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Abstract
Recent research has greatly expanded our understanding of microbial metacommunities in aquatic ecosys-

tems. However, patterns at the mesoscale are still poorly understood. We present the first simultaneous analyses
of the biogeography and co-occurrence patterns of generalists and specialists marine bacteria from three sub-
tropical bays of China and test for signals of ecological processes (i.e., stochastic and deterministic processes) in
biogeography and community assembly. Results showed that compared to specialists, bacterial generalists were
less diverse, and were more widely dispersed in the three subtropical bays. Network analysis indicated that both
habitat generalists and specialists showed non-random co-occurrence patterns, and specialists had a more com-
plex co-occurrence pattern than generalists. Further, specialists co-occurrence network exhibited distinct robust
structure compared to generalists, indicating that the both taxa showed different network stability. Our null
models indicated that the generalists and specialists were primarily shaped by deterministic processes - such as
variable selection. However, deterministic processes played a greater role in the community variation of special-
ists (84%) than generalists (56%). The study has broadened our understanding of generalists and specialists
distribution in the bacterioplankton; further revealing the dominant roles of similar ecological mechanisms
(deterministic processes) in shaping the community assembly. The differences in complex and stable
co-occurrence pattern between generalists and specialists could be driven by deterministic processes. By consid-
ering the roles of species traits and ecological processes, we provide a deeper mechanistic understanding of
bacterial biogeographical and co-existence patterns.

Unraveling the deep mechanisms that structure commu-
nity biogeography is a central issue in understanding the
responses of communities to environmental changes (Hanson
et al. 2012; Székely et al. 2013). Traditionally, the biogeogra-
phy of large plants and animals has been extensively investi-
gated, with microorganisms only contributing a small amount
of data to our understanding of biogeography and other
aspects of ecology (Hanson et al. 2012). However, new
methods mean that this is starting to change. Microbial ecol-
ogy arguably became a distinct discipline around the 1960s,
and from the 1990s increasingly made use of rapidly develop-
ing molecular methods (Atlas and Bartha 1998). A key ques-
tion has been to what extent are the ecological patterns and

processes seen in microbial ecology similar to those seen in
better studied large organisms (Andrews 1991). Recently, we
have been able to more accurately observe and describe
bacterial biogeography with unparalleled depth by high-
throughput sequencing, even for the rare bacteria (e.g., Liu
et al. 2015). Numerous studies have explored biogeographical
patterns based on 16S rRNA gene sequences from different
ecosystems, such as the surface ocean (Ruiz-González
et al. 2019), boreal freshwater ecosystems (Ruiz-González
et al. 2015), and wastewater treatment plants (Wu et al. 2019).
This growing body of work provides evidence that bacterial
communities display biogeographical patterns at various
scales.

Over the last decade biogeographical studies have revealed
that differences in microbial assemblages could be explained
by a combination of stochastic and deterministic processes
(Logares et al. 2013; Liu et al. 2015; Mo et al. 2018). Stochastic
processes (neutral theory based processes) assume that
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community composition is driven by dispersal limitation,
mass effects and random changes in birth/death rates, but
tend to ignore interactions among species and their response
to environmental factors (Hubbell 2001; Chave 2004). Deter-
ministic processes (niche theory based processes), often
include selection driven by the abiotic environmental condi-
tions and biotic factors such as species interactions (Liu
et al. 2019a). Recently, some studies have identified co-
occurrence patterns in bacterial communities across different
ecosystems (Barberán et al. 2012; Milici et al. 2016).

Co-occurrence patterns are key in understanding microbial
community structure, which could provide new insights into
the interactions of complex microbial networks, revealing shared
niches among community members in the real world (Faust and
Raes 2012). Correlation-based network analysis has been widely
applied to explore the co-occurrence patterns among complex
microorganisms in a variety of habitats, including marine
(Cram et al. 2015), freshwater (Liu et al. 2019b), soil ecosystems
(Ma et al. 2016), and the human gut environment (Faust
et al. 2012). These studies found that non-random co-occurrence
patterns were generally observed among microbial assemblages,
indicating that deterministic processes (i.e., species–species inter-
actions and environmental filtering) play important roles in reg-
ulating the assembly of the microbial community.

The roles of stochastic and deterministic processes in bacte-
rial community assembly imply that different aspects of
bacterioplankton subcomunities (i.e., habitat generalists and
specialists; abundant and rare subcomunities) may be assem-
bled by different mechanisms (Liu et al. 2015; Lindh
et al. 2016). For instance, as with better studied mac-
roorganisms, some bacteria are remarkably ubiquitous and
have wider habitat preferences (habitat generalists), whereas
others appear very specific with narrow environmental toler-
ances (habitat specialists) (Pandit et al. 2009). Note that
although generalist is the common term used within much of
ecology, within microbiology the term “versatility” has some-
time been used instead (McArthur 2006). Compared to gener-
alists, niche-based models predict that specialists have a faster
worldwide decline (Thuiller et al. 2005), with specialists
decline promoting the functional homogenization in biodiver-
sity (Clavel et al. 2011). This homogenization could change
ecosystem functioning and thus endanger ecosystem services,
and community-level specialization can be regarded as an
indicator of the influence of global changes (such as climate
and habitat disturbances) on biodiversity (Clavel et al. 2011).
Furthermore, some generalists with wider niches exhibit a
rapid rate of niche evolution (Lavergne et al. 2013). The fast
niche evolution is related to lower population decline. To
some degree, this means that the change of niche breadth can
reflect extinction risk. Habitat generalists and specialists
become increasingly important for conservation biogeography
in light of global biotic homogenization (Clavel et al. 2011).
Normally, abundant taxa play a key role in carbon cycling
(Pedrós-Alió 2012), rare taxa could harbor huge diversity and

conduct specific metabolic functions in ecosystems (Pester
et al. 2010). Overall, generalist and specialist taxa play differ-
ent roles in the ecosystems and ecology studies compared to
the rare and abundant taxa. Our previous study has clearly
revealed that neutral processes and environmental selection
explained the similar biogeographical patterns of abundant
and rare bacteria, with a large proportion of unexplained varia-
tion in the rare taxa (Mo et al. 2018), whereas the mechanisms
affecting the distribution of habitat specialists and generalists
are largely unknown in bacterial community across space and
time. In a recent study, deterministic processes were found to
shape the habitat specialists, whereas stochastic processes
played a major role in structuring generalists in coastal sand
microbial communities of southern China (Hu et al. 2019).
Therefore, to distinguish the mechanisms affecting the distribu-
tion of habitat specialists and generalists is important to better
understand bacterial community assembly.

In this study, we used a high-throughput sequencing
approach to investigate the marine bacterioplankton commu-
nity along a latitudinal gradient ranging from 20 to 25�N
across three subtropical bays (Shenhu Bay, Dongshan Bay,
and Beibu Gulf) in southern and southeastern China; a
dataset previously analyzed by Mo et al. (2018) in another
context. Our previous studies have found that marine eukary-
otic microorganisms (i.e., planktonic ciliate; tintinnid ciliates;
microeukaryotic plankton communities) were particularly sus-
ceptible to environmental change (Wang et al. 2014a,2014b;
Zhang et al. 2017), however, research on distribution of habi-
tat generalists and specialists in marine bacterioplankton in
subtropical regions has been lacking. Here, we used distribu-
tion in multiple samples across three subtropical bays to pro-
vide new insights into the importance of environmental
conditions and ecological mechanisms in shaping habitat gen-
eralists and specialists community assembly and co-occurrence
patterns. Therefore, for the first time, we used network analy-
sis and null model to explore bacterial co-existence in these
subtropical bays and quantify the relative importance of eco-
logical processes in shaping the habitat generalists and special-
ists subcommunities.

Specifically we tested the following three hypotheses:
(1) habitat generalists and specialists of the bacterioplankton
community in three subtropical bays exhibit different biogeo-
graphical patterns; (2) compared to generalists, specialists
show a more complex non-random pattern, and they have dif-
ferent network stability; and (3) deterministic processes play a
greater role in the biogeography and assembly of habitat spe-
cialists than generalists.

Materials and methods
Sample collection and Illumina sequencing

Samples were collected in the South China Sea from
Shenhu Bay in May 2012, and from Dongshan Bay and Beibu
Gulf in August 2011 (Fig. S1) (Mo et al. 2018). A total of
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22 samples were obtained from the surface (0.5 m) and bot-
tom (3–41 m) layers of the epipelagic waters, that is a surface
and bottom sample from 11 different sampling stations. All
samples were collected by Niskin bottles mounted on a CTD
(conductivity, temperature, and depth) oceanic profilers (SBE-
917). In order to eliminate the metazoan and larger debris,
seawater samples were pre-filtered through a 200 μm mesh,
and about 800 mL seawater was subsequently filtered on a
0.2-μm-pore-size polycarbonate membrane (diameter 47 mm;
Millipore, Billerica, Massachusetts). Afterward, the membranes
were put in sterile 2 mL microcentrifuge tubes and were stored
at − 80�C in the laboratory until further analysis. DNA extrac-
tion, PCR, and Illumina sequencing were performed according
to our previous procedure following Mo et al. (2018).

Sequence processing
Paired-end Illumina V4 region of 16S rRNA gene sequences

was processed using VSEARCH (Rognes et al. 2016). Pairs of
reads were merged by using FLASH (Magoč and Salzberg 2011).
The chimeras and singletons were removed with default settings
in VSEARCH. The unoise3 algorithm was used to identify opera-
tional taxonomic units (OTUs) at a 97% sequence similarity
level (Edgar 2010). Representative sequences were classified by
the VSEARCH using the sintax algorithm with a cutoff value of
0.8 against the Greengenes database (DeSantis et al. 2006). All
eukaryotic, chloroplast, archaeal, mitochondrial and unassigned
sequences were removed before the downstream analyses. To
standardize sequencing effort, a subset of 7624 reads at 97%
threshold were randomly subsampled from per sample based on
MOTHUR v.1.33.3 (Schloss et al. 2009). The total dataset
obtained 167,728 reads.

Physicochemical analysis
The environmental characteristic of each station was

assessed using a conductivity-temperature-depth (CTD) oce-
anic profiler. The pH, dissolved oxygen (DO), chemical oxy-
gen demand (COD), total nitrogen (TN), nitrite nitrogen
(NO2-N), nitrate nitrogen (NO3-N), ammonium nitrogen
(NH4-N), total phosphorus (TP), soluble reactive phosphorus
(SRP) and dissolved silicon (DSi) were measured according to
the standard methods defined in the Offshore Marine Chemi-
cal Survey Technical Regulations (Office of the State Oceanic
Administration 2006). All physicochemical parameters are
described in detail in Fig. 1 and Table S1.

Identification of habitat generalists and specialists
To identify habitat specialization, the "Levins niche breadth”

approach (Levins 1968) was applied using the formula:

Bj =
1

PN
i=1Pij

2

where Bj represents niche breadth and Pij is the relative abun-
dance of OTUs belonging to species j present in a given

habitat i (i.e., each of the 22 samples was considered a “habi-
tat”). The higher niche breadth values indicate a wider range
of habitats, implying OTUs with high and low niche breadth
values could be defined as generalists and specialists, respec-
tively (Pandit et al. 2009; Luo et al. 2019). In this study, OTUs
with mean relative abundance < 2 × 10−5 were not used
because they could potentially be misidentified as specialists
(Pandit et al. 2009). Further, OTUs with niche breadth ≥ 5
were arbitrarily regarded as generalists, whereas those with
niche breadth < 1.2 were classified as specialists (Fig. S2).
Niche breadth ≥ 5 and niche breadth < 1.2 were artificially
selected as there were within the area outlier of the niche
breadth distribution (see Fig. S2a). In addition, niche breadth
< 1.2 was chosen because it is close to 1, the smallest possible
niche breadth value. Pandit et al. (2009) found that generalists
and specialists species each included a mixture of abundant
and rare species in a rock pool (tide pool) ecosystem. In order
to explore whether both generalists and specialists obtained a
similar result in our study, we defined the abundant and rare
bacteria according to our previous study (Mo et al. 2018):
locally abundant OTUs (OTUs with an abundance of ≥ 1%
within a sample) and those OTUs that exhibited a mean rela-
tive abundance of ≥ 0.1% in all samples were defined as abun-
dant OTUs. Rare OTUs were defined as those locally rare OTUs
(OTUs with an abundance of < 0.01% within a sample) and
the OTUs with a mean relative abundance of < 0.001% in all
samples.

The abundant or rare taxa were defined based on their
locally and regionally relative abundances, whereas generalist
and specialist taxa were identified by their niche breadth
(Fig. S2a). Obviously, generalist and specialist taxa differ from
simply being abundant or rare taxa previously defined in our
earlier paper (Mo et al. 2018).

Diversity and ordination
Alpha-diversity indices (OTU richness and Shannon-Wiener

index) and rarefaction curves were calculated using the vegan
package in R software (version 3.6.1) (R Core Team 2018).
Tukey’s honestly significant difference (Tukey HSD) post-hoc
test was used to test the significant differences among envi-
ronmental variables of the three bays in an R environment.
Bacterial composition was visualized using the principal
coordinate analysis (PCoA) with CANOCO for windows ver-
sion 5.0.

Network construction and C-score
We used network analysis to examine co-occurrence net-

works in generalists and specialists. To reduce noise and
complexity of the datasets, we remained OTUs with
sequences ≥ 25 for network analysis. In total 1999 OTUs were
involved in the network analyses, including 104 OTUs of gen-
eralists and 503 OTUs of specialists (Table S2). Spearman’s
rank coefficients (r) between those OTUs were calculated
pairwise by the “picante” package in an R environment. Only
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robust (Spearman’s jrj > 0.75) and statistically significant (p-
value < 0.01) correlations were considered in the network ana-
lyses. Network visualization was made with the Gephi version
0.9.1 and Cytoscape version 3.6.1. Based on species connectiv-
ity as described previously (Guimerà and Amaral 2005), con-
nectors linking different modules in co-occurrence network
were identified. All connector nodes were considered as poten-
tial key species in co-occurrence networks (note: there are no
hubs in our analysis) (Shi et al. 2016). In addition, 1000
Erdös–Réyni random networks were obtained in the “igraph”
R package, which had the same number of nodes and edges as
the real networks, with each edge appearing with the same
probability of being assigned to any node (Erdös and
Rényi 1960). Topological characteristics of both real and ran-
dom networks were calculated and compared, including clus-
tering coefficient, modularity, and average path length.
Groups of highly interconnected nodes in the co-occurrence
networks were generated using the MCODE application with
standard parameters (Bader and Hogue 2002). Network stabil-
ity was assessed by natural connectivity, the nodes were
removed in the network to evaluate how quickly robustness
degraded (Peng and Wu 2016).

The checkerboard score (C-score) was calculated to evaluate
the real distributions for non-randomness of OTUs. The OTU
sequence table was transformed into a binary matrix of pres-
ence (1) and absence (0), and then was calculated under the
null model (Gotelli and McCabe 2002). The checkerboard
score, which is significantly larger than expected by chance,
indicates non-random species distributions between stations

(Sanders et al. 2007). The standardized effect sizes (SES) for C-
score were calculated: SES = (observed C-score − mean simu-
lated C-score)/standard deviation of simulated C-scores
(Gotelli and McCabe 2002). Based on a burn of 30,000 simula-
tions and sequential swap randomization algorithm, the C-
score and Cvar-score (variance of C-score) were calculated with
the “EcoSimR” package in R version 3.6.1 (R Core Team 2018).

Relationships between community composition and
environment variables

Spearman’s rank correlations were calculated to analyze the
relationship between environmental parameters and bacterial
community composition and diversity. Additionally, we used
Spearman correlations to determine the relationship between
the OTUs of each main module and environmental parame-
ters with the “picante” package in R version 3.6.1. Only robust
(jrj > 0.6) and statistically significant (p-value < 0.01) correla-
tions were selected in this analysis.

Stegen null model
To quantify the contributions of different ecological pro-

cesses (stochastic vs. deterministic) to bacterioplankton com-
munity structure and biogeography, a null model (Stegen
et al. 2013) was used. The beta nearest taxon index (βNTI) is
the difference between observed βMNTD and mean of the null
distribution of βMNTD normalized using its standard devia-
tion. The mean nearest taxon distance metric (βMNTD) was
calculated to evaluate pairwise phylogenetic turnover between
communities within “picante” R package (Webb et al. 2002;

Fig 1. Heat map displaying change in environmental parameters among the three subtropical bays in China. Color scale for each environmental param-
eter varies between minimum and maximum values. DO, dissolved oxygen; COD, chemical oxygen demand; TN, total nitrogen; NO2-N, nitrite nitrogen;
NO3-N, nitrate nitrogen; NH4-N, ammonium nitrogen; TP, total phosphorus; SRP, soluble reactive phosphorus; DSi, dissolved silicon. SH, Shenhu Bay;
DS, Dongshan Bay; BB, Beibu Gulf.
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Stegen et al. 2013). We further calculated the Bray-Curtis based
Raup-Crick metric (RCbray) index to describe pairwise compari-
sons with jβNTIj < 2 (Stegen et al. 2013). Specifically, we consid-
ered a significant deviation (i.e., jβNTIj ≥ 2) to indicate the
importance of deterministic processes, and less than expected
phylogenetic turnover (i.e., jβNTIj < 2) to indicate the domi-
nance of stochastic processes (Dini-Andreote et al. 2015). When
βNTI were < −2 and ≥ 2, we suggested that homogeneous selec-
tion and heterogeneous selection affected community turnover,
respectively. However, the jβNTIj < 2 and RCbray < −0.95 or the
jβNTIj < 2 and RCbray ≥ 0.95 indicated that community turn-
over was dominated by homogenizing dispersal and dispersal
limitation, respectively. When the jβNTIj < 2 and
jRCbrayj < 0.95, the “undominated fraction” was indicated,
which represents community shifts because of ecological drift,
weak selection, and weak dispersal (Stegen et al. 2013).

Results
Comparison of environmental factors between the three
subtropical bays

All of the 13 environmental parameters measured had wide
ranges and showed some differences between the three

subtropical bays (Fig. 1; Table S1). The key differences are sum-
marized here. The concentration of dissolved oxygen in
Shenhu Bay (6.56–6.99 mg L−1) was higher than Dongshan Bay
(4.73–6.49 mg L−1) or Beibu Gulf (4.83–6.49 mg L−1). Both tem-
perature and NH4-N showed a significant difference between
the three studied bays. Temperature showed the highest value
in the Beibu Gulf (29.55�C) compared to other bays. Mean con-
centration of NH4-N in Dongshan Bay (0.04 mg L−1) was higher
than in the two others. It is of note that there was no consis-
tent difference between the bay sampled in 2012 (Shenhu Bay)
and the samples from other two bays.

Biogeographical pattern of bacterial community
A total of 8622 OTUs were identified based on 97%

sequence similarity level. After deleting OTUs with mean rela-
tive abundances < 2 × 10−5, we remained 7850 OTUs for clas-
sification of niche breadth. Among these, 160 (2.0%) habitat
generalist OTUs and 3059 (39.0%) habitat specialist OTUs
were identified and they represented 4.1% and 29.0% of the
total sequences, respectively (Fig. S2b). Occasionally, similar
to specialists, there were few overlaps between generalists and
regionally abundant OTUs in our dataset (Fig. S2b).

Fig 2. Principal coordinate analysis (PCoA) of bacterial generalist and specialist sub-communities using Bray–Curtis similarity. SH, Shenhu Bay; DS, Dong-
shan Bay; BB, Beibu Gulf.

Table 1. Observed C-scores and Cvar-scores, mean metric values under null models, and standardized effect sizes (SES) for marine
bacterioplankton subcommunities of 22 samples. If SES values are positive, it will show less co-occurrence than expected by chance,
implying the predominance of segregation within communities and vice versa for negative values, implying the predominance of facili-
tation. If co-occurrences are not different from what is expected by chance, values of SES should fall between − 2 and 2.

Taxa
Number of C-score Cvar-score

OTUs Obs. Mean null SES Obs. Mean null SES

Generalists 104 14.10 11.72 34.76 272.17 58.13 49.84

Specialists 503 2.82 2.79 12.02 5.02 4.71 8.43

Mo et al. Bacterial biogeography and co-existence
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Fig 3. The co-occurrence patterns among generalists (a) and specialists (b) revealed by network analysis, respectively. The nodes were colored
according to different types of modularity classes. Components of bacterioplankton biodiversity in each module of the co-occurrence network for gener-
alists (c) and specialists (d) at the phylum/class-level, respectively. A connection stands for a strong (Spearman’s jrj > 0.75) and significant (p-
value < 0.01) correlation. The size of each node is proportional to the number of connections (i.e., degree).

Mo et al. Bacterial biogeography and co-existence
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Specifically, we did not find a mixture of abundant and rare
OTUs in generalists, and specialists did not contain any rare
OTUs but only included an abundant OTU based on com-
bined their local and regional relative abundances. Almost all
generalists and specialists were moderate OTUs, and most gen-
eralists and specialists were in taxa identified as of intermedi-
ate abundance (Fig. S2b). The rarefaction curves of bacterial
communities from the three bays showed a full rarefaction sat-
uration for each of three bays (Fig. S3). A higher number of
taxonomic groups was found for bacteria classified as special-
ists compared to generalists (Fig. S4). The results of PCoA
based on Bray–Curtis similarity revealed that the distribution
patterns were different between generalists and specialists
across three subtropical bays. Compared with specialists,
generalists were less clustered (Fig. 2).

Network of whole community
The whole network included 1909 nodes (OTUs) and

22,325 edges (Fig. S5-left; Table S3), and it was clearly sepa-
rated into six modules. The co-occurrence network showed a
scale-free distribution (power-law: R2 = 0.609, Table S3),
suggesting that the network structure had non-random

characteristics. Further, the observed modularity, average clus-
tering coefficient and average path length were much higher
compared to their corresponding values from Erdös–Réyni ran-
dom networks (Table S4), implying the bacterial network
exhibited a "small-world” property and modular structure. The
majority of the generalists OTUs were in modules II and III,
whereas the most of the specialists OTUs were in modules I,
IV, V, and VI (Fig. S5-right).

Co-occurrence patterns of the generalists and specialists
The C-score results demonstrated that the co-occurrence pat-

terns of bacterial generalists and specialists were non-random
and exhibited significant segregated distributions; because the
observed C-score values were higher than the C-score for
expected by null models, and we always can observe standard-
ized effect size values > 2 for the real networks (Table 1). They
also showed small-world properties (their small-word coefficient
> 1) (Table S4). Network topological features showed that
the co-occurrence pattern in the specialists totally differed from
the generalists network (Table S4). Generalists formed a smaller
network with less nodes (89) and edges (360) than the special-
ists network (nodes: 474, edges: 2381). Modularity values,

Fig 4. Species–species and species–environment association network. A connection stands for a strong (Spearman’s jrj > 0.6) and significant (p-
value < 0.01) correlation. Temp, temperature; DO, dissolved oxygen; SRP, soluble reactive phosphorus; DSi, dissolved silicon.
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clustering coefficient and closeness centrality were higher for
specialists compared to generalists (Table S4).

Modular structure of the co-occurrence network was
compared between generalists and specialists (Fig. 3a–d).
The network of generalists parsed into four major modules,
which accounted for 88.77% of the generalists network.
However, specialists formed six network modules, which
accounted for 52.32% of the specialists network (Fig. 3a,b).
The four major modules were primarily occupied by Bacte-
roidetes and Actinobacteria for generalists, whereas Bacte-
roidetes, Actinobacteria, Cyanobacteria, Verrucomicrobia,
and Alphaproteobacteria had higher network nodes in the

six modules of specialists network (Fig. 3c,d). The results of
MCODE analysis showed that generalists generated six sig-
nificant clusters with network scores ranging between
3 and 7.8, and the top six significant clusters were found
from 48 sub-networks of specialists with network scores
ranging from 17 to 25 (Fig. S6a,b).

In addition, the natural connectivity in the specialists net-
work was different from that of generalists (Fig. S7). The natu-
ral connectivity of the specialists was lower than that of the
generalists during initial period, indicating that the gener-
alists network was more stable. Yet, when the proportion of
removed nodes was greater than 21%, the generalists net-
work was less stable than specialists. Based on connectivity
analysis, 20 OTUs were defined as keystone species for gen-
eralists, including Actinobacteria (5 OTUs), Bacteroidetes
(6 OTUs), Cyanobacteria (2 OTUs), Verrucomicrobia
(3 OTUs), Gammaproteobacteria (1 OTU), and Unclassified
bacteria (3 OTUs) (Table S5). For specialists, only 2 OTUs
belonged to keystone species, including Bacteroidetes and
Betaproteobacteria taxa (Table S5).

Factors related to the generalists and specialists
The relative abundance of generalists was significantly cor-

related with pH, temperature, and DO, while the diversity of
specialists was significantly correlated with pH, temperature,
DO, and NO2-N (Fig. S8).

The co-occurrence networks showed significant pairwise
correlations among OTUs or between OTUs and environmen-
tal factors (Spearman’s jrj > 0.6, p < 0.01) (Fig. 4). The pH, tem-
perature, DO, and salinity were significantly correlated with
network connectivity of generalists, of which temperature and
DO exhibited a higher degree compared to other variables in
the network (Fig. 4). For the specialists, DO (there were DSi-
SRP and salinity-temperature relationships, but these environ-
mental factors did not show any significant correlation with
OTUs) was only driver of network connections, and it showed
a low degree of connectivity in the network (Fig. 4).

Ecological processes influencing bacterial community
assembly

The values of βNTI varied partly from − 2 to 2 but mostly > 2
for the generalists, and specialists exhibited a higher value of
βNTI (> 2) in three subtropical bays (Fig. 5a). Stochastic processes
contributed approximately 44% to the community assembly of
generalists, and the communities of habitat generalists were
mainly driven by deterministic processes (56%). Interestingly,
the deterministic processes were also largely responsible for the
community assembly of specialists (84%), of which the greatest
contributor was variable selection (77%, Fig. 5b).

Discussion
The previous analysis of these data focused on patterns in

abundance from rare to abundant taxa (Mo et al. 2018). Given
the difficulties in assigning “generalist” and “specialist” status

Fig 5. Community assembly processes of bacterial community from
three subtropical bays. (a) Community assembly processes inferred using
phylogenetic distance. Patterns of the beta nearest taxon index (βNTI) for
generalists and specialists, and the horizontal dashed lines represent upper
and lower significance thresholds at βNTI = +2 and −2, respectively. (b) The
variation of bacterial generalists and specialists subcommunities governed pri-
marily by deterministic processes. The between-community mean-nearest-
taxon-distance (βMNTD) metric is used to quantify the phylogenetic turnover
between communities. The beta nearest taxon index (βNTI) is the difference
between observed βMNTD and the mean of the null distribution of βMNTD
normalized using its standard deviation.
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to microorganisms this raised an obvious question namely,
has the current study identified patterns different from those
shown in the abundance study or have the two approaches
simply identified the same abundance based on patterns using
different approaches? The fact that for both generalists and
specialists the majority of taxa were of moderate abundance
shows that these new analyses are picking up different pat-
terns, which require explanation. As analyses such as ours
(assigning specialist and generalist classifications and compar-
ing these with abundance data) are rare in microbial ecology
any interpretations have to be tentative. While it is impossible
to rule out the possibility that these patterns are artifacts of
the way we have classified these data it is possible to suggest an
ecological interpretation. One would not expect a direct map-
ping of abundant and rare onto generalist and specialist as the
abundance of a generalist or specialist microorganism will
depend on local conditions (Andrews 1991; McArthur 2006); a
pattern also seen in macroorganism such as birds in Corvidae
where specialists have a more limited range but can be reason-
ably common in the right environment (Wilkinson 2006).
Although one might expect many specialists to be rare it is pos-
sible that in these data the OTUs classified as rare were mainly
organisms which were not an active part of the microbial com-
munity but had been washed in from elsewhere. As generalists
are expected to be outcompeted by specialists under conditions
that suit that particular specialist it is also likely that generalists
will often not be the commonest taxa in a local community.

Biogeographical patterns of generalists and specialists
Our results suggested that a higher diversity was identified

in the specialists than generalists taxa (Fig. S4); a result
that matches that often found in macroscopic organisms
(Andrews 1991). Reasonably, most bacteria are divided into
specialists, because taxa have been identified in which special-
ize on particular resources (Hunt et al. 2008). This is consis-
tent with previous observations showing that specialists
dominate in species-rich communities (Logares et al. 2013).
For example, it is shown that habitat specialists dominate
microbial communities in sediments or aquatic environment
(Székely and Langenheder 2014; Mariadassou et al. 2015).
However, our results differ from recent research which found
many habitat generalists and few specialists in aquatic bacte-
rial communities (Muscarella et al. 2019). One possibility is
that generalists, multivorous bacterial communities have a fit-
ness advantages when resources are essentially substitutable
(Egli 2010). An additional problem is that some of the taxa
identified as specialists may not be functioning parts of the
community samples but vagrants, washed in from elsewhere.
Because Levin’s niche breadth emphasizes high-probability
occurrences (rather than the rare) it is considered reasonably
insensitive to this issue—as long as these vagrants are not too
common (Southwood and Henderson 2000). In addition, we
removed the OTUs with the lowest relative abundances from
our dataset (see Materials and methods) to avoid or reduce this

problem. Thus, although at our current state of knowledge it is
impossible to rule out a substantial effect on vagrant taxa on our
results, we are inclined to think this is not a significant problem.

Our results also revealed that generalists and specialists
within the marine bacterial community exhibited distinct bio-
geographical patterns, where specialists were more clustered in
our ordinations than generalists across the three subtropical
bays (Fig. 2). This result is consistent with Liao et al. (2016)
who found that generalist and specialist bacteria had distinct
biogeographical patterns in 21 plateau lakes of China. More
importantly, the biogeographical analyses yielded distinct pat-
terns, implying that underlying assembly mechanisms, to some
extent, exhibit differences between generalists and specialists.
In previous study, however, we found similar biogeographical
patterns between abundant and rare bacteria subcommunities
in three subtropical bays of China (Mo et al. 2018).

Co-existence patterns of generalists and specialists
Network structure has important implications for the co-

occurrence of species as well as for their stability (Bascompte
et al. 2003). Our results clearly support the view that non-
random community construction may be a common characteris-
tic in bacterioplankton communities, as has been previous
reported (Horner-Devine et al. 2007). For example, the whole
bacterial community, as well as generalists and specialists in our
networks followed a non-random assembly pattern (Tables 1, S3).
This means that the biogeographical pattern can be predicted for
the majority of bacterial community (Yao et al. 2019).

However, the network structure of specialists was more
complex compared with generalists (Figs. 3a–d, S6; Table S4).
In general, a more complex network structure may indicate
more stable co-existence patterns. To some extent, stable co-
occurrence pattern mirrors the less dynamic characteristic
(Costa et al. 2006), as Thébault and Fontaine (2010) demon-
strated that a high connectivity promoted community stabil-
ity in mutualistic networks. However, in this study, although
the specialists had more network nodes and edges leading to
more complex network structure than generalists, the network
stability of specialists is not always greater than that of gener-
alists (Fig. S7). The difference in network complexity and sta-
bility between generalists and specialists might be attributed
to two reasons. On the one hand, differences were found in
composition between specialist and generalist networks. The
network of generalists was primarily constructed by the inter-
action between Actinobacteria and Bacteroidetes groups
(Fig. 3c), while the network structure in the specialists con-
sisted primarily of the interaction among five taxonomic
groups (Fig. 3d). In addition, the results of MCODE analysis
indicated that the network clusters with greatest scores of gen-
eralists included only five phyla/classes, while seven taxo-
nomic groups frequently dominated the largest specialists
clusters, with a greatest cluster score from specialists
(score = 25) that is much higher than that of generalists
(score = 7.8) (Fig. S6). This suggests that stronger pairwise
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interactions among OTUs were found in specialists than in
generalists. Different intensities of interactions among differ-
ent taxonomic groups could shape networks with different
degrees of complexity and stability. Our result is in accordance
with a previous study which found that different taxonomic
compositions possibly affected bacterial generalists and special-
ists network structure observed in soil ecosystem, so that shaped
different bacterial network complexity and stability (Barberán
et al. 2012). Interestingly, besides dominant groups mentioned
above (included Actinobacteria, Bacteroidetes, Cyanobacteria,
and Verrucomicrobia), one Gammaproteobacteria also belonged
to potential key species for generalists, and one Bacteroidetes
OTU and one Betaproteobacteria OTU were defined as potential
key species for specialists networks across the three subtropical
bays (Table S5). The loss of these species may lead to the break-
ing apart of the ecological networks and modules (Guimerà and
Amaral 2005). Therefore, these potential key species might be
important in maintaining the stability of generalists and
specialists subcommunities.

On the other hand, these modules from both generalists
and specialists did not necessarily mirror taxonomic classifica-
tion. That is, major bacterial interactions were stronger between
phyla/classes compared to within a phylum/class (Figs. 3, S6),
providing evidence that the bacterial community structure is
shaped by environmentally driven functional characteristics
rather than phylogeny (Burke et al. 2011). The results demon-
strated that non-random co-occurrence of generalists and spe-
cialists across the three subtropical bays, and thus these
network structures may be driven by deterministic processes
(Banerjee et al. 2016). Indeed, dissolved oxygen significantly
associated with major groups of specialists, whereas more envi-
ronmental variables significantly influenced generalists network
structure, in which dissolved oxygen and temperature had
maximum number of associations and acted as the most impor-
tant determinants of generalists network we investigated
(Fig. 4). The different environmental factors, or the interactions
among different environments, drove the formation of differ-
ent complex and stable networks. Previous studies have
highlighted the importance of interdependencies between tem-
perature and bacterioplankton networks in the Atlantic Ocean
(Milici et al. 2016). Recent findings demonstrated that tempera-
ture is major environmental factor in protist network structure
in marine intertidal sediments (Pan et al. 2020). However, Ban-
erjee et al. (2016) did not find that temperature influenced bac-
terial network construction in Canadian agroforestry systems.
The difference probably resulted from different ecosystems with
different environmental gradients, because their samples came
from soil ecosystem rather than from aquatic ecosystem.

Strong deterministic processes driving biogeographical
distribution

In many studies, specialists appear to respond mostly to
deterministic processes, whereas habitat generalists may be
predominantly affected by stochastic and/or deterministic

processes (Liao et al. 2016; Lindh et al. 2016). However, gener-
alists are sometimes primarily influenced by deterministic pro-
cesses possibly because competitive interactions between
specialists and generalists promote a preference for suboptimal
habitats in generalists (Jacob et al. 2018). This means that
deterministic processes were important mechanisms for the
generation of biogeographical distribution in bacterial com-
munity. Similar results were found by Logares et al. (2013),
who investigated the biogeography of bacterial communities
exposed to progressive long-term environmental change in
coastal lakes.

Indeed, in our study, the distinct biogeographical pattern
could be mainly explained more by deterministic processes
than stochastic processes. For instance, the results of Stegen
null model indicated that deterministic processes had stronger
roles for generalists and specialists subcommunities assembly
than stochastic processes, because deterministic processes
explained the large fraction (56% for generalists; 84% for spe-
cialists) of the community variability (Fig. 5a,b). In fact, envi-
ronmental factors such as pH, temperature, and DO had a
significant influence on variations of generalists abundance,
while pH, temperature, DO, and NO2-N showed a significant
relationship with habitat specialists richness in our study
(Fig. S8). It appeared that deterministic processes were pre-
dominantly responsible for both generalists and specialists,
whereas the stochastic processes could partially influence the
assembly of them.

Moreover, deterministic processes were stronger contribu-
tors for explaining specialists community variation compared
to generalists. On the one hand, this difference may
depend on certain traits of functional or taxonomic groups
(Lindström and Langenheder 2012). Taking aquatic inverte-
brates as an example, a previous study had shown that habitat
generalists vs. specialists with different lifestyles are prone to
be affected by deterministic processes with different strengths
(Pandit et al. 2009). Microorganisms such as bacteria also have
similar life history traits, for example, dormancy strategies are
often common for bacterioplankton in marine ecosystem
(Gasol et al. 1995). Wu et al. (2018) suggested bacterial taxa
with wider niche breadth may be due to their greater potential
for dormancy, and thus habitat generalists with wide niche
breadth are more susceptible to dormancy compared to spe-
cialists reducing the impact of the environmental conditions.
This suggests that deterministic processes are important for
both generalists and specialists, whereas the processes
involved in structuring specialists are more important. On the
other hand, many habitat generalists have evolved broad
habitat tolerance and strong functional plasticity (Székely
et al. 2013) to resist the environmental disturbances avoiding
extinction risk. For example, generalists could normally expe-
rience larger geographical ranges than specialists (Sheth and
Angert 2014), which has been further supported by recent
study that certain marine bacteria could live in freshwater eco-
system (Comte et al. 2014). By contrast, habitat specialists
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with narrow environmental tolerance tend to be particularly
sensitive to environmental change and variability. As a result,
habitat specialists may not respond to new environmental
selection because of lack of plasticity, causing them to be vul-
nerable to extinction (Sheth and Angert 2014). Therefore, our
results support that deterministic processes have a greater
impact on specialists subcommunity than generalists. How-
ever, our finding differed from another study which found
that bacterioplankton community assembly is governed by
environmental selection for habitat generalists but not special-
ists in the Baltic Sea (Lindh et al. 2016). The difference may be
attributed to sizes of geographical distance among distinct
study sites, because Lindh et al. (2016) studied bacter-
ioplankton community based on the small scale (one hundred
kilometers transect), whereas our study at the mesoscale (tens
to thousands of kilometers) (Mo et al. 2018).

Conclusion
Our study provides the first example of research revealing

both biogeographical and co-occurrence patterns of habitat
generalists and specialists from marine bacterioplankton
communities at a mesoscale. The fact that our analyses find
differences between the taxa defined as generalist and spe-
cialist and those defined as common and rare suggests that
our spatial approach to identifying generalists and specialists
is likely being successful (and not confounding abundance
with niche breadth). This helps address a wider issue in
ecology—namely to what extent is the ecology of microor-
ganisms similar to the much better known ecology of mac-
roorganisms? Distinct biogeographical patterns were found
between generalist and specialist bacteria, suggesting that
both groups exhibited differences in responses to environ-
mental gradient to some extent. More importantly, this study
highlights that deterministic processes appear to play more
vital roles in the assembly of both generalists and specialists
subcommunities than stochastic processes, yet the impact of
deterministic processes on the specialists is more important
than that of generalists. Specifically, pH, temperature, and
dissolved oxygen were the three most important environ-
mental factors in shaping bacterioplankton subcommunity
assembly. Network analysis showed that habitat generalists
and specialists exhibited non-random characteristics, but the
bacterial co-occurrence pattern in generalists was different
from specialists in complexity and stability. The bacterial co-
occurrence pattern is simultaneously affected by the interac-
tion of species and environmental filtering. Overall, our
results revealed different biogeographical patterns of habitat
generalists and specialists were mainly driven by determinis-
tic processes. To obtain a comprehensive and full under-
standing of marine bacterial community biogeography and
co-occurrence patterns, both generalists and specialists
should be distinguished in future studies.

Data availability statement
All 16S rRNA gene sequences data from this study have

been submitted to the NCBI database (http://www.ncbi.nlm.
nih.gov/) under the accession number SRP109151 and
BioProject accession number PRJNA380540.
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