC, so other 
species of coccolithophores should also be considered [7].

3.  Indoor modeling experiments usually increase the mean 
temperature, but climate extremes may have caused more 
impacts than the average temperature [157]. Global warm-
ing affects the carbon export of coccolithophores through 
multifactorial interactions and biological adaptations, 
which are difficult to simulate in laboratory cultures. 
Therefore, short-term indoor domestication cultures, long-
term acclimatization culture experiments, and large-scale 
and long-term field investigations should be integrated.

4.  Field investigation of living coccolithophores in surface 
waters is a rising area of research. However, only a few 
studies have analyzed and compared the distribution pat-
terns of living and dead coccolithophores in a short time 
scale. Combining the dynamics of planktonic communi-
ties with the accumulation rate of coccolithophores in 
the sediment surface layers can help estimate the actual 
export of coccolithophore carbon in the water column.

5.  The study of carbon export by coccolithophores requires 
interdisciplinary research. Physical processes, such as 
mesoscale eddies, influence the carbon export of cocco-
lithophores. Ocean color satellites can provide coccolitho-
phore PIC data from surface water observations. However, 
satellite observations are more reliable in high-latitude, 
nutrient-rich waters than in nutrient-poor waters.

6.  The coupling of BCP and CCP is the basis for studying 
coccolithophores. The ultimate goal is to understand 
how coccolithophores contribute to the oceanic carbon 
pump. Many studies have examined how environmental 
changes affect the PIC and POC export flux of cocco-
lithophores, but the underlying biological mechanisms 
are still unclear. The contributions of coccolithophore 
PIC and POC export to the oceanic carbon export have 
not been precisely measured, and relevant models need 
improvement.

In summary, to estimate and predict the contribution of 
coccolithophores to the oceanic carbon pump under climate 
change accurately, further investigation and research are required. 
In-depth and systematic studies with multidisciplinary inter-
sections are imperative.
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