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1.  INTRODUCTION 

Microbial communities are assembled by determin-
istic and stochastic processes (Logares et al. 2013, Liu 
et al. 2015, K. Wang et al. 2015, Yang et al. 2016, Liao 

et al. 2017, Mo et al. 2018, 2021). Deterministic pro-
cesses include environmental filtering (temperature, 
salinity, nutrients) and species interactions (preda-
tion, parasitism, mutualism and competition) (Ches-
son 2000, Fargione et al. 2003). By contrast, stochastic 
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processes include dispersal limitation, mass effects, 
speciation and random birth and death rates that shape 
community composition, and in these processes, all 
species are equal (Chave 2004, Hubbell 2005). Nota -
bly, species interactions are not included in stochas-
tic processes. 

Based on their ecological niche breadths, i.e. how 
plastic or adaptive they are to environmental disturb-
ances, microbes may behave as generalists or special-
ists (Pandit et al. 2009). Generalists have broader 
niche breadths and can tolerate varying environ-
ments, while specialists have narrower niche breadths 
and are stronger competitors (Levins 1968, Pandit et 
al. 2009). Many studies have examined the impor-
tance of prokaryotic microbial generalists and spe-
cialists in different ecosystems (Sriswasdi et al. 2017, 
Mo et al. 2021, Xu et al. 2022a). It has been found that 
microbial generalists and specialists are primarily 
shaped by deterministic processes, and selection has 
stronger effects on specialists than on generalists (Mo 
et al. 2021, Xu et al. 2022a). Specialists are important 
to ecosystems because their decline can result in 
community homogenization and diversity decreases, 
endangering ecosystem services (Clavel et al. 2011). 
It has been postulated that specialists may decline 
faster than generalists in response to climate and 
environmental changes due to their higher extinction 
risks (Thuiller et al. 2005). 

The community structure of microeukaryotes in -
fluences nutrient interactions, food web structure and 
the potential of carbon fixation (Dossena et al. 2012, 
Mouw et al. 2016, Brander & Kiørboe 2020) and may 
be shaped by different ecological processes from 
that of prokaryotes (Gad et al. 2020, Liu et al. 2020). 
Hence, unraveling the differences in the mechanisms 
that shape the community assembly of microeuka-
ryotic generalists and specialists is important both 
for understanding how the plankton community re -
sponds to environmental changes and for informing 
biodiversity conservation. However, although some 
studies have investigated processes that shape the 
assemblies of freshwater microeukaryotic commu-
nities (Abdullah Al et al. 2022) or marine picoeukary -
otic communities (Logares et al. 2020), the findings 
are not consistent as to the relative importance of sto-
chastic and deterministic processes. Therefore, the 
ecological differentiation of microeukaryotic gener-
alists and specialists in marine environments remains 
to be elucidated. 

Interactions between organisms are vital to the 
function of the community and are typically inferred 
from co-occurrence patterns (Faust & Raes 2012) 
revealed by network analysis (Gilbert et al. 2012). 

Mo et al. (2021) reported that the co-occurrence pat-
terns in bacterial generalists and specialists were 
non-random and that the specialists showed a more 
robust network structure than the generalists. Net-
work characteristics can also influence how the com-
munity re sponds to environmental changes, and 
weak associations may result in unstable networks 
(Coyte et al. 2015, Kuiper et al. 2015). Previous 
research has found that archaea play a key role in 
the construction of microbial interactive networks in 
soil (Shi et al. 2019), and fungi were found to 
stabilize multi-kingdom networks in a high-elevation 
ecosystem (Yang et al. 2022). Such inquiries are lim-
ited for marine microeukaryotes, where major phyla 
such as dinoflagellates and diatoms play pivotal 
roles in community structure and function. Dinofla-
gellates are one of the most important primary pro-
ducers in the ocean and the greatest contributors of 
harmful algae blooms (Jeong et al. 1999). Their eco-
logical success is in part attributable to their diversi-
fied trophic modes, ranging from autotrophy to mix-
otrophy to heterotrophy (Jeong et al. 2010). Diatoms 
(Bacillariophyta) are another dominant group of pri-
mary producers (Yool & Tyrrell 2003) that play an 
important role in the food web and silicon cycle 
(Ragueneau et al. 2006). Comparatively, green algae 
(Chlorophyta) are less studied in the ocean (Tragin 
et al. 2016) but are prevalent in coastal waters (Tra-
gin et al. 2018). Considering their ecological impor-
tance, whether dinoflagellates, diatoms and green 
algae will influence network stability in the marine 
microeukaryotic community needs to be determined. 
Therefore, a significant knowledge gap exists in 
understanding the interactive networks of microeu-
karyotic generalists and specialists and the roles of 
dominant lineages. 

Here, to address the knowledge gap presented 
above, a study was conducted at a mesoscale in a 
subtropical coastal sea covering 3752 km of coast-
line and crossing 3° in latitude. The main objectives 
were to profile the microeukaryotic community in 
terms of latitudinal patterns of diversity, composi-
tion of generalists and specialists and their respec-
tive community assembly mechanisms and to iden-
tify major lineages that are critical to the stability 
of their associated interactive networks. We aimed 
to use the re sults to examine 3 hypotheses: (1) the 
regional north–south gradient of coastal microeu-
karyotic biodiversity is mainly driven by the direct 
effect of temperature; (2) both generalists and spe-
cialists are assembled by stochastic processes; and 
(3) the co-occurrence networks of generalists and 
specialists can be stabilized by different lineages. 
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2.  MATERIALS AND METHODS 

2.1.  Study area, sampling and 
 physico-chemical analysis 

This study investigated 5 coastal bays in the East 
China Sea system, which are located from the north 
(26.7262° N, 119.7427° E) to the south (23.6149° N, 
117.5383° E) of Fujian province, covering 3752 km. 
These included, from south to north, Dongshan Bay 
Area (DS), Xiamen Sea Area (XM), Pingtan Bay Area 
(PT), Minjiang Estuary (MJ) and Sansha Bay Area 
(SS) (see Fig. 1). A synchronized field campaign was 
launched in May 2020 using 5 research vessels, each 
cruising in one of the 5 ecosystems. A range of 14–28 
stations were sampled in each area. Both surface 
(0.5–2 m) and bottom (5–72 m) water samples were 
collected. Seawater was first pre-filtered through a 
sieve (200 μm pore) to remove meso- and macro-
zooplankton as well as debris and sediment, then 
about 300–1000 ml of seawater was filtered through 
polycarbonate membranes (3 μm pore, 47 mm diame-
ter; Millipore). The membranes retaining the plank-
ton cells were placed in sterile 2 ml centrifuge tubes. 
Samples were immediately stored at –80°C until 
DNA extraction. 

Eight environmental parameters were measured. 
Water temperature, depth and salinity were mea-
sured through a conductivity–temperature–depth 
(CTD) oceanic profiler. To measure the nutrients, 
water samples were filtered through 0.45 μm pore-
size cellulose acetate filters. An AA3 AutoAnalyzer 
(Bran-Luebbe) was used to measure nitrate (NO3

–), 
nitrite (NO2

–), ammonium (NH4
+), silicate (SiO4

4–) 
and phosphate (PO4

3–) based on the pink azo dye 
spectrophotometric method, the indophenol blue 
method and the molybdenum blue method, respec-
tively (Dick & Tabatabai 1977, Pai et al. 2001, Dai et al. 
2008, Yan et al. 2012). About 200–400 ml of seawater 
was filtered through GF/F membranes (25 mm dia -
meter) and acetone was added to extract the chloro-
phyll a, which was determined with a Turner Trilogy 
fluorometer (Welschmeyer 1994). Detailed sample 
information and environmental factors determined 
are shown in Table S1 in the Supplement at www.int-
res.com/articles/suppl/m742p035_supp.pdf. 

2.2.  DNA extraction, PCR and sequencing 

DNA extraction was conducted as described in a 
previous study (Yuan et al. 2015). Briefly, membranes 
with plankton cells were cut into small pieces and 

soaked in 1 ml lysis buffer (10 mM Tris, 100 mM EDTA, 
0.5% SDS). The samples were incubated at 56°C for 
about 2 d. Next, bead-beating was performed on a 
FastPrep-24 bead mill (MP Biomedicals) at 6 m s–1 for 
1 min. This step was repeated 3 times, and during the 
5 min intervals between the cycles, the samples were 
placed on ice to eliminate the foam. To each sample, 
165 μl of 5 M NaCl and 165 μl of 10% CTAB (cetyl/
hexadecyl trimethyl ammonium bromide, in 0.7 M 
NaCl solution) was added. The samples were then in-
cubated at 56°C for 10 min. Each sample was equally 
split in two, and to each half, 665 μl chloroform was 
added. The tubes were vortexed and centrifuged at 
ca. 13 523 × g for 10 min. Only the upper layer was 
transferred to a new tube. Total genomic DNA was ex -
tracted and purified using the DNA Clean & Concen-
tratorTM-25 kit (Zymo Research). Binding buffer (2× 
volume of the upper layer) was added to each tube and 
loaded into the columns. The columns were centrifuged 
at ca. 13 523 × g for 30 s. Then, 200 μl wash buffer was 
added to each column, and they were centrifuged at 
ca. 13 523 × g for 30 s. Finally, 30 μl of 10 mM Tris-HCl 
was added to the columns to elute the DNA. DNA con-
centration and purity were as sessed using a Nanodrop 
2000 Spectrophotometer (Thermo Scientific). The 
hyper variable V4 region (270–387 base pairs, bp) of 
the 18S rRNA gene was amplified using the primers 
TAReuk454FWD1 (5’-CCA GCA(G/C)C(C/T)GCG
GTA ATT CC-3’) and TAReukREV3 (5’-ACT TTC GTT
CTT GAT(C/T)(A/G)A-3’) (Stoeck et al. 2006). The 
poly merase chain reaction (PCR) protocol consisted of 
an initial denaturation at 94°C for 30 s; followed by 35 
cycles of denaturation at 94°C for 30 s, annealing at 
55°C for 30 s and elongation at 72°C for 30 s; and a final 
elongation step at 72°C for 5 min. The PCR products 
were purified using Cycle Pure Kit (100) OMEGA 
(New England Biolabs). The amplicons were used for 
the construction of libraries, which were quality-
checked and sequenced (PE250) on an Illumina Nova-
seq 6000 platform (Illumina). 

2.3.  Amplicon sequence variant classification 

Raw reads with low-quality bases were removed 
using Trimmomatic v.3.3 (Bolger et al. 2014). Adap-
tors and primer sequences were trimmed using Cuta-
dapt (Martin 2011) (v.1.9.1). The resulting good-qual-
ity sequences were assembled using USEARCH 
(Edgar 2013) (v.10). Identification and removal of chi-
meras was also conducted using UCHIME (Edgar et 
al. 2011) (v.8.1). The DADA2 (Callahan et al. 2016) 
method in QIIME2 (Crépineau et al. 2000) (v.2020.06) 
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was applied to de-noise sequences to generate ampli-
con sequence variants (ASVs). Species annotation 
was carried out based on the Protist Ribosomal Refer-
ence Sequence Database (v.4.14.1) (Guillou et al. 
2012) using an 80% confidence threshold. 

2.4.  Identification of generalists and specialists 

Generalists and specialists were identified follow-
ing a previous study (Sriswasdi et al. 2017). The ASV 
table was randomly shuffled 10 000 times while the 
ob served ASV richness was maintained in each sam-
ple. The random distribution of the ASVs was then 
compared with the observed distribution. Two thres-
holds were obtained from the comparisons. Based on 
the comparisons, the ASVs enriched in wide environ-
ments were defined as generalists, and those enriched 
in narrow environments were defined as specialists. 
The ASVs that occurred between the 2 thresholds 
were identified as opportunists. The detailed classifi-
cation of generalists and specialists as well as the con-
fidence of ASVs assigned to the species level are 
shown in Table S2. 

2.5.  Community diversity analysis 

Alpha diversity indices, including Chao 1 (repre-
senting richness) and the Shannon-Wiener diversity 
index (representing richness and evenness), were cal-
culated in QIIME2 (Bolyen et al. 2019). The Chao 1 
index was based on the equation: 

                                               (1) 

(Chao 1984), where S is the number of ASVs, n1 is the 
number of ASVs with one sequence and n2 is the 
number of ASVs with 2 sequences. The Shannon-
Wiener index was based on ASV abundance and the 
Chao 1 index. To uncover the microeukaryotic com-
munity differences, non-metric multidimensional scal-
ing (NMDS) ordination was constructed for generalists 
and specialists (Clarke & Gorley 2006). An analysis of 
similarity (ANOSIM) was used to test significant dif-
ferences in communities, using the ‘vegan’ package in 
R (v.4.2.1) (Clarke & Gorley 2006, R Core Team 2018). 
The global R value in ANOSIM ranges from 0 to 1 and 
represents the degree of separation between groups; 
R = 0 indicates no separation, whereas R = 1 suggests 
complete separation (Clarke & Gorley 2006). 

The traditional community similarity indices Bray-
Curtis distance and Unifrac distance were calculated 

in R with the ‘vegan’ package (Oksanen et al. 2015). 
The Bray-Curtis distance is 1 minus the fraction of 
minimum per-sample abundance of shared taxa (Bray 
& Curtis 1957). The Unifrac distance (weighted) is the 
fraction of unshared branch length on a phylogenetic 
tree, weighted by taxa abundances (Lozupone & 
Knight 2005). Taxa interaction-adjusted (TINA) and 
phylogenetic interaction-adjusted (PINA) indices 
were estimated according to Schmidt et al. (2017). 
The TINA index is based on a species co-occurrence 
network or species interaction; the PINA index is 
based on phylogenetic similarities (Schmidt et al. 
2017). PERMANOVA analyses were performed using 
the ADONIS function in R with the ‘vegan’ package 
in order to calculate the amount of variance in com-
munity composition explained by environmental fac-
tors or geographic variables (province, temperature, 
salinity, NO3

–, NO2
–, NH4

+, PO4
3– and SiO4

4–). We 
ran 999 permutations; only results with p < 0.05 were 
accepted as significant variations. Here, the 5 coastal 
areas were used as geographic variable factors and 
were then determined as the biogeographic prov-
inces. The 5 coastal areas represent 5 different prov-
inces, respectively. 

A total of 135 dinoflagellate sequences were se -
lected for phylogenetic analysis. We retrieved 34 ref-
erence sequences of common dinoflagellate species 
from NCBI. The phylogenies were used to investigate 
the dinoflagellate diversity and their phylogenetic 
positions. Alignment of multiple sequences was per-
formed using MUSCLE. MEGA-X was used to con-
struct the tree. A maximum likelihood (ML) tree was 
ob tained through the GTR+G model. An Amoebo-
phrya species was used as an outgroup to root the 
tree. A bootstrap approach was carried out with 1000 
resamplings for the ML tree in order to assess the spe-
cies grouping robustness. 

2.6.  Network construction and C-score estimation 

Network analysis was carried out with the iNAP 
platform (Feng et al. 2022) to examine the co-occur-
rence patterns of taxa in generalist and specialist net-
works as well as the stability of multi-phylum net-
works of Dinoflagellata, Bacillariophyta, Arthropoda, 
Chlorophyta and Ciliophora. FastSpar (Friedman & 
Alm 2012, Watts et al. 2019) was used to calculate the 
pairwise correlations between plankton ASVs, and 
only correlations with |r| > 0.6 and a statistical sig-
nificance of p < 0.01 were retained for the network. 
Among all nodes, the network hubs (z-score > 2.5;  
p-score [participation coefficient] > 0.62), module 

 Chao 1 = S +
2 n2 + 1` j

n1 n1 –1` j
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hubs (z-score > 2.5; p-score < 0.62), connectors (z-
score < 2.5; p-score > 0.62) and peripherals (z-score < 
2.5; p-score < 0.62) were identified (Strogatz 2001, 
Guimera 2005). All nodes defined as hubs and con-
nector nodes could be recognized as potential key-
stone species in co-occurrence networks (Shi et al. 
2016). Network visualization was conducted using 
Gephi (v.0.9.7). The topological characteristics of the 
networks, including average degree, average path 
length, graph diameter, graph density, clustering co -
efficient and modularity, were calculated in R using 
the ‘igraph’ package (Csardi 2013). Network stability 
was assessed by natural connectivity, and the nodes 
were gradually removed to evaluate how quickly 
robustness would be degraded (Peng & Wu 2016). 
The lower the absolute value of the slope of the natu-
ral connectivity versus the number of node plots, the 
more stable the network (Wu et al. 2021). 

The checkerboard score (C-score) was calculated in 
R (v.4.2.1) (R Core Team 2018) with the ‘EcoSimR’ 
package (Ellison 2013). This variable was used to 
evaluate whether the real distributions of ASVs are 
random or not. The ASV table was modified to a 
binary matrix of presence (1) and absence (0), and 
then the C-score was calculated under the null model 
(Gotelli & McCabe 2002). If the C-score is larger than 
the one expected by chance, the species distributions 
are considered non-random (Sanders et al. 2007). The 
standardized effect sizes (SES) for C-score were cal-
culated through the formula: 

                                         
                                                                                          (2) 
(Gotelli & McCabe 2002). Positive SES values mean 
that it is less likely to be a random pattern, which indi-
cates the predominance of segregation within com-
munities. Contrarily, if SES values are negative, this 
implies the predominance of facilitation. If co-occur-
rence patterns are the same as what random patterns 
expect, values of SES should be between −2 and +2 
(Mo et al. 2021). 

2.7.  Quantification of ecological assembly 
 processes based on null model and dispersal–niche 

continuum index 

To quantify and compare the community assembly 
of generalists and specialists, a null model was built 
based on Stegen et al. (2013). The deterministic and 
stochastic processes are classified according to the 
beta nearest taxon index (βNTI), which is the differ-
ence between the observed mean nearest taxon dis-

tance (βMNTD) and the mean of the null distribution 
of βMNTD normalized using its standard deviation 
(Mo et al. 2021). The βMNTD was calculated to eval-
uate pairwise phylogenetic turnover between com-
munities using the ‘picante’ package in R (Webb et al. 
2002, Stegen et al. 2013). If the absolute value of βNTI 
(|βNTI|) is ≥2, which indicates a significant deviation, 
the process is considered a deterministic process; 
contrarily, |βNTI| < 2 suggests stochastic processes 
(Dini-Andreote et al. 2015). When βNTI ≥ 2, heteroge-
neous selection is dominant in community turnover; 
when βNTI < –2, homogeneous selection dominates 
the community turnover. The Bray-Curtis-based Raup-
Crick metric (RCbray) index was further calculated 
for pairwise comparisons with |βNTI| < 2 (Stegen et al. 
2013). |βNTI| < 2 and RCbray < –0.95 or |βNTI| < 2 and 
RCbray > 0.95 indicates homogenizing dispersal 
and dispersal limitation, respectively. |βNTI| < 2 and 
|RCbray| < 0.95 indicated undominated community 
turnover, which means that the community is dom-
inated neither by dispersal nor selection. 

The dispersal–niche continuum indices (DNCI) 
were calculated to determine the level of the as sembly 
process. Positive DNCI values suggest a dominance of 
niche processes and negative DNCI values imply the 
role of dispersal (Wen et al. 2022). The absolute value 
of DNCI represents the level of the 2 processes. The 
analysis was performed in R using the ‘DNCImper’ 
package (v.0.0.1.0000) (Gibert et al. 2020). The pair-
wise DNCI values among the 5 different bays were 
compared using the function ‘DNCI_multigroup’. 

3.  RESULTS 

3.1.  Spatial dynamics of environmental variables 
and forcing factors 

The sampling sites were located along the coastlines 
of Fujian province. The climate of Fujian province is 
subtropical maritime monsoon, with an average tem-
perature range from 17°–22°C. The average precipita-
tion ranges from 1200–1700 mm. Regarding the 5 
areas, DS is an important mariculture harbor; XM is an 
island city surrounded by coastal water, harboring a va-
riety of marine species; MJ has a special ecological en-
vironment, as it is abundant in organic matter and nu-
trients; and SS is a typical aquaculture harbor, which 
has created eutrophic conditions (Han et al. 2021). 

A series of environmental factors characterizing the 
5 coastal areas (from south to north: DS, XM, PT, MJ 
and SS) is visualized in Fig. S1. The 5 areas differed in 
temperature, which was much higher in the south than 

       
       SES = standard deviation

observed C-score –
       

       
of simulated C-scores
mean simulated C-score
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in the north (Fig. S1a). The range of salinity, NO3
– and 

SiO4
4– was the highest in MJ, probably due to the 

strong river-to-sea gradient (Fig. S1b,d,h). Other nu-
trients, such as NO2

–, NH4
+ and PO4

3–, were higher in 
XM and SS than in the other areas (Fig. S1e–g). 

Situated along the Taiwan Strait, our sampling area 
is influenced by several environmental forcing factors  
(Fig. 1), including the high northward flow of the 
South China Sea Warm Current in summer (Yang et 
al. 2008). The influence of the Zhe-Min Coastal Cur-
rent (ZMCC) is generally stronger in winter than in 
summer (Xu et al. 2020). The South China Sea is also 
intruded by the Kuroshio Current in both summer and 
winter (Guo et al. 2019). 

3.2.  Composition and classification of the 
 microeukaryotic communities 

A total of 46 234 085 raw rRNA gene reads were 
obtained from all 578 samples in the 5 coastal areas of 
southeast China that we surveyed in May of 2020 
(Fig. 1). After de-noising through the DADA2 pipe-
line, 1295 ASVs were obtained from all the samples. 
Following elimination of those ASVs annotated as 
unassigned species, 1241 ASVs were kept for further 
analysis. Based on the criteria described in Section 
2.4, species occurring in fewer than 93 environments 
were identified as specialists and those occurring in 
more than 136 environments were identified as gener-
alists (Fig. 2a). Of the 1241 ASVs retrieved from the 5 
bays, 423 ASVs were identified as generalists and 603 
ASVs as specialists, representing 85.5 and 8.91% of 
the total sequences, respectively. The richness of spe-
cialists was higher than that of generalists, while the 
relative abundance of specialists was only approx-
imately one-tenth that of the generalists. Although 
419 generalist ASVs (99%) were shared in all 5 coastal 
areas, only 318 specialist ASVs (52.7%) occurred in all 
5 coastal areas (Fig. 2b). No ASV was simultaneously 
classified as a generalist and a specialist, indicating 
that the defining criteria used were appropriate. 

The most abundant groups in the generalist com-
munity (GRL) were Dinoflagellata (23.25–30.07%) 
and Arthropoda (14.20–34.87%), followed by Bacil-
lariophyta (7.33–22.42%), Chlorophyta (1.08–
11.53%) and Ciliophora (2.96–5.89%) (Fig. S2b). For 
the specialist community (SPL), Dinoflagellata was 
most abundant (17.02–25.82%), followed by Cilio-
phora (4.86–23.71%), Bacillariophyta (4.94–13.69%), 
Arthropoda (5.50–16.49%) and Chlorophyta (0.75–
4.87%) (Fig. S2c). The relative abundance of Arthro-
poda was much higher in GRL than in SPL, while that 

of Ciliophora was higher in SPL. Generally, the rel-
ative abundance of these main taxa was lower in the 
northern bays (PT and SS) and higher in the southern 
bays (DS and XM) except that they were also abun-
dant in MJ, which is situated in the north. 

Generalist dinoflagellates mostly comprised spe-
cies from the Gymnodiniaceae and Kareniaceae fam-
ilies in the Gymnodiniales and the Syndiniales orders. 
The specialist dinoflagellates were mostly from the 
Gymnodiniaceae family in the Gymnodiniales order, 
the Syndiniales order and the Thoracosphaeraceae 
family in the Peridiniales order. The phylogenetic 
tree with these sequences and reference sequences 
indicated that the majority of these sequences be -
longed to diverse unclassified species in the Syndini-
ales order but the rest belonged to diverse unclassi-
fied species in other dinoflagellate orders (Fig. S3). 

3.3.  The north–south pattern of  
microeukaryotic diversity 

Diversity indices (both Shannon-Wiener and 
Chao 1) calculated based on the ASVs showed a pat-
tern of being high in the southmost area (DS) and 
decreasing going north to MJ (Fig. S4). An exception 
occurred in SS, where the diversity indices were 
higher than in other northern areas (PT and MJ) 
(Fig. S4). In geographic distribution, generalists were 
more abundant in SS, DS and XM than in the other 
study areas, while more specialists were present in SS, 
PT and DS than in the other areas (Fig. S4b,c,e,f). We 
found no significant difference between generalists 
and specialists with the Shannon-Wiener index, but 
the Chao 1 index was much higher for generalists 
than specialists (Fig. S5a,b). This indicated that gen-
eralists had higher species numbers than specialists 
but that they were similar in evenness. 

Overall, the diversity indices were positively corre-
lated with salinity and PO4

3– (Fig. S6a). The high di-
versity in SS appeared to be a result of high PO4

3–, 
given that the salinity in SS was not higher than the 
other areas and that the community composition ex-
hibited no great difference from the other areas. The 
Chao 1 index of generalists was positively correlated 
with the abundances of PO4

3–, NH4
+ and NO2

– 
(Fig. S6b). By contrast, the Chao 1 index of the spe-
cialists was more strongly correlated with temperature 
and salinity (Fig. S6c). The correlation be tween the 
Chao 1 index and environmental factors was stronger 
than that between the Shannon-Weiner index and en-
vironmental factors. To further explore the effect of 
high diversity in SS on the general correlations, sam-
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ples from SS were removed and correlations were ana-
lyzed again (Fig. S6d–f). After the exclusion of SS, the 
correlation between diversity and PO4

3– became non-
significant, but correlations between diversity and 
other nutrient factors became more significant, indi-

cating the high diversity in SS was strongly in -
fluenced by PO4

3– nutrient availability. This has a 
strong impact on the general south–north trend of 
diversity. Scatter plots showing Spearman’s rank 
correlations between alpha diversity indices and en-
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Fig. 2. Identification of microeukaryotic generalists and specialists and comparison of microeukaryotic plankton communities 
among the 5 coastal areas. (a) Random/observed distribution of the amplicon sequence variant (ASV) environment. (b) Venn 
diagrams of the number of generalist, specialist and all ASVs in the 5 coastal areas. (c) Non-metric multidimensional scaling 
(NMDS) analysis based on Bray-Curtis community similarity. DS: Dongshan Area; MJ: Minjiang estuary; XM: Xiamen Area;   
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vironmental factors for all sampling sites with SS in-
cluded or excluded are shown in Fig. S7. 

3.4.  Spatial variations and influencing  
environmental factors of the  
microeukaryotic community 

According to the NMDS analysis based on Bray-
Curtis community similarity (Fig. 2c), the 5 commu-
nities were distributed in a clear trend from south to 
north. The communities in DS and XM were sep-
arated from communities in the other 3 areas in the 
north. Our results also showed that the microeuka-
ryotic communities were generally uniform between 
surface and bottom layers (Fig. S8a) (ANOSIM, R = 
0.000168, p = 0.4438). Similar results were obtained 
for  the generalists (ANOSIM, R = –0.002268, p = 
0.5418) and specialists (ANOSIM, R = 0.01829, p = 
0.0368) (Fig. S8b,c). 

Both generalists and specialists were found to be cor-
related with environmental factors (Fig. S9) (Mantel 
test, p < 0.01). β-diversity was estimated based on 
community dissimilarity. We calculated the percent-
age of variance explained by 8 different environmen-
tal factors, as captured by the β-diversity indices TINA 
(based on species co-occurrence network or species 
interaction), PINA (based on phylogenetic similarities), 
Bray-Curtis dissimilarity and Unifrac (Fig. 3). The TINA 
index explained the highest percentage of commu-
nity variance for province, temperature, NH4

+ and 
PO4

3–. Compared to specialists, the community vari-
ance captured by TINA was higher for generalists. 
Among all these factors, province and temperature 
were the 2 main factors that influenced the commu-
nity most. For generalists, temperature explained up 
to 45.6% and province explained up to 38.0% of the 
TINA index (ADONIS R2). For specialists, tempera-
ture explained up to 27.9% and province explained up 
to 27.2% of the TINA index (ADONIS R2). PINA ex -
plained the highest community variance for NO3

– and 
SiO4

4–. Similarly, generalists also exhibited higher 
community variance than specialists as explained by 
NO3

– and SiO4
4– captured by PINA. Meanwhile, the 

influences of parameters on the other 2 indices were 
relatively moderate. Based on the definition of the 
4 β-diversity indices, this result showed that tempera-
ture and province had great effects on species co-
occurrence network, especially on generalists. As dem-
onstrated by TINA analysis, temperature and province 
had significant impacts on species interaction. Accord-
ingly, as indicated by PINA analysis, NO3

– and SiO4
4– 

were significant in the phylogenetic tree for generalists. 

3.5.  Ecological processes shaping the 
 microeukaryotic plankton communities 

Our analysis showed that the communities were 
mainly shaped by stochastic processes, and dispersal 
limitation contributed the highest percentage (74.7% 
for generalists, 62.3% for specialists). The influence of 
dispersal limitation was confirmed in the results of the 
DNCI between the 5 coastal areas: dispersal between 
PT and SS, DS and XM was high, indicating that it 
belonged to different water masses than the latter 
3  communities (Fig. S10). Deterministic processes 
contributed more to the assembly of the generalists 
(21.34%) than to that of the specialists (11.98%) 
(Fig. 4a,b). The deterministic processes that influenced 
the assembly of generalists were mainly homoge-
neous selection, while those that influenced the as -
sembly of specialists were mainly variable se lection. 
The βNTI of generalists and specialists mostly varied 
between –2 and 2, and the indices of generalists were 
generally lower than those of specialists (Fig. 4c). 

The βNTI indices did not differ among the 5 areas, 
and this result was true for both generalists and spe-
cialists (Fig. S11). Despite the dominance of stochas-
tic processes for the microeukaryotic community, the 
influence of temperature on the community was not 
negligible. We binned the 5 areas into 2 groups: a 
high-temperature group (DS and XM; range: 24.79°–
33.55°C) and a low-temperature group (MJ, PT and 
SS; range: 20.93°–25.14°C) (Kruskal-Wallis test, p < 
0.001). Nutrient conditions were not as different as 
temperature between the 2 groups (Fig. 5a), indica-
ting that temperature was the major factor separating 
the 2 groups. Finally, the results showed that network 
robustness was higher in the southern group (DS + 
XM), where the temperature was higher (Fig. 5b). The 
GRL network in the northern group (PT + MJ + SS) 
was less stable compared to the specialists. 

3.6.  Co-occurrence patterns of generalists  
and specialists 

Network analysis was conducted to study the co-
 occurrence patterns of both generalists and specialists. 
Based on the FastSpar results, the network consisted 
of 294 nodes (180 generalists and 114 specialists) and 
3198 edges (543 among generalists, 1520 among spe-
cialists and 1135 between the 2 groups) (Fig. 6a). 

The generalists formed a network made up of 153 
nodes and 534 edges, while the specialist network 
consisted of 91 nodes and 1105 edges (Table S3). The 
GRL network harbored more nodes and fewer edges 
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than the SPL network. The topological features of the 
generalist co-occurrence network differed from that 
of the specialist co-occurrence network. Compared to 
specialists, the GRL network had higher average path 
length, graph diameter and modularity but a lower 
average degree, graph density and clustering coeffi-
cient (Table S3). The results of the C-score analysis 
showed that the co-occurrence patterns of the net-
works were non-random, as the observed C-scores 
were higher than the C-scores expected by the null 
model (Table S3). In addition, the SES values were 
larger than 2, indicating that the patterns were non-
random and segregation was a predominant factor. 

Five major modules accounted for 79.75% and 
other modules accounted for 20.25% of the generalist 
co-occurrence network. The SPL network was slightly 
different, as it consisted of 6 major groups that ac -
counted for 84.62% of the whole network with other 
modules making up the remaining 15.38% (Fig. 6b,c). 
Arthropoda, Bacillariophyta, Chlorophyta, Cilio-
phora and Dinoflagellata occupied most nodes in the 
major modules of the generalist co-occurrence net-
work, while in SPL network, more nodes were occu-
pied by Arthropoda, Ciliophora, Dinoflagellata and 
Polycystinea (Fig. S12a,b). 

Four ASVs were identified as keystone species 
(module hubs) as defined by Strogatz (2001) in the 

GRL network, including 2 from Dinoflagellata, 1 
from Chlorophyta and 1 from Ochrophyta. Markedly 
more keystone species (connector) were found from 
the SPL network; in total, 39 ASVs that belonged to 
Polycystinea (6 ASVs), Dinoflagellata (5 ASVs), 
Chlorophyta (5 ASVs), Streptophyta (5 ASVs), 
Arthropoda (5 ASVs), Tubulinea (3 ASVs), Ochro-
phyta (2 ASVs), Ciliophora (2 ASVs), Annelida 
(1 ASV), Cercozoa (1 ASV), Cnidaria (1 ASV), My -
zozoa (1 ASV), Rotifera (1 ASV) and unclassified 
Eukaryota (1 ASV) (Table S4). Given that both Chlo-
rophyta (a total of 6 ASVs) and Dinoflagellata (a 
total of 7 ASVs) were found as keystone species, 
they were important sources of keystone lineages in 
both the generalist and specialist groups. 

3.7.  Role of specific taxa in network stability 

Considering the dominance of dinoflagellates (Di-
noflagellata), diatoms (Bacillariophyta) and green 
algae (Chlorophyta) in plankton as well as their 
crucial ecological roles in marine ecosystems, their 
im pacts on the stability of networks were investigated. 
The natural connectivity versus removed nodes (%) 
plot describes how the absence of lineages changes 
connectivity (Fig. 6d,e). For generalists, connectivity 
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Fig. 4. Ecological processes of (a) generalists and (b) specialists based on the null model and (c) the beta nearest taxon index 
(βNTI) of generalists and specialists. In (a) and (b), inner circle: contribution of deterministic and stochastic processes; outer cir-
cle: percentage of the detailed processes. Boxplot horizontal line: median; box: interquartile range from 25th–75th percentile;  

whiskers: minimum and maximum values; dots: outliers
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declined at the highest rate when dinoflagellates were 
removed (i.e. the slope decline was greatest in Fig. 6d). 
Comparatively, the removal of Bacillariophyta and 
Chlorophyta did not have much influence on the 
slope. Therefore, the removal of the Dinoflagellata re-

sulted in the least stable network of generalists com-
pared to the removal of Bacillariophyta and Chloro-
phyta, indicating that dinoflagellates were crucial to 
the network stability of generalists. For specialists, 
the connectivity decline slope was the highest with 
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Fig. 5. Profiles of environmental factors and effects on network stability. (a) Temperature, nitrate, nitrite, ammonium, phos-
phate and silicate in the southern group (DS: Dongshan; XM: Xiamen) and the northern group (PT: Pingtan; MJ: Minjiang; SS: 
Sansha). The variables were compared through Kruskal-Wallis test; ns: p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001. (b) Changes 
in network stability at high or low temperature for all species, generalists and specialists. The decreasing trend of natural con-
nectivity is fitted with 80% nodes lost, and the R2 and slope are shown in diagrams. The lower the absolute value of the slope, the  

more stable the network. Boxplot parameters as in Fig. 4
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Fig. 6. Co-occurrence networks of (a) generalists and specialists, (b) generalists only, (c) specialists only and (d,e) effects of par-
ticular lineages on the stability of the networks. Nodes were colored according to different modules. Note the changes in net-
work stability of generalists (d) and specialists (e) when a certain phylum is removed. A connection edge represents a strong 
(Spearman’s |r| > 0.6) and significant (p < 0.05) correlation. The decreasing trend of natural connectivity is fitted with 80% nodes 
lost, and the R2 and slope are shown in diagrams. The lower the absolute value of the slope, the more stable the network
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the removal of Chlorophyta, whereas the removal of 
dinoflagellates and diatoms did not strongly in-
fluence the slope, indicating that chlorophytes had a 
crucial effect on the network stability of the specialists 
(Fig. 6e). 

To test whether the key taxa can have an effect on 
single-phylum networks, the stability of networks in 
the presence and absence of dinoflagellates and other 
phyla in GRL was investigated. In the generalists, 
the addition of Dinoflagellata to the single-phylum 
networks of Arthropoda, Bacillariophyta, Chloro-
phyta and Ciliophora made the networks more con-
nected  (Fig. 7a) but degraded network stability, as 
the de clining slopes for these phyla all increased 
with the addition of dinoflagellates (Fig. 7b). Chloro-
phyta ex hibited a greater influence on specialist co-
occurrence patterns than on generalist co-occurrence 
patterns. In SPL, the addition of Chlorophyta en -
hanced the network stability of the Arthropoda, 
Bacillariophyta and Ciliophora single-phylum net-
works (Fig. 7c,d). In ad dition, most of the edges in the 
GRL networks were positive, and the percentage of 
negative edges in creased as dinoflagellates were 
added to the other phyla. All edges in the SPL net-
works were positive, indicating the dominance of co-
existence instead of exclusion between Chlorophyta 
and the other phyla. 

4.  DISCUSSION 

4.1.  The diversity and drivers of the 
 microeukaryotic community 

4.1.1.  North–south trend of microeukaryotic 
 diversity consistent with a global-scale 

latitudinal pattern 

An increasing trend was observed in ASV-based di-
versity along the north–south (i.e. high latitude to low 
latitude) gradient on the over 3000 km coastline. This 
is consistent with the latitude-dependent pattern ob-
served over the global ocean (Stehli et al. 1969, Rohde 
1992). Several theories have explained why warmer 
regions support higher biodiversity. Temperature, as 
an abiotic factor, can control nutrient availability and 
affect the activity of species, promoting species co-
existence (Turner et al. 1987, Clarke & Gaston 2006). 
Another theory claims that temperature can determine 
rates of speciation, as temperature can increase meta-
bolic rates through free radicals or reactive oxygen 
species, which drives mutation rates (Martin 1995, 
Gillooly et al. 2005). Additionally, the strong climatic 

variation at high latitudes requires organisms to have 
more generalist physiology and ecology (Stevens 
1989). By contrast, the weak seasonal variation in cli-
mate conditions in lower latitudes can give rise to 
more localized species ranges; therefore, species rich-
ness and diversity will be higher in these areas 
(Stevens 1989). With higher solar energy availability 
under higher temperatures, diversity can even be in-
creased through complexification and specialization 
of biotic interactions such as mutualism, parasitism 
and trophic interactions (Willig et al. 2003). However, 
no statistically significant correlation be tween alpha 
diversity and temperature was found in this study 
(Fig. S6). The diversity pattern may be a result of sa-
linity and nutrient concentrations that co-vary with 
the range of latitudes covered in this study. 

The higher diversity within the SS is an exception. 
Situated in a relatively northern site, the water tem-
perature (annual average: 20.3°C) (Y. Chen et al. 
2019) is lower than at the southern study sites (annual 
average: 22.2°C in XM and 21°C in DS) (Wanjin & 
Zhaowen 1993, Xu et al. 2023). Thus, temperature 
cannot explain the higher diversity there. As illus-
trated in the results, the high diversity in SS may be 
correlated with PO4

3–, as its concentration appears to 
be distinctly high among the 5 study areas. Evidence 
exists that variability in phytoplankton diversity can 
be correlated with phosphorus (Ptacnik et al. 2010). 
Higher PO4

3– concentration has been linked to 
higher phytoplankton diversity, which enhances 
phosphorus use efficiency (Paczkowska et al. 2019). 
Moreover, studies have shown that the N:P ratios in 
SS are relatively low (Bu et al. 2024). Generally, the 
dissolved inorganic nitrogen (DIN; 3.6–61.96 μM) 
and dissolved inorganic phosphate (DIP; 0.001–
1.67 μM) (Table S1) levels were low in summer com-
pared to the high DIN (39.6–87.5 μM) and DIP (1.79–
3.77 μM) levels reported in SS in winter (Han et al. 
2021). The study also suggests that the exchange of 
nutrient-poor coastal waters and enhanced biological 
consumption could lead to relatively low nutrient 
levels in summer (Han et al. 2021). In addition, the 
distribution pattern of plankton is likely to be greatly 
influenced and shaped by aquaculture activities in SS 
(Li et al. 2024). 

4.1.2.  Temperature is the primary abiotic factor that 
drives taxon interactions 

In the TINA index (species interaction), the per-
centage of variance (ADONIS R2) in communities was 
best explained by temperature (Fig. 3). This result 
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Fig. 7. Additive impacts of certain phylum interactions on single-phylum networks. (a,b) Generalist and (c,d) specialist changes 
in network (a,c) topology and (b,d) stability after (a,b) dinoflagellate and (c,d) Chlorophyta interactions (+Dino and +Chloro-
phyta, respectively) were added to the single phylum networks in the first column of panels. (b,d) The decreasing trend of natu-
ral connectivity is fitted with 80% node loss; R2 and slope are shown. The lower the absolute value of the slope, the more stable  

the network
Figure continues on next page
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could be explained by the fact that interactions be -
tween heterotrophs and autotrophs or between non-
autotrophic taxa (e.g. predators–prey, parasites–

hosts) can be influenced by temperature (Traill et al. 
2010). To explore how high or low temperatures in -
fluenced taxa interactions and network stability, we 
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divided the 5 study areas into 2 groups: a high-tem-
perature group (DS and XM) and a low-temperature 
group (MJ, PT and SS) (ANOSIM, R > 0). A linear 
model of removed nodes and natural connectivity was 
constructed to compare network stability between 
the 2 groups. The results showed that the network was 
more stable in the high-temperature group (DS and 
XM) (Fig. 5b). It is conceivable that temperature 
can influence the community composition and hence 
network stability as a result. Temperature alone, or 
combined with temperature-dependent factors like 
nutrients, can affect the microeukaryotic community. 
Positive interactions were also found to be more prev-
alent with warming (Kordas et al. 2011). Indeed, 
increased temperature has been shown to have a pos-
itive effect on photosynthetic activity (Karlberg & 
Wulff 2013), productivity and biodiversity of phyto-
plankton (Yvon-Durocher et al. 2015). Therefore, 
temperature can modulate species coexistence. 

4.2.  The ecological processes of microeukaryotic 
generalists and specialists 

4.2.1.  Generalists and specialists differ in 
assembly mechanisms 

The lower proportion of generalists and higher pro-
portion of specialists could be due to the environmen-
tal heterogeneity among the samples collected (Xu et 
al. 2022a). A higher abundance of generalists com -
pared to specialists can also result from increased re-
silience and strategies like higher dormancy potential 
(Xu et al. 2022a). The specialists appeared to be more 
likely to be separated into clusters than the gen er alists 
(Fig. 2c). Some specialist species were confined to a 
certain area whereas most generalists were present in 
all 5 coastal areas (Fig. 2b). Therefore, not surprisingly, 
specialists have a more distinct spatial pattern. Our re-
sults from the null model showed that generalists and 
specialists differed in assembly processes, and SPL 
was more shaped by ecological drift (Logares et al. 
2018) than GRL (Fig. 4a). According to Logares et al. 
(2018), ecological drift includes such processes as 
local adaptation to varying environmental conditions. 
Therefore, some species in the SPL may have devel-
oped adaptations to their local range of environmental 
conditions such that they are able to tolerate environ-
mental fluctuation in their habitat. In the present 
study, generalists and specialists were shaped by dif-
ferent selection processes, as generalists were more 
influenced by homogeneous selection while specialists 
were more affected by variable selection (Fig. 4a). This 

indicates that the community divergence in generalists 
was constrained by selection and that they were more 
phylogenetically similar to each other compared to 
specialists (Logares et al. 2018). Together, this can ex-
plain why the GRL and SPL showed disparate spatial 
patterns. Furthermore, in this study, the richness of 
generalists was higher than that of  specialists. This 
finding, surprising as it may appear, is consistent with 
a recent study in which many bacterial generalists and 
few specialists were present in aquatic environments 
(Muscarella et al. 2019). Our data showed that the 
richness of generalists was positively correlated with 
nutrients (Fig. S6b), suggesting that abundant nu-
trients may provide support to generalists. A previous 
study also found that bacterial generalists had advan-
tages in terms of adapting to the environment when re-
sources were sufficient (Egli 2010). 

4.2.2.  The assembly of microeukaryotic generalist 
and specialist subcommunities is mainly due to 

stochastic processes 

Despite the distinct assembly mechanisms dis-
cussed above, our results revealed that both the gen-
eralist and specialist subcommunities were mainly 
structured by stochastic processes. More specifically, 
dispersal limitation was the main process for both 
generalists and specialists (Fig. 4a,b). This is consis-
tent with the ADONIS analysis, which showed that 
province also contributed greatly to taxon interac-
tions (Fig. 3). The influence of dispersal limitation can 
also be reflected by geographic distances, as sug-
gested by the Bray-Curtis dissimilarity (Fig. 2b). Sto-
chastic processes have been proven to be more 
important for shaping the microeukaryotic commu-
nity than for the bacterial community. Liu et al. (2020) 
found that in the 23 lakes on the Tibetan Plateau, the 
microeukaryotic community was strongly driven by 
dispersal limitation while the bacterial community 
was triggered by environmental selection. Dispersal 
limitation was also found to have a larger impact on 
microeukaryotes in the Tropical North Pacific Ocean 
(Kong et al. 2022). Similarly, the microeukaryotic 
community in a subtropical river was strongly driven 
by stochastic processes (W. Chen et al. 2019). The 
influence of dispersal limitation was not overesti-
mated for microeukaryotes. First of all, the pattern of 
DNCI indices suggests a strong dispersal limitation 
between the community of PT and that of DS and XM 
(Fig. S10). The water in PT is warm and the most 
saline of the 5 areas studied here (Fig. S1a,b). The 
salinity ranged widely in MJ, where DNCI was the 
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lowest among the 5 regions (Fig. S1b), suggesting 
that the dispersal effect is limited in the estuary where 
water has a strong gradient of salinity and other fac-
tors. Research has suggested that different water 
masses in different oceans will also have an impact on 
community assembly (Milke et al. 2022). Therefore, if 
the water mass had a great influence on dispersal lim-
itation, this is probably because larger cell sizes will 
enhance the influence of dispersal limitation (De Bie 
et al. 2012). As a result, larger microeukaryotes would 
not as easily be moved with currents; thus, their dis-
persal ability will be relatively weak (Soininen et al. 
2011). Bacterial communities were also found to have 
wider niche breadths (Liu et al. 2020). These findings 
further support the size–dispersal hypothesis as 
revealed in many previous studies: larger cell sizes 
have a stronger dispersal limitation (Foissner 2006, 
Casteleyn et al. 2010, De Bie et al. 2012, de Vargas et 
al. 2015). For instance, during the circumglobal ‘Tara 
Oceans’ expedition, dispersal limitation was found to 
increase from piconano- (0.8–5 μm) to nano- (5–
20 μm), micro- (20–180 μm) and mesoplankton (180–
2000 μm), as demonstrated in the significantly 
stronger community differentiation (Mantel test, 
Rm = 0.36, 0.49, 0.50 and 0.51 for the highest pico -
nano- to mesoplankton correlations) by ocean basin 
in larger organismal size fractions (de Vargas et al. 
2015). In this study, we collected organisms that were 
larger than 3 μm—much larger than most bacteria, 
which range from 0.22–1 μm. Finally, dormancy 
strategies are less commonly ob served in micro -
eukary otes than in prokaryotes, and this can contrib-
ute to dispersal limitation for microeukaryotes (Wu et 
al. 2018, Logares et al. 2020). Moreover, microeuka-
ryotic communities of smaller population sizes would 
also be more influenced by random births and deaths 
(Wu et al. 2018, Wang et al. 2020). 

4.3.  The co-occurrence patterns of microeukaryotic 
generalists and specialists 

4.3.1.  Different co-occurrence networks in 
 generalists and specialists 

Co-occurrence networks are based on ecological 
associations and taxa interactions within a commu-
nity (Hirano & Takemoto 2019). The structure and 
niche spaces shaped by the community members can 
thus be revealed through co-occurrence patterns 
(Fuhrman & Steele 2008, Steele et al. 2011, Kara et al. 
2013). The co-existence patterns of generalists and 
specialists are quite different from each other. There 

were more interaction edges in the SPL network even 
though there were fewer nodes than in the GRL net-
work (Fig. 6b,c), indicating that the SPL network was 
more complex. In addition, the generalists interacted 
more strongly with organisms from the specialists 
than with each other, and the specialists interacted 
more strongly with each other than with the general-
ists (Fig. 6a). This indicates that the specialists are 
more dynamic than the generalists. Mo et al. (2021) 
revealed that a more complex network does not 
always mean more stable co-occurrence patterns. In 
this study, the more complex SPL network was also 
found to be less stable than the GRL network 
(Fig. 6d,e), which further proves the wider distribu-
tion of generalists compared to specialists. 

There can be several reasons for the different co-
occurrence patterns between generalists and special-
ists. One possible explanation is that more keystone 
species were identified in the SPL network than in the 
GRL network (Table S4). According to 2 previous 
studies, keystone species are generally recognized as 
the initiating constituents in networks (Barabâsi et al. 
2002), and those keystone lineages tend to have a 
longer evolutionary history (Ma et al. 2016). The net-
works could break up without these keystone species. 
As a result, the interactions among taxa may be 
stronger with more keystone species, and the SPL net-
work was more complex compared to the GRL net-
work. Additionally, the different community compo-
sitions of the modules can shape the complexity and 
stability of co-occurrence networks (Barberán et al. 
2012, Mo et al. 2021). In this study, the 2 networks also 
differed in taxonomic composition and the distribu-
tion of species of various phyla or classes. The distri-
bution of specialists was more even across the mod-
ules, and different modules were dominated by only 1 
or 2 taxa such as Dinoflagellata. In the GRL network, 
the modules were dominated by several taxa like 
Dinoflagellata, Chlorophyta, Bacillariophyta and Cil-
iophora (Fig. S12). We suppose that the dominance of 
a certain species can contribute to species interac-
tions and network stability. Finally, the percentage of 
variance in communities explained by different envi-
ronmental factors (temperature, NH4

+ and PO4
3–) 

was also higher for generalists (Fig. 3). The smaller 
influence of environmental conditions on the SPL as 
determined by the TINA index might indicate the 
strong biotic interactions (Y. Wang et al. 2015), which 
corresponds to the higher number of edges in the spe-
cialist co-occurrence network. It is also possible that 
the SPL is actually more dynamic, and sampling only 
one time limits the insight it can provide because eco-
logical patterns might be missed (Özkan et al. 2014). 
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4.3.2.  Different determinant taxa for the network 
stability of generalists and specialists 

Recent research in microbial ecology has revealed 
that rare taxa may be more significant to species inter-
actions (Xiong et al. 2021). In the present study, gen-
eralists and specialists differ in the width of the habitat 
range. Even though generalists are more prevalent 
than specialists, their taxon interactions are not nec-
essarily stronger. Therefore, the stability of generalists 
and specialists can be influenced by different taxa. 

The change in interaction network stability when a 
taxon is removed is an indicator of how important this 
taxon is to stabilizing the network (Tipton et al. 2018). 
In this study, the removal of dinoflagellates was found 
to destabilize the GRL network, but not so for the SPL 
network. This is potentially because dinoflagellates 
serve as the backbone of the GRL network, which can 
increase the stability of the entire network (Yang et al. 
2022). This finding can be attributed to the contribution 
made by dinoflagellates to the marine food web. Dino-
flagellates are versatile, with diverse trophic modes 
and high plasticity to environmental variations (Bock-
stahler & Coats 1993, Jeong 1994, Jeong et al. 2005, 
Seong et al. 2006). Dinoflagellates interact with a wide 
variety of marine organisms, and have roles as both 
predators and prey in the food web (Jeong et al. 2010). 
Some dinoflagellate predators can graze on chlo ro -
phytes (Strom & Buskey 1993), diatoms (Menden-
Deuer et al. 2005, Du Yoo et al. 2009), ciliates (Hansen 
1991, Bockstahler & Coats 1993) and other dinoflagel-
lates (Tillmann 2004, Adolf et al. 2007); thus, they can 
control the populations of these prey species. On the 
other hand, they are the prey of some protistan and 
metazoan predators, serving as a link between higher 
and lower trophic levels (Jeong et al. 2010). Therefore, 
dinoflagellates can enrich the food web complexity 
and support the co-existence of many microeukary -
otic species in the marine  ecosystem. 

The removal of Chlorophyta had a significant effect 
on the SPL network, but not on the GRL network. The 
relative abundance of Chlorophyta in the specialist 
group was lower than in generalists (Fig. S2b,c). Even 
if the ecological role of green algae (Chlorophyta) is 
generally less well-studied than dinoflagellates and 
diatoms, several studies have indicated their impor-
tance (Roger & Reynaud 1982, Sørensen et al. 2014, 
Tragin et al. 2016). A series of coexistence experiments 
discovered that the growth of a red tide species, Proro-
centrum micans, was strongly inhibited by the addition 
of 2 species of green algae in the form of both fresh tis-
sue and dry powder (Jin et al. 2005). A Chlorophyta–
Pyrrophyta–Bacillariophyta type structure was dis-

covered in the overall algal composition of Yuncheng 
Salt Lake, indicating that Chlorophyta has an advan-
tage in high-salinity waters (Yang et al. 2024). There-
fore, green algae, even at low relative abundance, can 
have a marked effect on the community. Our finding 
suggests that Chlorophyta deserves further and 
deeper study. Whereas the addition of dinoflagellates 
did not increase the stability of single-phylum net-
works in generalists (Fig. 7a,b), the addition of Chloro-
phyta did increase the stability of single-phylum  
networks in specialists (Fig. 7c,d). In contrast to spe-
cialists, generalists are typically associated with higher 
genome sizes and genome expansion (Mas et al. 2016, 
Xu et al. 2022b), indicating that they are potentially 
more versatile and less dependent on other organisms 
in coping with environmental stress. Pandit et al. 
(2009) postulated that specialists in certain habitats 
lack environmental plasticity, and hence tend to un-
dergo changes in  community composition in response 
to the fluctuations in environmental conditions. There-
fore, community composition can have crucial effects 
on specialists. Moreover, specialists may depend more 
on metabolites and other organismal products for 
growth (Xu et al. 2022b). 

5.  CONCLUSIONS 

Our study investigated the spatial patterns of the 
microeukaryotic community in 5 coastal areas from 
south to north in the East China Sea. We found that di-
versity generally increased from north to south and 
that microeukaryotic generalists are quite different 
from their specialist counterparts in terms of spatial 
distribution, assembly processes, controlling factors 
and co-occurrence patterns. Our results also indicated 
that dispersal limitation is the major process shaping 
the microeukaryotic community structure in the re-
gion covered in this study. In addition, Phylum Dino-
flagellata, as a major component in the community, 
has a more important role in community stabilization 
for generalists than for specialists. Chlorophyta exhib-
ited a major effect on the network stability of special-
ists but not on that of generalists. Our findings shed 
light on the underlying mechanisms that shape micro-
eukaryotic generalists and specialists, and enhance 
our understanding of the significance of species inter-
actions and their potential roles in the microeukaryotic 
community. As such, this research provides insights 
into the complex response of plankton to climate and 
environmental (nutrient, salinity) changes in coastal 
areas, and can inform biodiversity protection, species 
conservation and sustainable coastal development. 
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Data Archive. All 18S rRNA gene sequence data from this 
study have been submitted to the NCBI database (www.
ncbi.nlm.nih.gov/) under accession number SRP466473 and 
BioProject accession number PRJNA1028181. 
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