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Abstract  The co-occurrence of bacteria and microeukaryote species is a ubiquitous ecological 
phenomenon, but there is limited cross-domain research in aquatic environments. We conducted a network 
statistical analysis and visualization of microbial cross-domain co-occurrence patterns based on DNA 
sampling of a typical subtropical bay during four seasons, using high-throughput sequencing of both 18S 
rRNA and 16S rRNA genes. First, we found obvious relationships between network stability and network 
complexity indices. For example, increased cooperation and modularity were found to weaken the 
stability of cross-domain networks. Secondly, we found that bacterial operational taxonomic units (OTUs) 
were the most important contributors to network complexity and stability as they occupied more nodes, 
constituted more keystone OTUs, built more connections, more importantly, ignoring bacteria led to 
greater variation in network robustness. Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, and 
Actinobacteria were the most ecologically important groups. Finally, we found that the environmental 
drivers most associated with cross-domain networks varied across seasons (in detail, the network in 
January was primarily constrained by temperature and salinity, the network in April was primarily 
constrained by depth and temperature, the network in July was mainly affected by depth, temperature, and 
salinity, depth was the most important factor affecting the network in October) and that environmental 
influence was stronger on bacteria than on microeukaryotes.
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1 INTRODUCTION

In natural ecosystems, organisms are interconnected 
via predation, competition, mutualism, parasitism, 
and other interactions to form complex networks 
(Faust and Raes, 2012). Co-occurrence networks 
generated from microbial DNA datasets using 
mathematical and statistical methods (e.g., correlation-
based methods) (Faust and Raes, 2012) can be used 
to infer the interactions among co-occurring members 
and their relationships with environmental factors. 
Nodes and edges in networks usually represent 
organisms and statistically significant associations 
between organisms, respectively. Therefore, networks 
can reflect species interaction and dynamics of 

ecosystems to a certain extent (Berry and Widder, 
2014). In addition, networked structure is closely 
related to ecosystem functions (Bastolla et al., 
2009). Considering that bacteria and microeukaryotes 
significantly contribute to the biodiversity of 
ecosystems and play a key role in food webs and 
biogeochemical cycles (Fuhrman, 2009; Crits-
Christoph et al., 2016), more data are needed on 
cross-domain networks between bacteria and 
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microeukaryotes. Understanding and preserving this 
cross-domain microbial network structure is important 
for future ecosystem conservation. Recent advances 
in sequencing techniques and bioinformatics now 
enable an unprecedented level of investigation into 
complicated microbial ecological networks. Some 
findings have been obtained from single bacterial or 
microeukaryotic communities in soil (Chen et al., 
2019a), reservoirs (Xue et al., 2018b), ocean (Milici 
et al., 2016), and the human body (Jackson et al., 
2018). A global bacterial co-occurrence network has 
also been inferred from samples and sequence 
variants from 14 habitats in the Earth Microbiome 
Project dataset (Ma et al., 2020). All of these 
findings highlight the interconnection patterns of 
single microbial communities in single or various 
environments. In recent years, several studies 
have begun to focus on cross-domain microbial 
co-occurrence. For example, both bacterial and 
microeukaryotic networks are more stable and play 
more important roles in biogeochemical cycling in 
higher mean annual precipitation deserts than in 
lower (Feng et al., 2021). In a study of temperature 
gradient-related microbial population dynamics and 
network interactions, Anderson et al. (2021) found 
that increased eukaryote-eukaryote interactions 
under warm temperatures (e.g., Bacillariophyta-
Dinophyceae) and the emerging contribution of 
bacteria to interactions and network connectivity 
under cold conditions. These studies contribute to our 
comprehension of microbial community organization 
in ecosystems, offering new perspectives on 
biogeochemistry modeling and ecosystem health 
assessment. However, ecological investigations of 
cross-domain microbial networks are still limited 
(Tan et al., 2015; Zancarini et al., 2017).

One fundamental question is whether it exists 
and what the relationship is between the complexity 
and stability of cross-domain microbial networks 
(Okuyama and Holland, 2008; Landi et al., 2018; 
Yuan et al., 2021). Previous studies have provided 
key information on the relationship between the 
complexity and stability of networks in a single 
domain. For example, Thébault and Fontaine (2010) 
have found that more complex architecture promotes 
stability in mutualistic eukaryotic networks, whereas 
the stability of trophic networks is enhanced in more 
simple architectures. In terms of bacterial networks, 
it has also been shown that the complexity of 
networks causes stability under warming conditions 
(Yuan et al., 2021). In contrast, studies on the 
relationship between complexity and stability in 

cross-domain microbial networks are still rare.
The second question refers to the relative 

importance of bacteria and microeukaryotes in 
constructing cross-domain microbial networks. Cross-
domain co-occurrence of microorganisms is a common 
ecological phenomenon, as different microorganisms 
perform various ecological functions through forming 
a complex ecological interaction network (Bascompte, 
2009; Needham et al., 2017; Pande and Kost, 2017; 
Mikhailov et al., 2019). Shi et al. (2019) have found 
that archaea played a critical role in the construction 
of soil microbial co-occurrence network (including 
bacteria, fungi, and archaea) in the Qinghai-Xizang 
Plateau, because archaea not only had more 
connections than others in the network, but also 
greatly enhanced the robustness of the network. 
However, we know surprisingly little about the 
relative importance of bacteria and microeukaryotes 
for structuring their co-occurrence network in natural 
ecosystems.

The third question is the potential environmental 
drivers of cross-domain microbial networks and 
the differences in their effects on bacteria and 
microeukaryotes. Understanding the responses of 
microbial networks to environmental forcing features 
such as seasonality (Gilbert et al., 2012) and natural 
disturbance (Jones et al., 2008) is a central theme in 
microbial ecology, which can provide much 
valuable information. Specifically, it is possible to 
determine the general preferences of taxa for 
specific environmental factors when environmental 
parameters are included in the network (Faust and 
Raes, 2012; Vacher et al., 2016). For example, Wan 
et al. (2020) found significant differences in the 
environmental drivers of bacterial, fungal, and 
diazotrophic networks in paddy soils of eastern 
China. At the continental scale (ca. 12 000 km), 
temperature, salinity, nitrite, nitrate nitrogen, total 
nitrogen, and grain size were important environmental 
factors driving the three different protozoans 
(diatoms, caudodonts, and ciliates) networks in 
intertidal sediments (Pan et al., 2020). In most 
papers addressing microbial networks, bacteria and 
microeukaryotes have been described separately. By 
contrast, we analyzed both components (bacteria and 
microeukaryotes) to provide a more comprehensive 
understanding of the response of cross-domain 
networks to environmental disturbances.

Sansha Bay is a typical subtropical bay located in 
southeastern China. In recent years, water quality 
and ecosystem of Sansha Bay have been strongly 
affected by land pollution, coastal industries, 
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aquaculture, and urbanization, resulting in severe 
habitat degradation (Wu et al., 2012). The ecological 
condition of Sansha Bay is the epitome of many 
subtropical bays, and we expect the cross-domain 
microbial co-occurrence network in this bay to be a 
representative one.

In this study, water samples were collected from 
Sansha Bay during four seasons (January, April, 
July, and October of 2019). Both 18S rRNA and 16S 
rRNA genes were sequenced using high-throughput 
sequencing. We hypothesize that (1) there is no 
significant relationship between the complexity and 
stability of cross-domain networks under seasonal 
variation; (2) bacteria and microeukaryotes are 
equally important in the construction of cross-
domain microbial networks in different seasons; 
(3) the same environmental factors drove the cross-
domain networks in different seasons, and 
environmental factors had the same effects on 
bacteria and microeukaryotes components in the 
networks.

2 MATERIAL AND METHOD

2.1 Study area, sampling, and environmental 
factors

This study was conducted in Sansha Bay 
(119°30′E–120°5′E, 26°30′N–26°51′N), located in 
the northeastern area of Fujian Province, China, is 
connected to the East China Sea by only a narrow 
outlet (about 2.9 km wide). This subtropical bay was 
seasonally sampled at two different depths from 
surface to bottom waters (January, April, July, and 
October of 2019, Fig.1). A total of 120 water 
samples (30 samples were collected in each season) 

were collected using Niskin bottles (Supplementary 
Table S1). The samples were transported to the 
laboratory and processed immediately. Water samples 
were pre-filtered through a 200-μm sieve to minimize 
the interference of debris, mesoplankton, and 
macroplankton for community analyses. Then, a 1-L 
water sample was filtered through a 0.22-μm 
polycarbonate membrane (47 mm in diameter, 
Millipore, Billerica, MA, USA). The filter membranes 
were stored at -80 °C until DNA extraction.

Water temperature, salinity, and depth were 
measured in situ with conductivity-temperature-
depth (CTD) oceanic profilers (AML Base X). Other 
chemical parameters, including pH, total nitrogen 
(TN), dissolved inorganic nitrogen (DIN), nitrite 
(NO-

2), nitrate (NO-
3), ammonium (NH4

+), phosphate 
(PO3-

  4 ), total phosphorus (TP), dissolved silicate 
(DSi), and chlorophyll a (Chl a) were also measured 
according to standard methods (Xie et al., 2020).

2.2 DNA extraction, PCR, and Illumina 
sequencing

DNA was extracted using the Fast DNA spin kit 
for soil (BIO101 systems, MP Biomedicals, Solon, 
OH, USA) following the manufacturer’s instructions. 
Bacterial DNA was amplified with tagged primers 
targeting the V3–V4 region of the 16S rRNA gene 
(341F, 5′-CCTAYGGGRBGCASCAG-3′ ; 806R, 5′- 
GGACTACNVGGGTWTCTAAT-3′) (Liu et al., 2019). 
The PCR mixture (30 μL) contained 15 μL of 
Phusion Master Mix (New England Biolabs, Beverly, 
MA, USA), 0.2 μmol/L of forward and reverse 
primers, and approximately 10-ng template DNA. 
PCR reactions included an initial denaturation at 
94 °C for 5 min, followed by 30 cycles of 94 °C for 
30 s, 57 °C for 30 s, 72 °C for 15 s, and a final 
extension at 72 °C for 10 min. The V9 region of 
the microeukaryotic 18S rRNA gene was amplified 
with primer pair 1380F (5′-CCCTGCCHTTTGTA 
CACAC-3′) and 1510R (5′-CCTTCYGCAGGTTC 
ACCTAC-3′) (Amaral-Zettler et al., 2009). PCR 
mixtures (30 μL) were prepared in triplicate and 
each contained 10 ng of DNA template. The PCR 
reaction was performed at 94 °C for 5 min, followed 
by 30 cycles at 94 °C for 30 s, 55 °C for 30 s, 72 °C 
for 15 s and a final cycle of 10 min at 72 °C. All 
triplicate PCR products (both 16S and 18S) were 
pooled in equal quantities and purified using GeneJET 
Gel Extraction Kit (Thermo Scientific, Hudson, NH, 
USA). Libraries were generated using the NEB Next 
Ultra DNA Library Prep Kit for Illumina (New 
England Biolabs, Beverly, MA, USA) following the 

Fig.1 Sketch map of Sansha Bay showing the sampling 
sites in four seasons (January, April, July, and 
October)
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manufacturer’s instructions, and barcode indexes 
were added. The library quality was assessed in 
the Agilent Bioanalyzer 2100 system (Agilent 
Technologies, Santa Clara, CA, USA). 16S 
libraries were sequenced on the Illumina  
HiSeq2500 platform (Illumina Inc., San Diego, 
CA, USA) using a paired end strategy. 18S 
libraries were sequenced on an Illumina X Ten 
platform (Illumina Inc., San Diego, CA, USA) 
using a paired-end (2×250 bp) approach.

2.3 Bioinformatics

Paired-end Illumina V9 region of 18S rRNA 
gene sequences and V3–V4 region of 16S rRNA 
gene sequences were processed using Vsearch 1.9.1 
(Rognes et al., 2016). To denoise sequences and 
remove chimeras, the unoise3 algorithm with 
default settings (minsize=8) was used before the 
downstream analyses. Quality-filtered reads were 
then clustered into operational taxonomic units 
(OTUs) at a cutoff of 97% for both 16S rDNA and 
18S rDNA sequences. Representative sequences from 
each OTU were aligned against the Protist 
Ribosomal Reference database (PR2 version 4.7.2) 
(Guillou et al., 2013) for microeukaryotes and 
SILVA database (version 132 NR) (Quast et al., 
2013) for bacteria, respectively. Unassigned 
microeukaryotic OTUs (sequence similarity to a 
reference sequence is <80%) and microeukaryotic 
singletons (OTUs with only one sequence) were 
discarded before the downstream analyses. For 
the 16S OTUs, eukaryotic, chloroplast, archaeal, 
singletons, and unclassified sequences were removed 
before further analysis. Finally, to minimize biases 
associated with sequencing coverage, both 16S 
rDNA and 18S rDNA sequence data were 
normalized to the lowest number of sequences per 
sample, i.e., 39 206 sequences per sample.

2.4 Network construction

All cross-domain co-occurrence networks were 
constructed using the Molecular Ecological Network 
Analyses Pipeline (MENAP) (Deng et al., 2012). 
First, OTUs that occurred in more than half (>15 
each season) of samples were used to construct 
the networks. Secondly, the Pearson’s correlation 
coefficient was calculated based on the log-
transformed OTUs abundances. Finally, a random 
matrix theory (RMT)-based approach was utilized to 
automatically determine the correlation cut-off 
threshold, leading to the construction of highly 
reliable microbial ecological networks (Luo et al., 

2007; Zhou et al., 2010). The greatest advantage of 
RMT-based network approach was the use of 
mathematically defined non-arbitrary correlation cut-
offs, significantly reducing uncertainty in network 
construction and comparison (Yuan et al., 2021), 
and this method has been widely applied (Deng 
et al., 2016; Ma et al., 2016). Four seasonal cross-
domain networks (one network per season) were 
constructed using data from each season, and the 
similarity threshold of 0.86 was determined by the 
RMT-based approach. For each observed network in 
this study, 100 corresponding random networks 
(identical number of nodes and edges) were 
constructed in the MENAP to test the significance of 
the observed networks (Maslov and Sneppen, 2002). 
Modular analysis was carried out using MENAP. 
All networks were visualized by the Gephi version 
0.9.2 (Bastian et al., 2009).

2.5 Network analysis

To evaluate the difference in the complexity of 
the four seasonal cross-domain networks, network 
complexity indices such as nodes, links, average 
clustering coefficient, relative modularity, number 
of modules, and R square of power law were 
calculated in the MENAP. To further understand the 
network organizational principles, Spearman’s rank 
correlations were used to determine the relationships 
between various network topological indices and 
RM (how modular a network is as compared with 
the average expected modularity) (Thébault and 
Fontaine, 2010). Then, we calculated robustness (as 
expressed by natural connectivity) based on the 
“igraph” package of R v. 4.0.2 to characterize the 
stability of the networks (Peng and Wu, 2016). 
Correlation analysis and Pearson ’s correlation 
coefficient were used to identify potential relationship 
between the network complexity and stability 
indices. To determine the relative importance of 
bacteria and microeukaryotes in the construction of 
four seasonal cross-domain networks, specific taxa 
from the networks were removed one by one, and 
the robustness of remaining networks was calculated 
(Shi et al., 2019). To distinct the roles of each node 
in the cross-domain networks and further verify the 
relative importance of bacteria and microeukaryotes; 
Zi (within-module connectivity) and Pi (among-
module connectivity) values were calculated using 
MENAP. Nodes were defined as network hubs (Zi>
2.5; Pi>0.6), module hubs (Zi>2.5; Pi£0.6), connectors 
(Zi£2.5; Pi>0.6) or peripherals (Zi£2.5; Pi£0.6) 
(Olesen et al., 2007; Deng et al., 2012). Among 
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these, network hubs, module hubs, and connectors 
have been proposed to be kCystone taxa (Deng 
et al., 2012; Banerjee et al., 2018). Pearson’s 
correlation analysis was carried out using SPSS 20.0 
to assess the relationships between the relative 
abundance of keystone taxa and environmental 
factors. To decipher the environmental drivers of 
networks and further investigate the ecological 
associations between species (microeukaryotes and 
bacteria) and environmental factors, all 
environmental factors measured in our study were 
included in the constructed cross-domain networks. 
Only connections that were strong (Pearson’s |R|>
0.60) and statistically significant (P<0.01) were 
considered in this analysis. Then the directly linked 
species-environment connections were selected and 
visualized by Gehphi version 0.9.2.

3 RESULT

3.1 Microbial diversity and community compositions

For both the 18S and 16S rDNA datasets, a total 
of 4 704 720 high-quality sequences were recovered 
from 120 water samples (39 206 sequences per 
sample), respectively. For the 18S rDNA dataset, we 
finally detected 10 291 OTUs at 97% sequence 
similarity threshold, and the number of OTUs per 
sample varied from 536 (sample ES10-11D) to 2 023 
(sample ES4-2D). 18 668 OTUs were obtained from 
the 16S rDNA dataset at the cutoff of 97% sequence 
identity, and the number of OTUs varied from 1 883 
(sample PS1-19B) to 5 898 (sample PS7-13D). 
Results from the diversity indices (ACE, Chao1, 
Shannon, and Pielou) demonstrated that April had the 
highest diversity for microeukaryotes, while bacterial 
diversity was higher in July (Supplementary Fig.S1).

The bacterial and microeukaryotic sequences 
were classified into different taxa levels, and the 
relative abundances of the top 20 most abundant 
groups in bacterial and microeukaryotic samples 
from different seasons were shown in Supplementary 
Table S2. The results indicated that the 
relative abundance proportions of dominant taxa 
differed significantly among various seasons. For 
microeukaryotic community, the relative abundance 
of Unclassified, Alveolate, and MAST was 
highest in January; April ’s samples possessed a 
higher abundance of Labyrinthulea than other 
samples; high relative abundances of Alveolate, 
Chrysophyceae, and Mollusca were observed in the 
samples of July; and Dinoflagellata, Apicomplexa, 
and Alveolate were more abundant in October. 

For the bacterial community, Alphaproteobacteria, 
Gammaproteobacteria, Bacteroidetes, and Actinobacteria 
were the four most abundant bacterial taxa in each 
season. The sequence abundance proportion of 
Gammaproteobacteria was significantly higher in 
January than in other seasons, the proportion of 
Cyanobacteria was higher in January.

3.2 Linkage between cross-domain network 
complexity and stability

Four seasonal cross-domain networks were 
constructed, with the networks for January, April, 
July, and October containing 277, 455, 505, 185 
nodes and 974, 1 103, 1 886, 355 edges, respectively 
(Fig.2). All observed networks exhibited scale-free 
characteristics (power-law: R2=0.829 for January 
network, R2=0.892 for April network, R2=0.824 for 
July network, and R2=0.886 for October network, 
respectively), which were different from their 
corresponding random networks (Erdos-Rényi model), 
indicating that the observed networks were non-
random and had biological significance. In addition, 
all four networks exhibited modular structure 
(modularity>0.4 in all networks, Supplementary 
Table S3).

To examine if networks complexity were different 
among four seasons, changes in various network 
topological parameters were analyzed (Supplementary 
Fig.S2). Network size (total nodes) and connectivity 
(total links) strongly varied over time, they were 
low in January and October, but relatively high in 
April and July. Average clustering coefficient, 
average path distance, harmonic geodesic distance, 
relative modularity, number of modules, number of 
nodes in the largest module and efficiency all 
showed a similar trend. These results indicated that 
the network complexity changed significantly with 
the seasons, and the network complexity in January 
and October was lower than that in April and July. 
Moreover, the proportion of positive connections 
was dominant in each seasonal network (85.01% for 
January, 99.55% for April, 99.63% for July, and 
97.91% for October, respectively; Fig.2), and the 
change trend was consistent with above complexity 
indicators. These results suggest that cooperative 
behaviors were predominant in the cross-domain 
interactions between bacteria and microeukaryotes 
and varied seasonally. As the proportion of positive 
connections increased, the relative modularity of 
networks increased significantly (P<0.01, Spearman), 
which indicated that the underlying cooperative 
behaviors further affected the organizational 
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principles of the networks (Fig.3a).
Robustness (natural connectivity) was used in 

our study as an index of stability, and the value 
decreased from 0.078 to 0.030 (Fig.3b). This 
suggested that the cross-domain network was more 
stable in January and the stability then decreased. 
More importantly, significant correlations were 
observed between network stability and network 
complexity. The proportion of positive connections 
was negatively correlated with network robustness 
(Pearson’s R=-0.973, P<0.01). Similarly, significant 
negative correlations were observed between 
modularity and network robustness (Pearson’s R=
-0.994, P<0.01). However, centralization of degree 

was positively correlated with network robustness 
(Pearson’s R=0.998, P<0.01). Collectively, these 
results indicated that more frequent cooperation and 
more complex modular structures weaken the stability 
of cross-domain networks.

3.3 Relative importance of bacteria and 
microeukaryotes in cross-domain networks

To reveal the relative importance of bacteria 
and microeukaryotes in the cross-domain networks, 
analyses about nodes and edges were conducted. 
Most of the nodes (OTUs) in four cross-domain 
networks were affiliated to bacteria, and the proportion 
varied in season (82.31% for January, 73.41% for 

Fig.2 Succession of bacterial and microeukaryotic cross-domain networks over seasons
The nodes were colored according to different types of modularity classes (a) and domains (b), respectively. A connection stands for a strong (Pearson’s 

R>0.86 or R<-0.86) and significant (P<0.01) correlation. N: nodes; L: links; Bac: bacteria; Euk: microeukaryote; Pos: positive; Neg: negative.

Fig.3 Relationship between the network complexity and network stability
Spearman’s rank correlation between network positive proportions and relative modularity (RM) (a), temporal changes of natural connectivity and its 

relationship with some network complexity indices (b). NC: natural connectivity; P/T: positive proportion; M: modularity; CD: centralization of degree. 

**: 0.001<P£0.01.
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April, 71.49% for July, and 85.41% for October, 
respectively; Fig.2). Taxonomic relatedness was a 
critical factor in determining the modular structure 
in the network. For instance, in all networks, 
microeukaryotic and bacterial nodes formed 
significantly different modules respectively. The 
networks from January, April, and July mainly 
harbored nodes belonging to Gammaproteobacteria, 
Alphaproteobacteria, Bacteroidetes, Actinobacteria, 
and Deltaproteobacteria. In October, the network 
occupied nodes mainly assigned to Alphaproteobacteria, 
Actinobacteria, Gammaproteobacteria, Cyanobacteria, 
and Chloroflexi (Supplementary Table S4). Moreover, 
only 12 nodes were shared among four networks; 
most of the nodes were unique to each seasonal 
network, which suggested that most microeukaryotic 
and bacterial groups had their special niches in 
different seasons (Supplementary Fig.S3).

When considering all edges (connections) in the 
four networks. Bacteria-bacteria connections were 
dominated in all networks, followed by microeukaryotes-
microeukaryotes connections, and the number of 
microeukaryotes-bacteria connections was relatively 
low (Supplementary Fig.S4). The percentage of 
positive connections was generally higher than 
the negative ones in any type of connections 
(Supplementary Fig.S4). We further calculated the 
connections information between different taxa in 
different seasons to predict possible interactions. 
These results show that connections in the 
four seasonal networks were concentrated mainly 
among abundant (number of nodes) bacterial 
taxa (Supplementary Figs.S5–S8). In January, 
there were more connections observed 
among Gammaproteobacteria, Alphaproteobacteria, 
Bacteroidetes, and Actinobacteria (Supplementary 
Fig.S5). In April, the connections associated 
with Gammaproteobacteria, Alphaproteobacteria, 
Actinobacteria, Bacteroidetes, and Deltaproteobacteria 
were dominant (Supplementary Fig.S6). In addition 
to some dominant taxa (Gammaproteobacteria, 
Alphaproteobacteria, Bacteroidetes, Deltaproteobacteria, 
and Actinobacteria), Syndiniales, Chloroflexi, 
Bacillariophyta, and Cyanobacteria also had more 
related connections in July (Supplementary Fig.S7). 
In October, Gammaproteobacteria, Alphaproteobacteria, 
Bacteroidetes, Chloroflexi, and Actinobacteria had a 
high proportion of connections (Supplementary 
Fig.S8). These results suggest that bacteria OTUs 
were the main contributors to the complexity of 
cross-domain networks, and always occupied a key 
position in cross-domain interactions, which is 

completely different from the hypothesis that 
bacteria and microeukaryotes are equally important 
in the construction of cross-domain microbial 
networks in different seasons.

To verify the relative importance of bacteria and 
microeukaryotes in the cross-domain networks, we 
simulated random species extinction and calculated 
the robustness for complete cross-domain networks, 
bacteria-absent networks, and microeukaryotes-
absent networks (Fig.4). The robustness of all 
networks, except for bacteria-absent networks, 
gradually decreased as more nodes of OTUs were 
removed. That is, the robustness change trend of the 
complete network was more similar to the 
microeukaryotes-absent networks, while was 
significantly different from the bacteria-absent 
networks. This was a good illustration of the key 
role of bacteria in cross-domain networks. To further 
identify important bacterial or microeukaryotic taxa 
in the cross-domain networks, we removed specific 
taxa in the networks one by one, simulated random 
species extinction, and calculated the robustness 
(Fig.5). In January, when Alphaproteobacteria or 
Gammaproteobacteria were removed, the trend of 
robustness was significantly different from the complete 
network. This result indicates that Alphaproteobacteria 
and Gammaproteobacteria were important in the 
construction of the January network. Similarly, 
Prymnesiophyceae and Gammaproteobacteria played 
important roles in the construction of the 
April network. In July, Alphaproteobacteria, 
Gammaproteobacteria, Bacteroidetes, and 
Actinobacteria were important taxa in constructing 
the network. As for October, Alphaproteobacteria, 
Gammaproteobacteria, Chloroflexi, Bacteroidetes, 
and Actinobacteria were more important in network 
construction. These results show that bacteria were 
the most important contributor to the stability of the 
cross-domain networks.

3.4 Keystone OTUs of four seasonal cross-domain 
networks

Keystone OTUs (module hubs, network hubs, 
and connectors) were identified based on Zi and Pi 
of networks (Fig.6a). Most of the nodes in each 
network were peripherals (99.64% for January, 
98.90% for April, 98.81% for July, and 100% for 
October, respectively). No network hubs and 
connectors were found in any of the networks across 
all seasons. We therefore investigated mainly the 
module hubs of networks. Three module hubs were 
found in the January network, and they all belonged 
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to Rhodobacteraceae (Supplementary Table S5). 
Five module hubs were present in the April network, 
including one Plagioselmis OTU, one Woeseiaceae 
OTU, one Rhodobacteraceae OTU, and two 
Actinomarinales OTUs (Supplementary Table S5). 
A total of six module hubs were detected in the July 
network, including one Cryptomonadales OTU, one 
Syndiniales OTU, two SAR11_clade OTUs, one 
Actinomarinales OTU, and one Gammaproteobacteria 
OTU (Supplementary Table S5). No module hub 
was found in the October network. Additionally, 
module hubs had no overlap between different 
networks, showing that bacterial or microeukaryotic 
species responsible for these topological roles varied 
across different seasons.

Keystone OTUs (module hubs) were correlated 
with measured environmental factors to investigate 
their relationships (Fig.6b). The Keystone OTUs 
showed the strongest species-environment 
relationships in July network, followed by the 
January network, and the weakest relationships were 
observed in April network. In January, all three 
bacterial keystone OTUs showed significant positive 
correlations with salinity, while two of them were 
significantly negatively correlated with temperature 
and nutrients (such as PO4 and NH4). In April 
network, depth and temperature were the two most 

important environmental filters shaping the bacterial 
keystone OTUs. In July, bacterial keystone OTUs 
presented stronger species-environment relationships 
than microeukaryotic keystone OTUs. On the one 
hand, these results showed the importance of 
bacterial OTUs in the cross-domain networks; on 
the other hand, they also revealed the relationship 
between networks and environmental variables.

3.5 Environmental driver of seasonal cross-
domain networks

In addition to investigating the relationship 
between environmental variables and keystones 
OTUs, we incorporated environmental factors into 
the constructed cross-domain networks to decipher 
the environmental drivers of networks more 
comprehensively (Fig.7). All selected species-
environment networks suggested that environmental 
factors had relatively strong correlations with 
bacterial taxa in every season. Co-occurrence of 
bacterial and microeukaryotic taxa in January was 
primarily constrained by temperature and salinity. In 
April, depth and temperature emerged as the most 
important impact on the cross-domain network 
compared with other factors. In July, the cross-
domain network was mainly affected by depth, 
temperature, and salinity, but DSi, NO2, DIN, NO3, 

Fig.4 Network robustness analysis of containing bacteria, microeukaryote, and bacteria-microeukaryote microbial 
groups in Sansha Bay

2299



Vol. 41 J. OCEANOL. LIMNOL., 41(6), 2023

Fig.5 Network robustness analysis of bacteria-microeukaryotes cross-domain network after the removal of specific 
groups in Sansha Bay
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TN, and TP also played an important Roles. Depth 
was the most important factor affecting the cross-

domain network in October, followed by salinity, 
NO2, and Chl a.

Fig.7 Visualization of directly linked species-environment connections in the four cross-domain networks
The size of each node is proportional to the number of connections. Blue lines indicate negative correlations, while yellow lines indicate positive ones.

Fig.6 Keystone OTUs and their environmental drivers in cross-domain networks of bacteria and microeukaryotes
Keystone OTUs were identified based on the node topological roles in the cross-domain networks (a), Pearson’s correlation between keystone OTUs and 

environmental factors (b). Zi, within-module connectivity; Pi, among-module connectivity. A node was identified as a network hub if Zi>2.5 and Pi>0.6, as 

a module hubs if Zi>2.5 and Pi£0.6, as a connector if Zi£2.5 and Pi>0.6, as peripherals if Zi£2.5 and Pi£0.6. *P<0.05, **P<0.01 and ***P<0.001. The 

Pearson’s correlation coefficient (Pearson’s R) ranges from -1 to 1. Values close to -1 or 1 indicate a strong linear relationship. The closer the correlation is 

to zero the weaker the relationship.
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We further analyzed the differences in the 
effects of environmental factors on bacteria and 
microeukaryotes in the network (Supplementary Fig.
S9). In all networks except for April, we found that 
environmental factors had the most connections 
with Alphaproteobacteria, Gammaproteobacteria, 
Bacteroidetes, Actinobacteria, and Deltaproteobacteria. 
Futhermore, temperature and salinity were the main 
factors that affected the microeukaryotes nodes in 
these networks. In the April network, salinity had 
strong positive relationships with microeukaryotes, 
and strong negative relationships with bacteria.

4 DISCUSSION

4.1 Increasing of positive connections and 
modularity weakened cross-domain network 
stability

Significant negative correlations were observed 
between proportions of positive connections and 
network robustness in this study (Fig.3b). In other 
words, the increase in the proportion of cooperation 
within microorganisms might reduce the stability of 
cross-domain networks. Studies of interaction 
networks have contributed to our understanding of 
how interactions are related to ecological stability of 
microbiome communities (Neutel et al., 2002; 
Thébault and Fontaine, 2010). The reason for this 
might be that cooperation caused coupling between 
species and positive feedback, as cooperation could 
create dependency and the potential for mutual 
downfall. For example, the decrease of one species 
in abundance pulled others down with it and 
destabilized the system (Coyte et al., 2015). 
Interestingly, an analysis of macroscopic communities 
predicted that ecological stability could be 
maximized under conditions of moderately frequent 
cooperative interactions (Mougi and Kondoh, 2012). 
However, all of the networks in our study had highly 
frequent cooperative interactions. Therefore, the 
results should be interpreted with more caution, 
namely, based on highly frequent cooperative 
interactions, the continued increase in cooperative 
interactions would reduce the stability of cross-
domain microbial networks.

The modularity of the cross-domain network was 
lower in January, but higher in April, July, and 
October, the centralization of the degree of cross-
domain network showed the opposite trend. Previous 
studies have interpreted modules as functional units 
(Luo et al., 2006) or niches (Eiler et al., 2012) in the 
microbial communities. Modularity represented the 

extent to which a network can be divided into 
modules, and could potentially affect network 
robustness (Olesen et al., 2007). For example, some 
studies had shown that whether in macroecology or 
microecology, network stability increased with 
network modularity (Montoya et al., 2006; Yuan et 
al., 2021). Researchers have also proposed a 
reasonable explanation that modularity promoted 
community stability by buffering the spread of a 
perturbation across the entire network (May, 1972; 
Gainsbury and Meiri, 2017). However, our study 
showed the opposite result that increased modularity 
weakened the stability of the network (Fig.3b), 
which supported the argument of some authors 
(Pimm, 1979; Solow et al., 1999). These studies 
further complicated the relationship between 
modules and stability. Considering that the indirect 
influence of the environment on network stability 
through modularity was common (Liu et al., 2021), 
we would fully explore the role of environmental 
factors in future studies. For example, samples were 
split into groups according to a key variable such as 
water depth or health status, enabling the 
construction of separate networks for each sample 
group to provide a more comprehensive explanation 
of the relationship between modularity and stability 
(Faust, 2021).

In summary, by examining the temporal cross-
domain network dynamics of microbial (bacteria 
and microeukaryotes) communities in response to 
seasonal change, this study provided important 
insights into the relationships between microbial 
cross-domain network complexity and stability.

4.2 Bacteria exhibited a pivotal role in the cross-
domain network

In terms of connections in the four networks, we 
found that species within bacteria (intra-domain) 
built the most connections, followed by species 
within the microeukaryotes (intra-domain), and the 
connections between bacteria and microeukaryotes 
(inter-domain) were the least (Supplementary Fig.
S4). In addition, microorganisms within one domain 
mostly correlated positively with each other 
(Supplementary Fig.S4). These results suggested 
that OTUs within the domain, especially in the 
bacterial domain, could more easily form a mutualistic 
community. Considering that microorganisms are 
highly dependent on cross-feeding, co-aggregation, 
co-colonization, and niche overlap (Kylafis and 
Loreau, 2011; Faust and Raes, 2012), it was not 
surprising to observe such positive connections in 
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natural ecosystems (Faust et al., 2015). Millions of 
tons of feed were required annually to support the 
production of Larimichthys crocea in Sansha Bay, of 
which 5%–10% was not utilized and decomposed 
into organic and inorganic matter in the water 
column (Duan et al., 2001) and eventually led to 
eutrophication (Chen et al., 2019b). Therefore, the 
abundant nutrients caused by aquaculture activities 
in Sansha Bay might weaken the competitive 
relationships within the microorganisms and 
ultimately produced the current results (Mikhailov 
et al., 2019).

Bacteria formed greater connection numbers in 
the network compared with those of microeukaryotes 
(Supplementary Fig.S4), which could explain why 
omitting bacteria dramatically affected the natural 
connectivity of the cross-domain microbial networks 
in our study (Fig.4). Additionally, we observed 
that connections between Gammaproteobacteria, 
Alphaproteobacteria, Bacteroidetes, and Actinobacteria 
were abundant in the four networks (Supplementary 
Figs.S5–S8). Consistent with these results, the 
absence of some or all taxa (Gammaproteobacteria, 
Alphaproteobacteria, Bacteroidetes, and Actinobacteria) 
had significant effects on the natural connectivity of 
cross-domain networks in different seasons (Fig.5). 
A previous study of global ocean sampling 
metagenomic data showed the widespread types of 
bacterial type Ⅵ and Ⅳ secretion systems (T6
SS and T4SS) in Gammaproteobacteria and 
Alphaproteobacteria (Persson et al., 2009). In addition, 
Alphaproteobacteria and Gammaproteobacteria have 
been reported to participate in the balance of the 
global nitrogen budget via nitrogen fixation or 
denitrification (Tsoy et al., 2016). Members 
of Actinobacteria contributed to heterotrophic 
nitrification and played a key role in nutrient and 
energy cycling in aquatic habits (Elifantz et al., 
2005). The highly diverse phylum Bacteroidetes can 
efficiently degrade many high-molecular-weight 
compounds, such as proteins, cellulose, pectin, and 
chitin (Xue et al., 2018a). Therefore, it was 
reasonable to infer that more intra-domain bacterial 
connections would further promote the carbon and 
nitrogen cycles and maintain seasonal stability of 
ecological functions in this subtropical aquaculture 
bay.

In this study, all keystone OTUs from the four 
cross-domain networks were related to module hub 
functions, and most of them belonged to bacteria 
(Fig.6a). These keystone OTUs were closely related 
to the OTUs within the module, therefore they 

might play a predominant role in determining the 
structure of the whole community (Zhou et al., 
2011). Marine Rhodobacteraceae were key players 
of biogeochemical cycling, comprised up to 30% of 
bacterial communities in pelagic environments and 
were often mutualists of eukaryotes (Simon et al., 
2017). Plagioselmis prolonga was free-swimming 
and highly tolerant of low salinity. Previous studies 
had found that P. prolonga was present throughout 
the year in some coastal waters, and the peak 
abundance was usually detected in the spring 
(Cerino and Zingone, 2006; Xing et al., 2008). 
Metagenomes of Woeseiaceae encoded an 
incomplete denitrification pathway, which included 
genes for NO-

2 reduction (nirS) and NO reduction 
(norB) to the ozone-depleting greenhouse gas N2O 
(Hinger et al., 2019). Actinomarinales were the only 
known exclusively marine, free-living, planktonic 
Actinobacteria, and represented an important player 
in the microbial ecology of the oligotrophic ocean 
(Ghai et al., 2013; López-Pérez et al., 2020). SAR11 
is an ancient and diverse clade of heterotrophic 
bacteria that dominates ocean surface bacterioplankton 
communities and played an important role in the 
ocean carbon cycle (Grote et al., 2012). Syndiniales 
are widespread in marine environments (Chambouvet 
et al., 2011; Clarke et al., 2019), where they can 
infect several types of plankton (Skovgaard, 2014). 
Therefore, they are also key players in the structure 
and connectivity of plankton food webs (Zamora-
Terol et al., 2021). These results again suggest the 
importance of bacterial taxa in constructing the 
cross-domain networks and maintaining the ecological 
function.

4.3 Relationship between the cross-domain 
networks and environmental variables

Previous studies have shown that the presence of 
keystone species in the microbiomes did not 
certainly guarantee their influence, as many factors 
might still determine their distribution and efficacy 
(Banerjee et al., 2018). Therefore, understanding the 
keystone species in the network and the 
environmental variables that might influence can 
better guide the manipulations of microbial 
communities in natural ecosystems (Toju et al., 
2018). In our study, the environmental variables 
linked to keystone OTUs greatly differed between 
seasons, reflecting that the keystone OTUs of cross-
domain network had different ecological niches 
between seasons (Fig.6b). Moreover, dissimilar 
environmental drivers of seasonal cross-domain 
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networks were also found (Fig.7). Temperature and 
salinity were the best explanatory factors predicting 
the cross-domain network of January. Depth and 
temperature were the best explanatory factors 
predicting the cross-domain network of April. 
Temperature, salinity, and depth were the best 
explanatory factors predicting the cross-domain 
network of July. Depth, salinity, and NO2 were the 
best explanatory factors predicting the cross-domain 
network of October. This discrepancy might be 
related to the environmental heterogeneity between 
seasons (Horner-Devine et al., 2004). Temperature 
is one of the most important predictors of aquatic 
bacterial and microeuakryotic co-occurrence networks 
(Ren et al., 2019; Zhu et al., 2019; Pan et al., 2020). 
In our study, the temperature had the majority 
connections with bacterial nodes in January’s 
networks (cold networks), and a large number of 
connections with both microeukaryotic and bacterial 
nodes in the July network (warm network). 
Interestingly, Anderson et al. (2021) found that 
interactions among 18S groups were more common 
in the warm microbial network in Skidaway River 
estuary (a subtropical estuary), whereas in the cold 
network, although interactions among 18S groups 
remained common, 16S groups contributed more to 
the top interactions. This might provide an 
explanation for our results that water temperature 
correlates with several abiotic and biotic factors 
(Wang et al., 2019), and thus exert a strong control 
on seasonal cross-domain networks in this bay. As 
a major environmental variable across many 
ecosystems, salinity has been reported to drive 
microbial community assembly strongly (Zhang et 
al., 2017; Mo et al., 2018; Santoferrara et al., 2018). 
Therefore, salinity might play a pivotal role in 
regulating seasonal cross-domain networks. 
Additionally, depth was one of the most important 
predictors of the cross-domain networks in April, 
July, and October. A reasonable explanation for this 
was that the strong vertical exchange of the water 
column in January led to a lower temperature 
difference between the surface and bottom water, 
while the weaker vertical exchange of the water 
column in other seasons led to a higher temperature 
difference between the surface and bottom water.

In addition to understanding the environmental 
drivers of cross-domain networks, we could also 
identify the different effects of these environmental 
factors on the bacterial and microeukaryotic taxa in 
the network (Supplementary Fig.S9). The stronger 
correlations between bacterial taxa and environmental 

factors in each season indicated that environmental 
change was mainly driving the cross-domain network 
through bacterial taxa, which again confirmed the 
importance of bacteria in the construction of cross-
domain network. Interestingly, the bacteria taxa that 
were more influenced by environmental factors were 
almost identical to those that played an important role 
in network construction (i.e., OTUs that were the 
important contributors to the network complexity 
and network stability; Fig.5, Supplementary Figs.S5 –
S8, and Supplementary Table S4). Therefore, 
we believe that environmental factors could 
further drive the cross-domain co-occurrence of 
microorganisms by influencing Gammaproteobacteria, 
Alphaproteobacteria, Bacteroidetes, Actinobacteria, 
and Deltaproteobacteria.

5 CONCLUSION

This study provides important insights into 
the seasonal changes of cross-domain microbial 
networks in a typical subtropical bay. Significant 
correlation was observed between network 
complexity and network stability, in which more 
frequent cooperative and more complex modular 
structures weaken the stability of cross-domain 
networks. Compared with microeukaryotes, bacteria 
occupied more nodes and keystone OTUs, built 
more connections, and were the most important 
contributors to network complexity. Moreover, the 
differences of natural connectivity between bacteria-
absent networks and complete networks were larger 
than that between microeukaryote-absent networks 
and complete networks. These results indicate that 
bacteria were key for constructing the cross-domain 
networks and maintaining the network stability, 
with Gammaproteobacteria, Alphaproteobacteria, 
Bacteroidetes, and Actinobacteria as representative 
taxa. Environmental variables affected the co-
occurrence patterns (including network complexity, 
network stability, and the relationships between 
them) of cross-domain networks, and this process 
was mainly achieved by affecting bacterial taxa 
(e.g., Gammaproteobacteria, Alphaproteobacteria, 
Bacteroidetes, Actinobacteria, and Deltaproteobacteria). 
Therefore, the importance of bacterial communities and 
some specific bacteria taxa should be fully recognized 
in future cross-domain network conservation.

6 DATA AVAILABILITY STATEMENT

16S rRNA gene sequences have been submitted 
to the NCBI Sequence Read Archive (SRA) database 
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under the BioProject number PRJNA747131 and the 
accession number SRP328863. 18S rRNA gene 
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Sequence Read Archive (SRA) database under the 
BioProject number PRJNA747143 and the accession 
number SRP328880.
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