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A B S T R A C T

Multilayered pipes are widely used in many engineering settings. Using guided wave is one of the most efficient
techniques to inspect them. To inspect multilayered pipes using guided waves, it is of paramount importance to
investigate the excitation and propagation of the guided wave within them. In this study, the solution of the
elastodynamic response of the finite and infinite multilayered pipes to axisymmetric torsional body and surface
forces is derived by the eigenfunction expansion method (EEM), based on which the excitation and propagation
of each torsional mode can be quantitatively investigated. As an example of the application of the theory pre-
sented here, the transient torsional waves propagating in an Al-Cu bi-layered pipe is numerically studied. The
numerically evaluated analytic solution agrees very well with that obtained using the finite element method
(FEM).

1. Introduction

Multilayered pipes play an important role in many engineering set-
tings [1–3]. For example, sandwich pipes are commonplace in deep
subsea pipelines for oil and gas to meet demands for thermal insulation
and mechanical integrity [4,5]. Coated pipes are commonplace in the
petrochemical and aerospace industries [6]. There are numerous de-
mands on nondestructive evaluation (NDE) to detect defects in multi-
layered pipes in service or production. The technique of guided waves
for oil and gas pipeline inspection is very attractive due to its high ef-
ficiency and low cost [7–14]. There are numerous torsional, longitudinal
and flexural modes propagating in pipes, which are designated by the
symbols T(0,m), L(0,m) and F(n, m) (n, m = 1, 2, …), respectively
[15–17].

To inspect multilayered pipes using guided waves, it is of paramount
importance to investigate the excitation and propagation of transient
guided torsional waves in the pipes. Karpfinger et al. [18] studied the
Stoneley wave dispersion and attenuation propagation in cylindrical

structures composed of fluid, elastic and poroelastic layers using the
spectral method. Aguiar et al. [19] carried out the dynamic analysis of
multilayered steel catenary risers using a novel, multilayered pipe beam
element model. Banerjee and Kundu [20] studied the elastic wave field
in multilayered nonplanar solid structures using a mesh-free semi--
analytical approach. Predoi [21] studied the dispersion of guided waves
in orthotropic multilayered pipes using a semi-analytical finite element
(SAFE) algorithm. Barshinger and Rose [22] studied the free guided
wave propagation in an elastic hollow cylinder coated with a visco-
elastic material.

To reduce the difficulty caused by multimodes and dispersion, a
single guided wave mode in a nondispersive region is often excited to
inspect pipes [23,24]. In recent years, guided torsional wave for a single
wall pipe inspection has received a lot of interest [25–31], as its prop-
agation characteristics are not affected by the presence of liquid in the
pipe. Moreover, it is easy to be excited and sensitive to circumferential
defects.

Numerical techniques such as the finite element method (FEM) and
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analytical techniques such as the eigenfunction expansion method
(EEM) are often used to study the excitation and propagation of transient
guided wave in pipes. The propagation of the transient wave in pipes
within an arbitrary section, as well as the interaction between them and
any defects can be simulated by the FEM. However, the transient exci-
tation of each guided wave mode cannot be simulated by the FEM. The
EEM cannot be used to study the interaction between guided waves and
defects. However, it can study the excitation and propagation of each
guided wave mode in a perfect pipe. The introduction of the EEM for
solving elastodynamic problems can be found in Ref. [32–34]. Tang and
his colleagues studied the transient torsional vibration responses of
finite, semi-infinite and infinite hollow cylinders [32] and the transient
wave propagation in liquid-filled pipe systems [34] using the EEM. Yin
and Yue [35] investigated the transient plane-strain response of multi-
layered elastic cylinders to axisymmetric impulses using the EEM.

In this paper, the eigenfunctions corresponding to a finite multilay-
ered pipe with traction-free lateral and end boundaries are obtained.
The exact analytical transient torsional response of the finite multilay-
ered pipe to external body forces is constructed using the EEM, based on
which approximate analytical transient torsional response of the pipe to
external surface forces is derived. Moreover, the analytical solution for
transient torsional guided wave propagation in the finite multilayered
pipe is extended explicitly and concisely to the infinite one. As an
example of the application of the theory presented here, the transient
torsional waves propagating in an Al-Cu bi-layered pipe is numerically
studied. The numerically evaluated analytical solution agrees very well
with that obtained using the FEM. The present solution can provide
some theoretical guidelines for the guided wave NDE of multilayered
pipes.

2. Statement of problem

A finite N-layered pipe of length 2L, as shown in Fig. 1, is considered.
We assume that each layer is an isotropic and homogeneous elastic body
denoted by Ωi (i = 1, 2, 3, …, N). The inner and outer radius of the ith
layer are denoted by ri-1 and ri, respectively. The density and Lamé’s
second constant of the ith layer are ρi and μi, respectively. The inner and
outer boundaries of the ith layer are denoted by Σi-1 and Σi, respectively.
The left and right boundaries of the ith layer are denoted by ΣL iand ΣR i,
respectively. When the pipe is subjected to homogeneous, axisymmetric
torsional loads f(r, z, t), longitudinal and flexural waves cannot be
excited. Its motion is governed by

Li
[
uθ
i (r, z, t)

]
+ ρifi(r, z, t) = ρi

∂2uθ
i (r, z, t)
∂t2 in Ωi (i=1, 2, …, N) (1)

where

Li = μi

(
∂2

∂r2 +
1
r

∂
∂r −

1
r2
+

∂2

∂z2

)

, (2)

We will determine the analytical solution to (1), which satisfies the
initial conditions

uθ(r, z,0) = 0, u̇θ(r, z,0) = 0 (3)

and the boundary conditions

σrθ
1

⃒
⃒
r=r0

= μ1
(

∂uθ
1

∂r −
uθ
1
r

)⃒
⃒
⃒
⃒
r=r0

= sI(z, t), z ∈ [− L, L] (4)

σrθ
N

⃒
⃒
r=rN

= μN

(
∂uθ

N
∂r −

uθ
N
r

)⃒
⃒
⃒
⃒
r=rN

= sO(z, t), z ∈ [− L, L] (5)

σrθ
i

⃒
⃒
r=ri

= σrθ
i+1

⃒
⃒
r=ri

, i = 1, 2, ⋯, N − 1, z ∈ [− L, L] (6)

uθ
i

⃒
⃒
r=ri

= uθ
i+1

⃒
⃒
r=ri

, i = 1, 2, ⋯, N − 1, z ∈ [− L, L] (7)

σzθ
i

⃒
⃒
z=±L = μi

∂uθ
i

∂z

⃒
⃒
⃒
⃒
z=±L

= 0, i = 1, 2, ⋯, N, r ∈ [r0, rN], (8)

where σrθ
i and σzθ

i are two stress components corresponding to the ith
layer, and sI and sO are the densities of the forces applied on its inner and
outer surfaces, respectively.

3. Torsional vibration eigenfunctions

The eigenvalue problem corresponding to Eqs. (1)–(8) is formulated
as

Li
[
uθ
i (r, z, t)

]
+ ρiω2uθ

i (r, z, t) = 0, r ∈ [r0, rN], z ∈ [− L, L] in Ωi (9)

μ1
(

∂uθ
1

∂r −
uθ
1
r

)⃒
⃒
⃒
⃒
r=r0

= 0, z ∈ [− L, L] (10)

μN

(
∂uθ

N
∂r −

uθ
N
r

)⃒
⃒
⃒
⃒
r=rN

= 0, z ∈ [− L, L] (11)

σrθ
i

⃒
⃒
r=ri

= σrθ
(i+1)

⃒
⃒
r=ri

,= 1, 2, ⋯, N − 1, z ∈ [− L, L] (12)

uθ
i

⃒
⃒
r=ri

= uθ
(i+1)

⃒
⃒
r=ri

, i = 1, 2, ⋯, N − 1, z ∈ [− L, L] (13)

∂uθ
i

∂z

⃒
⃒
⃒
⃒
z=±L

= 0, i = 1, 2, ⋯, N, r ∈ [r0, rN] (14)

Setting

uθ = R(r)Z(z) (15)

then substituting Eq. (15) into Eq. (9), we have

Z˝(z) + ξ2Z(z) = 0 (16)

R˝(r) +
Rʹ(r)
r

+

(
ω2

c2iT
− ξ2 −

1
r2

)

R(r) = 0in Ωi, (17)

where ξ is the wave number, and

ciT =

̅̅̅̅μi
ρi

√

B = [b1, b2,…,bM]. (18)

Solving Eq. (16) under the end boundary condition, i.e., Eq. (14), we
obtain

(z) = Akcosξkz

where

ξk =
kπ
L

(19)

or
Fig. 1. A finite N-layered pipe of length 2L.
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Zk(z) = Bksinξk ξk =
(2k+ 1)π

2L
. (20)

where
Solving Eq. (17), we obtain

Rik(r) = CikZ1(βikr) + DikX1(βikr) in Ωi, (i=1, 2, …, N) (21)

where

β2ik = ηiα2ik, (22)

α2ik =
ω2

k
c2iT

− ξ2k , (i=1, 2, ⋯, N), (23)

and

ηi =
{
1, α2ik > 0
− 1, α2ik < 0

. (24)

Z1 and X1 in Eq. (21) are the first order Bessel and Neumann func-
tions, respectively, when ηi = 1. Z1 and X1 are the first order modified
Bessel and Hankel functions, respectively, when ηi = − 1. Substituting
Eqs. (15) and (21) into Eqs. (10)-(13), we obtain a system of 2N ho-
mogeneous equations in the constants Cik and Dik (i = 1, 2, …, N). A
necessary and sufficient condition for the existence of a solution is that
the determinant of coefficients must be equal to zero, namely,
⃒
⃒dij

⃒
⃒
2N×2N = 0, (25)

where the expressions for dij are listed in Appendix A. Eq. (25) is the
dispersion equation of the torsional guided wave propagation in the
multilayered pipe. Solving Eq. (25), we obtain the values of ωmk (m, k =

1, 2, 3, …) corresponding to each ξk.
In a word, the torsional vibration eigenfunctions can be formulated

as

uθ
imk(r, z) = [CimkZ1(βimkr) +DimkX1(βimkr)]cosξkz in Ωi, (i=1, 2, …, N)

(26)

where ξk = kπ
L , or

uθ
imk(r, z) = [CimkZ1(βimkr) +DimkX1(βimkr)]sinξkz in Ωi, (i=1, 2, …, N)

(27)

where ξk =
(2k+1)π
2L .

4. Transient torsional wave propagation in the finite
multilayered pipe

The solution to (1) under (3)–(8) can be expressed as

uθ(r, z, t) = uaθ(r, z, t) + ubθ(r, z, t) (28)

where uaθ(r, z, t) is the solution to (1) under (3)–(8) with sI(z,t) = 0 and
sO(z,t)= 0, and ubθ(r, z, t) is the solution to (1) under (3)–(8) with f(r, z, t)
= 0. Thus, uaθ(r, z, t) is the transient response to the body force f(r, z, t),
whereas ubθ(r, z, t) is the transient response to the surface force sI(z,t) and
sO(z,t). According to a similar derivation given by Reismann [36],
Eringen and Suhubi [37], and Tang [33,34], we have

uaθ(r, z, t) =
∑

mk

1
Mmkωmk

⎡

⎣
∫t

0

Qa
mk(τ)sinωmk(t − τ)dτ

⎤

⎦uθ
mk(r, z), (29)

where

Qa
mk(t) =

∑N

i=1

∫

Ωi

ρiuθ
imk(r, z)fi(r, z, t)dV, (30)

and

Mmk = 2π
∑N

i=1

∫L

− L

∫rN

r0

ρi

⃒
⃒uθ

imk(r, z)
⃒
⃒2rdrdz. (31)

Eqs. (29)–(31) represent the exact transient torsional response of the
multilayered pipe to the body force. It is difficult to obtain the exact
analytical expression of ubθ(r,z, t). According to the method presented in
Ref. [34], the approximate expression of ubθ(r, z, t) can be obtained, and it
is formulated as

ubθ(r, z, t) =
∑

mk

1
Mmkωmk

⎡

⎣
∫t

0

Qb
mk(τ)sinωmk(t − τ)dτ

⎤

⎦uθ
mk(r, z), (32)

where
Qb
mk(t) =

∫

ΣIu
θ
1mk(r, z)sI(z, t)dS+

∫

ΣOu
θ
Nmk(r,z)sO(z, t)dS. (33).

Eqs. (28), (29) and (32) represent the analytical transient torsional
response of the finite multilayered pipe to external body and surface
forces.

5. Transient torsional wave propagation in the infinite
multilayered pipe

Substituting Eq. (26) or (27) into Eq. (31), we have

Mmk = LM∞
mk, (34)

where

M∞
mk =

∑N

i=1

∫rN

r0

ρi[CimkZ1(βimkr) + DimkX1(βimkr)]
2rdr. (35)

From Eqs. (19) and (20), we know that the interval between two
successive wave numbers is

Δξk =
π
L
. (36)

Substitution of Eq. (36) into Eq. (34) gives

Mmk =
π

Δξk
M∞

mk. (37)

Substituting Eq. (37) into Eqs. (29) and (32) and using Eq. (28), we
have

uθ(r, z, t) =
∑

mk

1
πM∞

mkωmk

⎡

⎣
∫t

0

Qmk(τ)sinωmk(t − τ)dτ

⎤

⎦uθ
mk(r, z)Δξk, (38)

where

Qmk(t) =
∑N

i=1

∫

Ωi

ρiuθ
imk(r, z)fi(r, z, t)dV +

∫

ΣI

uθ
1mk(r, z)sI(z, t)dS

+

∫

ΣO

uθ
Nmk(r, z)sO(z, t)dS. (39)

If the multilayered pipe is of infinite length, i.e., L → ∞, the interval
between two successive wave numbers Δξk approaches zero. Therefore,
the summation over the index k in (38) will be replaced by the integral
over the continuous wave numbers ξ. We have

uθ(r, z, t) =
∑

m

∫∞

0

1
πM∞

m ωm

⎡

⎣
∫t

0

Qm(τ)sinωm(t − τ)dτ

⎤

⎦uθ
m(r, z)dξ. (40)

Eq. (40) represents the analytical transient torsional response of the
infinite multilayered pipe.
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6. Numerical examples

In this section, the excitation and propagation of transient torsional
wave in a finite bi-layered pipe, as shown in Fig. 2, is numerically
studied as an example. The length of the pipe is 0.6 m; r0, r1 and r2 are
0.03 m, 0.035 m and 0.04 m, respectively. The inner pipe is made of
aluminum (Al). Its density is ρ1 = 2.7 × 103 kg/m3 and Lamé’s second
constant is u1= 2.5× 1010 kg/m3. The outer pipe is made of copper (Cu).
Its density is ρ2 = 8.9 × 103 kg/m3 and Lamé’s second constant is μ2 =
3.9 × 1010 kg/m3.

6.1. Dispersion analysis

The dispersion equation corresponding to torsional waves propa-
gating in the bi-layered pipe can be obtained from Eq. (25) by setting N
= 2. Dispersion curves can be obtained by solving the dispersion equa-
tion. Figs. 3(a) and (b) show the phase and group velocity dispersion
curves corresponding to torsional waves in pipes, respectively. The blue
dash dot lines, red dash lines and black solid lines are corresponding to
torsional waves in the Al pipe, Cu pipe, and Al-Cu bi-layered pipe,
respectively. It is noted that the Al or Cu pipe has the same inner and
outer radius with the Al-Cu bi-layered pipe in the following discussion.

The first torsional wave mode T(0, 1) in a homogeneous pipe is
nondispersive across the whole frequency range, as shown in Fig. 3.
However, this mode in a bi-layered pipe is dispersive. Fig. 3 shows that T
(0, 1) mode has weak dispersion when the frequency is below 200 kHz,
and it seems to be nondispersive when the frequency is greater than 200
kHz. It is assumed that cAlpmk, c

Cu
pmk and cBipmk are the phase velocities of the

mth order torsional mode at a given frequency fk in the Al, Cu and Al-Cu
bi-layered pipes, respectively. Fig. 3(a) shows that cCupmk < cBipmk < cAlpmk.
Fig. 3(b) shows that the group velocity of T(0,m) (m= 2, 3, 4,…) modes
is lower than that of T(0, 1) mode if the pipe is homogeneous. However,
the group velocity of T(0,m) (m= 3, 4, 5,…) modes may be greater than
that of T(0, 1) mode if the pipe is bi-layered. For example, T(0, 3) mode
around 400 kHz and T(0, 4) mode around 700 kHz have a greater group
velocity than T(0, 1) mode, as shown in Fig. 3(b).

6.2. Displacement distribution

Fig. 4 shows the eigendisplacement amplitude Rmk(r) corresponding
to the first six modes as a function of r/r2 when ξh=6.1785, where

Rmk(r) =
{
C1mkZ1(β1mkr) + D1mkX1(β1mkr) in Ω1
C1mkZ1(β2mkr) + D1mkX1(β2mkr) in Ω2

. (41)

The eigendisplacement amplitude of T(0, 1)mode, i.e., R1k(r) in-
creases with an increase in r/r2, as shown in Fig. 4(a). The eigendis-
placement distribution as a function of r/r2 in the inner Al pipe is distinct
from that in the outer Cu pipe for higher order torsional modes, as shown

in Figs. 4(b)-4(f). The variation of r has a strong influence on the
eigendisplacement of T(0, 2) mode in the outer Cu pipe. However, it has
a weak influence on that of the inner Al pipe, as shown in Fig. 4(b). It
seems that the eigendisplacement in the outer Cu pipe is a cosine
function of r/r2, and there are m/4 cycles, where m is the order of the
mode. The eigendisplacement in the inner Al pipe also seems like a
cosine function of r/r2. However, it has different cycles from that of the
outer Cu pipe.

6.3. Transient torsional waves excited by a surface force in the finite Al-
Cu bi-layered pipes

The axisymmetric torsional surface force is applied on the outer
surface of the finite bi-layered Al-Cu pipe, as shown in Fig. 2. A narrow
band signal consisting of eight cycles is used as the exciting signal. Thus,
sO (z, t) shown in Fig. 2 can be formulated as

sO(z, t) = T0sin
(
2πf0t

)
[

0.5 − 0.5cos
(
2πt
8
/
f0

)]

, z ∈ [ − zs, + zs]. (42)

In the following calculation, the excitation center frequency f0 is
chosen as 180 kHz,zs is set to 4 mm, and T0 is set to 108. It can be found
from Fig. 3(b) that only T(0,1) and T(0, 2) modes can be excited by this
surface force, whose frequency range is about 135 kHz ~ 225 kHz.
Substituting Eq. (42) into Eqs. (32) and (33), we can obtain the transient
displacement corresponding to each torsional mode. Moreover, the total
transient displacement can be obtained from the superposition of all
modes excited.

Fig. 2. An Al-Cu bilyaered pipe of length 2L. The inner and outer radius of the
inner Al pipe are r0 and r1, respectively. The inner and outer radius of the outer
Cu pipe are r1 and r2, respectively. The torsional surface force applied on the
outer surface is sO(z, t) where -zs < z < zs. Receiving points A, B and C are
located on the inner surface, interface and outer surface, respectively.

Fig. 3. The phase and group velocity dispersion curves of the first sixth order
torsional waves in the Cu pipe, Al pipe and Al-Cu bilayered pipe. (a) Phase
velocity dispersion curves; (b) Group velocity dispersion curves.
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Fig. 4. Eigendisplacement amplitude Rmk(r) corresponding to the first sixth modes as a function of r/r2 when ξh=6.1785. (a) T(0, 1); (a) T(0, 2); (a) T(0, 3); (a) T(0,
4); (a) T(0, 5); (a) T(0, 6).
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Fig. 5. The transient displacements of T(0, 1) (a) and T(0, 2) (b) modes, and the
total transient displacement (c) received at the point A on the inner surface of
the Al-Cu bilayered pipe. The solid and dot lines in (c) are computed by
eigenfunction expansion method (EEM) and finite element method (FEM),
respectively. The external axisymmetric torsional force is applied on the outer
surface of the pipe, and the width of the force is 2zs. The distance between the
center of the force and the receiving point is 0. 15 m.

Fig. 6. The transient displacements of T(0, 1) (a) and T(0, 2) (b) modes, and the
total transient displacement (c) received at the point B on the interface of the
Al-Cu bilayered pipe. The solid and dot lines in (c) are computed by eigen-
function expansion method (EEM) and finite element method (FEM), respec-
tively. The external axisymmetric torsional force is applied on the outer surface
of the pipe, and the width of the force is 2zs. The distance between the center of
the force and the receiving point is 0. 15 m.
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The receiving points A, B and C are located on the inner surface,
interface and outer surface of the Al-Cu bi-layered pipe, respectively, as
shown in Fig. 2. The axial distance between the center of the surface
force and the receiving points is 0.15 m. Figs. 5(a) and (b) show the
transient torsional displacements of T(0, 1) and T(0, 2) received at point
A on the inner surface, respectively. Fig. 3 shows that T(0, 1) mode has a
very weak dispersion; however, mode T(0, 2) has a strong dispersion

around 180 kHz. Therefore, it seems that the waveform of T(0, 1) mode
has no distortion during the propagation, as shown in Fig. 5(a). How-
ever, the waveform of T(0, 2) mode has great distortion, as shown in
Fig. 5(b). The wave package P1 in Fig. 5(a) is directly received. The
wave packages P2 and P3 are reflected from the right and left bound-
aries, respectively. Furthermore, comparing Fig. 5(b) with Fig. 5(a), we
know that the mode T(0, 2) is the dominant mode in the transient
torsional displacement, received from the point located on the inner
surface of the Al-Cu bi-layered pipe. This agrees with the result shown in
Figs. 4(a) and 4(b). The solid line in Fig. 5(c) is the total transient
torsional displacement, which is obtained from the superposition of T(0,
1) mode in Fig. 5(a) and T(0, 2) mode in Fig. 5(b). The point line in Fig. 5
(c) is obtained by the FEM.

Figs. 6(a) and 6(b) show the transient torsional displacements of T(0,
1) and T(0, 2) at point B on the interface of the Al-Cu bi-layered pipe
obtained using the EEM, respectively. Figs. 7(a) and 7(b) show those of T
(0, 1) and T(0, 2) at point C on the outer surface of the bi-layered pipe
obtained using the EEM, respectively. The solid lines in Figs. 6(c) and 7
(c) are the total transient torsional displacement at points B and C ob-
tained using the EEM, respectively. They are obtained from the super-
position of T(0, 1) and T(0, 2) modes. The point lines in Figs. 6(c) and 7
(c) are the transient torsional displacement at points B and C obtained
using the FEM, respectively. Figs. 6(c) and 7(c) show that the results
obtained by the EEM and FEM agree very well.

In the FEM simulation, the commercial finite element software called
Abaqus is used. Eight-node solid elements are employed. The element
size along the z-axis is 0.3 mm. There are 30 and 600 elements along the
r and θ axes, respectively. The time-step is 0.02 μs in the explicit algo-
rithm. It is found that the results obtained by the EEM and FEM agree
very well. On our Intel Xeon E5-2620×2 workstation, to produce the
results shown in Figs. 5(c), 6(c) and 7(c), the FEM took about five hours,
and the EEM took less than two minutes. In addition, 24 threads were
employed in the FEM simulation, whereas only one thread was used by
the EEM. Therefore, compared with the FEM simulation, the solution
obtained using the EEM can be numerically evaluated with a higher
computational efficiency.

7. Conclusions

In this study, the excitation and propagation of transient torsional
guided waves in a multilayered pipe is investigated. The analytical so-
lution of the elastodynamic response of the finite and infinite multi-
layered pipes to body forces is derived by the EEM. Moreover, the
approximate analytical solution of the elastodynamic response of these
pipes to surface forces is obtained. The form of the solution presented
here is concise. Compared with the FEM, the theory presented here has
two main advantages. Firstly, the influence of external forces on the
excitation of each torsional guided wave mode can be quantitatively
analyzed. It is very important in the determination of the mode and
frequency band used to inspect the pipe. Secondly, the solution obtained
using the EEM can be numerically evaluated with high computational
efficiency. Therefore, the theory presented here is far more efficient than
the FEM when simulating the torsional wave propagation in multilay-
ered pipe. In practice, the solution obtained using the EEM can be used
to determine the mode and frequency band for the pipe inspection. The
FEM can be used to study the interaction between the guided wave and
the defects in pipes.
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surface of the pipe, and the width of the force is 2zs. The distance between the
center of the force and the receiving point is 0. 15 m.
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Appendix A

The formulation of dij in Eq. 25 is as follows:

d11 = μ1β1

[

V1ʹ(β1r0) −
1

β1r0
V1(β1r0)

]

(A.1)

d12 = μ1β1

[

W1
ʹ(β1r0) −

1
β1r0

W1(β1r0)
]

(A.2)

d13 = ⋯ = d1(2N) = 0 (A.3)

d21 = V1(β1r1) (A.4)

d22 = W1(β1r1) (A.5)

d23 = − V1(β2r1) (A.6)

d24 = − W1(β2r1) (A.7)

d25 = ⋯ = d2(2N) = 0 (A.8)

d31 = μ1β1

[

V1ʹ(β1r1) −
1

β1r1
V1(β1r1)

]

(A.9)

d32 = μ1β1

[

W1
ʹ(β1r1) −

1
β1r1

W1(β1r1)
]

(A.10)

d33 = − μ2β2

[

V1ʹ(β2r1) −
1

β2r1
V1(β2r1)

]

(A.11)

d34 = − μ2β2

[

W1
ʹ(β2r1) −

1
β2r1

W1(β2r1)
]

(A.12)

d35 = ⋯ = d3(2N) = 0 (A.13)

⋅⋅⋅

d(2i)1 = ⋯ = d(2i)(2i− 2) = 0 (A.14)

d(2i)(2i− 1) = V1(βiri) (A.15)

d(2i)(2i) = W1(βiri) (A.16)

d(2i)(2i+1) = − V1(βi+1ri) (A.17)

d(2i)(2i+2) = − W1(βi+1ri) (A.18)

d(2i)(2i+3) = ⋯ = d(2i)(2N) = 0 (A.19)

d(2i+1)1 = ⋯ = d(2i+1)(2i− 2) = 0 (A.20)

d(2i+1)(2i− 1) = μiβi

[

V1ʹ(βiri) −
1

βiri
V1(βiri)

]

(A.21)

d(2i+1)(2i) = μiβi

[

W1
ʹ(βiri) −

1
βiri

W1(βiri)
]

(A.22)

d(2i+1)(2i+1) = − μi+1βi+1

[

V1ʹ(βi+1ri) −
1

βi+1ri
V1(βi+1ri)

]

(A.23)
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d(2i+1)(2i+2) = − μi+1βi+1

[

W1
ʹ(βi+1ri) −

1
βi+1ri

W1(βi+1ri)
]

(A.24)

d(2i+1)(2i+3) = ⋯ = d(2i+1)(2N) = 0 (A.25)

(i = 2, 3, …, N − 2)d(2N− 2)1 = ⋯ = d(2N− 2)(2N− 4) = 0 (A.26)

d(2N− 2)(2N− 3) = V1(βN− 1rN− 1) (A.27)

d(2N− 2)(2N− 2) = W1(βN− 1rN− 1) (A.28)

d(2N− 2)(2N− 1) = − V1(βNrN− 1) (A.29)

d(2N− 2)(2N) = − W1(βNrN− 1) (A.30)

d(2N− 1)1 = ⋯ = d(2N− 1)(2N− 4) = 0 (A.31)

d(2N− 1)(2N− 3) = μN− 1βN− 1

[

V1ʹ(βN− 1rN− 1) −
1

βN− 1rN− 1
V1(βN− 1rN− 1)

]

(A.32)

d(2N− 1)(2N− 2) = μN− 1βN− 1

[

W1
ʹ(βN− 1rN− 1) −

1
βN− 1rN− 1

W1(βN− 1rN− 1)
]

(A.33)

d(2N− 1)(2N− 1) = − μNβN

[

V1ʹ(βNrN− 1) −
1

βNrN− 1
V1(βNrN− 1)

]

(A.34)

d(2N− 1)(2N) = − μNβN

[

W1
ʹ(βNrN− 1) −

1
βNrN− 1

W1(βNrN− 1)
]

(A.35)

d(2N)1 = ⋯ = d(2N)(2N− 2) = 0 (A.36)

d(2N)(2N− 1) = μNβN

[

V1ʹ(βNrN) −
1

βNrN
V1(βNrN)

]

(A.37)

d(2N)(2N) = μNβN

[

W1
ʹ(βNrN) −

1
βNrN

W1(βNrN)
]

(A.38)

where

β2i = ηiα2i , (i=1, 2, ⋯, N) (A.39)

α2i =
ω2

c2iT
− ξ2, (A.40)

ηi =
{
1, α2i > 0
− 1, α2i < 0

. (A.41)

V1 andW1 in Eqs. (A.1)-(A.38) are the first order Bessel and Neumann functions, respectively, when ηi = 1. V1 andW1 are the first order modified
Bessel and Hankel functions, respectively, when ηi = − 1.

Data availability

Data will be made available on request.
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