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ABSTRACT: The intricate cause–effect relations in air–sea interaction are investigated using a quantitative causal inference
formalism. The formalism is first validated with a classical stochastic coupled model and then applied to the observational time
series of sea surface temperature (SST) and air–sea turbulent surface heat flux (SHF). We identify an overall asymmetry of cau-
sality between the two variables, namely, the causality from SHF to SST is significantly larger than that from SST to SHF over
most of the global oceans. Geographically, the coupling is strongest in the tropics and gets weaker substantially in the extra-
tropics. In the midlatitude ocean, SST makes higher contributions to the SHF variability in frontal regions. We further show
that the identified causality is space and time scale dependent. The dominance of SHF driving SST occurs at basin scales,
whereas the dominance of SST driving SHFmostly occurs at scales smaller than 108. The causalities in both directions get larger
with increasing time scale and are less asymmetric at longer time scales. The seasonality of the causality is also discussed here.

KEYWORDS: Atmosphere-ocean interaction; Sea surface temperature; Air-sea interaction; Surface fluxes;
Stochastic models

1. Introduction

The ocean and atmosphere interact by exchanging heat,
momentum, and freshwater at the air–sea interface. These in-
teractions play an important role in regulating the Earth sys-
tem, influencing regional and global climate (e.g., Wallace
et al. 1990; Bladé 1997; Barsugli and Battisti 1998).

Fundamental questions studied in this field for decades con-
cern the coupled relationships between the two systems (e.g.,
Frankignoul 1985; Kalnay et al. 1986; Small et al. 2008;
Chelton and Xie 2010; Seo et al. 2023). Early studies using
stochastic models suggest that the sea surface temperature
(SST) variability in the extratropics is primarily generated by
atmospheric forcing (Hasselmann 1976; Frankignoul and
Hasselmann 1977). These models successfully capture an im-
portant feature of Earth’s climate over much of the extratropical
ocean, that is, the reddening of the SST spectrum responding to
synoptic “white noise” atmospheric forcing. However, this classi-
cal atmosphere-driving paradigm has later been shown not to
hold in many places, such as the western boundary current
(WBC) and the Antarctic Circumpolar Current (ACC) regions,
where sharp SST gradients exist. In these regions, the SST
anomalies associated with fronts and eddies induce surface tur-
bulent heat and momentum flux anomalies that exert significant
influences on the atmospheric boundary layer (e.g., Chelton et al.
2004; Small et al. 2008). The forced atmosphere in turn invokes
various feedback processes that could further imprint on the
ocean. Numerical studies have shown evidence that the two-way

coupling tends to damp the oceanic eddy available potential
energy and eddy kinetic energy, mainly through thermal
feedbacks (e.g., Ma et al. 2016; Bishop et al. 2020) and cur-
rent feedbacks (e.g., Duhaut and Straub 2006; Renault et al.
2016), respectively.

To identify the regime of air–sea interaction from time se-
ries, a common practice in literature is to conduct lead–lag
correlation analyses between SST and interfacial variables
(i.e., surface turbulent heat fluxes and wind stress) or near-
surface meteorological variables (wind, air temperature, sea
surface pressure, and low-level vorticity). Among these, the
statistical relationship between local SST and turbulent sur-
face heat flux (SHF) is of particular interest. In seminal works
by Hasselmann (1976) and Frankignoul and Hasselmann
(1977), an idealized stochastic model was developed for the
SST–SHF covariability. Continuing efforts since then have
been made to extend the model and improve our understanding
of the air–sea interaction. Research along this line includes
Cayan (1992), Barsugli and Battisti (1998), Frankignoul et al.
(1998), von Storch (2000), Wu et al. (2006), Kirtman et al.
(2012), Li et al. (2017), Bishop et al. (2017), Small et al. (2019),
and Patrizio and Thompson (2022), to name a few.

As summarized in Bishop et al. (2017) and Small et al.
(2019), when a significant amount of atmospheric “noise”
(i.e., the weather system) is presented in the coupled model,
the correlation between SST and SHF is antisymmetric about
zero lag, with near-zero simultaneous correlation. Correspond-
ingly, the correlation between SST tendency and SHF is sym-
metric, with large negative simultaneous correlation. Note that
in this paper, a positive SHF means heat releases from the
ocean to the atmosphere and it is associated with a cooling ofCorresponding author: Yang Yang, yyang2@xmu.edu.cn
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the ocean; thus, the above scenario indicates that the atmo-
sphere forces the ocean. Such kind of SST–SHF relationship
has been found in the extratropical ocean at regions away
from strong current systems (e.g., Cayan 1992; von Storch
2000; Bishop et al. 2017). Conversely, when the oceanic noise
(i.e., the mesoscale eddies and fronts) is present, there is a
strong positive simultaneous correlation between SST and
SHF, whereas the correlation between SST tendency and
SHF is antisymmetric about zero lag, with a positive correla-
tion when SST tendency leads SHF. This scenario can be re-
garded as one where the ocean forces the atmosphere (i.e.,
warm ocean heats the atmosphere and vice versa), and the
SHF functions to damp the SST anomalies generated by in-
terior oceanic processes. A large number of recent studies
have reported positive SST–SHF correlation over ocean sec-
tors where frontal variability is most energetic (e.g., Bishop
et al. 2017; Small et al. 2019).

While the results of the abovementioned studies have
greatly improved our understanding of the air–sea interaction
and its associated regional- and scale-dependent characteristics,
the so-obtained empirical rules rely on correlation analysis,
which is not sufficient to imply causality. More importantly, as
pointed out by Sutton and Mathieu (2002) and many others, the
intricate interactions and feedbacks embedded in the coupled
atmosphere–ocean system pose great challenges on identifica-
tion of the underlying causalities among mutually interacting
variables. In this paper, we go beyond previous approaches by
using an information flow (IF)-based causal inference ap-
proach to quantify the local air–sea interaction. This method is
quantitative in nature and gives an easy-to-use formula only
involving a combination of some sample covariances. For the
sake of simplicity and comparison with the results shown in
previous studies (e.g., Barsugli and Battisti 1998; von Storch
2000; Wu et al. 2006; Bishop et al. 2017; Small et al. 2019;
Docquier et al. 2023), we will only focus on the local SST–SHF
coupling in this study.

It is worth mentioning that a recent paper by Docquier et al.
(2023) addressed the SST–SHF causality using the same
method of IF as in this study. In their study, the authors used
monthly averaged data so that their focus was at the monthly
time scale. The present study, however, uses daily averaged
data considering that the atmospheric “weather noise” essen-
tially lies on the synoptic time scale (a few days). Monthly av-
eraging filters out the atmospheric forcing of SST on these
short time scales. The present study further extends the analy-
sis into the temporal- and spatial-scale dependences as well as
their seasonality, aiming to add further knowledge to the field
of local air–sea interaction.

The rest of the paper is organized in the following logical
order. In section 2, we describe the causal inference method
and the satellite-based data. In section 3, a well-known ideal-
ized stochastic coupling model is used to verify the perfor-
mance of the causal inference method. In section 4, we apply
the method to observational data, with an aim to map out the
causality between SST and SHF globally, and understand its
regionality, seasonality, and scale-dependent characteristics.
This study is summarized in section 5.

2. Methods and data

a. Quantitative causality analysis

In information theory, causality is identified by IF. That is,
if a source variable causes variation in a destination variable,
information would flow (transfer) from the source variable to
the destination variable (e.g., Lloyd 1991). Shannon (1948)
first introduced the concept of entropy as a measure of infor-
mation content or uncertainty of an event. Generally, a more
certain event contains less information. Recently, Liang
(2016) formulated the IF within the framework of the dynami-
cal system [This line of work includes a series of published pa-
pers by Liang (2008, 2014, 2015, 2016, 2021).] Rather than
axiomatically proposed, Liang’s formula is derived analyti-
cally. In his formalism, the IF, and thus causality from process
x2 to another process x1, is defined as the contribution of en-
tropy from x2 per unit time to the entropy change of x1. It sat-
isfies the principle of nil causality, which states that if the
variation of x1 does not depend on x2, then the IF from x2 to
x1 should be zero. This seemingly obvious fact, however,
needs to be tested in applications in all previous formalisms.
In contrast, here, it appears as a proven theorem. In the fol-
lowing, we present a concise introduction to this method. The
complete derivation is rather lengthy; readers are referred to
Liang (2016) and related papers listed above for details.

In the context of a dynamical system with its dynamics ana-
lytically described, Liang (2014) obtained a rigorous formula
for IF, which is based on infinitely many realizations gener-
ated by the known dynamical system. In real-world applica-
tions, a problem naturally arises: how the IF can be quantified
without knowing the dynamical system but only given times
series (i.e., one realization of each variable)? In this case,
Liang (2014) showed that, in the linear limit, the IF can be es-
timated from time series through maximum likelihood estima-
tion (MLE). Given two time series x1 and x2, the MLE of IF
from x2 to x1 is

T2"1 5
C11C12C2,d1 2 C2

12C1,d1

C2
11C22 2 C11C

2
12

, (1)

where Cij is the sample covariance between xi and xj, Ci,dj is
the covariance between xi and ẋj, and ẋj denotes the differ-
ence approximation of dxj/dt. The MLE of the IF in the oppo-
site direction can be directly written out by switching the
indices.

Although under a linear assumption, Eq. (1) has been vali-
dated in highly nonlinear system problems (Liang 2014). So
far, this method has been validated and applied with success
in many disciplines, such as atmosphere–ocean science, data
science, neuroscience, and quantum mechanics (e.g., Stips
et al. 2016; Hristopulos et al. 2019; Liang et al. 2021; Yang
et al. 2023; Yi and Bose 2022; Liang et al. 2023).

Note that Eq. (1) works for bivariate (i.e., dimension n5 2)
causality analysis, which fulfills our purpose of investigating
the causal interactions between SST and SHF. For multivari-
ate (n $ 2) time series causality analysis, the readers are re-
ferred to Liang (2021).
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Also note that, by only knowing T2"1, one cannot tell how
important x2 is with respect to the entropy change of x1 (de-
noted as dH1/dt). This is because the magnitudes of T2"1 and
dH1/dt may both differ from case to case. Large magnitude of
T2"1 does not necessarily imply large contribution from x2,
and vice versa. This indicates the necessity of the normaliza-
tion of IF (just as the covariance does in correlation analysis).
Liang (2015) proposed a normalization procedure. For in-
stance, dH1/dt consists of three components:

dH1

dt
5

dH*
1

dt
1 T2"1 1

dHnoise
1

dt
, (2)

where dH*
1/dt, T2"1, and dHnoise

1 /dt are the contributions from
x1 itself, x2, and the noise, respectively. Liang (2015) used
Z1 5 |dH*

1/dt|1 |T2"1|1 |dHnoise
1 /dt| as the normalizer and ob-

tained the normalized form of T2"1 as

t2"1 5
T2"1

Z1
: (3)

If t2"1 5 0%, then x2 exerts no impact on x1; otherwise,
x2 is causal to x1. Ideally, if |t2"1| 5 100%, then the entropy
evolution of x1 is totally due to the influence from x2. Positive
or negative t2"1 corresponds to either x2 contributing to the
increase or decrease of the entropy of x1. In this study, since
we concern the causal strength between air–sea interaction
variables, we only need to consider the magnitude of the nor-
malized IF.

The statistical errors are computed as follows. For the sim-
ple climate model analyzed in section 3, the error of a correla-
tion/causality is shown in one standard deviation from the
ensemble mean of 1000 simulations (realizations). For the
real-world application in section 4, since only one realization
is available, the significance of T2"1 is tested by computing
the Fisher information matrix I5 (Iij):

Iij 52
1
N
∑
N

n51

2log r(xn11|xn; u)
uiuj

, (4)

where N is the sample size of the time series and n is the time
step, x 5 (x1, x2), u is the vector of IF-related parameters to
be estimated, and r(xn11|xn) is a Gaussian for a linear model.
It has been established in Liang (2014) that I21/N is the co-
variance matrix of u. Given a level, the significance of an esti-
mated IF can be tested. More details can be found in Liang
(2014).

b. Observational data

In this study, the National Oceanic and Atmospheric Ad-
ministration (NOAA) optimum interpolation (OI) SST, ver-
sion 2 (Reynolds et al. 2007), and the Institut Francais pour la
Recherche et l’Exploitation del la Mer (IFREMER) turbu-
lent flux estimates, version 4.1 (Bentamy 2019), are used.
Both datasets have a horizontal resolution of 0.258 in longi-
tude and latitude and a daily temporal resolution extending
from 1992 to 2018.

The IFREMER sensible and latent heat fluxes are derived
using the COARE 3.0 bulk algorithm (Fairall et al. 2003).
The bulk variables are estimated from an improved specific
air humidity retrieval scheme (Bentamy 2019), wind retrievals
from all available scatterometers during 1992–2018 (Bentamy
et al. 2017b), and the NOAA OI SST and the ERA-Interim
air temperature (Simmons et al. 2006). Comprehensive compar-
ison with independent mooring observations indicates that the
IFREMER product has a good performance in reproducing the
observed spatiotemporal characteristics of turbulent heat fluxes
in the global ocean (Bentamy et al. 2017a; Bentamy 2019).

Following previous studies (e.g., Bishop et al. 2017), SHF is
defined as the sum of turbulent sensible and latent heat fluxes,
with positive value associated with heat release from the
ocean to the atmosphere, and vice versa. The climatological
annual cycles of SST and SHF are removed prior to the cau-
sality analysis, because otherwise a trivial component of IF as-
sociated with the annual cycle would merge into the result.
The input time series are also linearly detrended before the
analysis, although the results are almost unaltered whether or
not the linear trends are removed.

3. A stochastic coupled model

a. Model description

In this section, we use a stochastic climate model to demon-
strate that the IF-based causality formalism can robustly reveal
the causal relationships between the ocean and atmosphere. The
model was first introduced by Barsugli and Battisti (1998) with
atmospheric white noise forcing. Later, Bishop et al. (2017)
added oceanic noise to the model. The equations are as follows:

dTa

dt
5 a(To 2 Ta) 2 gaTa 1 Na and (5)

dTo

dt
5 b(Ta 2 To) 2 goTo 1 No, (6)

where Ta and To are, respectively, the near-surface air tempera-
ture and the SST, and Na and No are, respectively, the white
noise forcings of the atmosphere and ocean, which are given by
a Gaussian random temperature anomaly between 618C multi-
plied by a forcing frequency of the atmosphere and ocean, i.e.,
va and vo, respectively. The parameter values in the above
equations are listed in Table 1. By convention (e.g., Barsugli
and Battisti 1998; Wu et al. 2006; Bishop et al. 2017), SHF (q) is
represented as the air–sea temperature difference in the model,
i.e., q 5 a(To 2 Ta). After some simple algebraic operations,
we can obtain the coupled equations for q and To:

dq
dt

52(a 1 b 1 ga)q 2 a(go 2 ga)To 1 a(No 2 Na) and

(7)

dTo

dt
52

b

a
q 2 goTo 1 No: (8)

As in Bishop et al. (2017), the above equations are solved
numerically using a forward difference scheme with a time
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step size of 1 day and initialized with zero amplitudes of q and
To. For each case shown below, we run 1000 simulations, each
having a length of 60 000 days. The error of a correlation/
causality is shown in one standard deviation.

b. Lagged correlation analysis

Figure 1 shows the lagged correlations between time series
of SST and SHF generated by the model. For comparison, we
show the results calculated from both the monthly averaged
data and the original daily sampled data, the former of which
is commonly used to estimate the SST–SHF lead–lag relation-
ships. In agreement with previous studies (e.g., Wu et al. 2006;
Bishop et al. 2017), the two prevailing regimes of atmosphere
forcing ocean and ocean forcing atmosphere are well captured
by using monthly averaged times series of SST and SHF.
When only atmospheric noise is presented (i.e., vo 5 0), the
correlation between SST tendency and SHF is large and nega-
tive at zero lag (correlation coefficient r 5 20.81; red line in
Fig. 1a), whereas that between SST and SHF is very weak at
zero lag (r 5 20.07; blue line in Fig. 1a). The maximum nega-
tive correlation between SHF and SST occurs when SHF
leads SST by 1 month, indicating that SHF tends to drive heat
loss from the ocean. In contrast, when only oceanic noise is
presented (i.e., va 5 0), there is a large positive correlation
between SST and SHF at near-zero lag (Fig. 1b). The maxi-
mum positive correlation between SHF and SST tendency oc-
curs when the SST tendency leads the SHF by 1 month,

TABLE 1. Standard parameters (s21) in the stochastic model.
The parameter values were used to describe the midlatitude air–
sea interactions in previous studies (e.g., Barsugli and Battisti
1998; Bishop et al. 2017).

Parameter Meaning Value

a Exchange coefficient divided by
the heat capacity of the
atmosphere

2.39 3 1026

b Exchange coefficients divided by
the heat capacity of the ocean

1.195 3 1027

ga Radiative damping coefficient for
the atmosphere

2.8 3 1027

go Radiative damping coefficient for
the ocean

9.5 3 1029

va Forcing frequency of the
atmosphere

1 3 1025

vo Forcing frequency of the ocean 2 3 1026

FIG. 1. Lagged correlations between SST and SHF (blue) and between SST tendency and SHF (red) from the sto-
chastic coupled model. A positive lag means that the SHF time series takes the lead. The solid line stands for the en-
semble mean, and the error envelope represents the standard deviation from the mean. (a)–(c) Results calculated
from monthly data for the atmospheric noise-only case, the oceanic noise-only case, and the atmospheric and oceanic
noises case, respectively. (d)–(f) As in (a)–(c), but for results calculated from daily data.
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implying that the ocean functions to warm the atmosphere.
When both the atmospheric and oceanic noises are included in
the model, the positive simultaneous SST–SHF correlation be-
comes much smaller than that with pure oceanic noise (Fig. 1c).

The above results based on monthly mean data only pro-
vide characteristics of air–sea interaction on time scales longer

than 2 months (the Nyquist frequency of the monthly aver-
aged data is 1/2 month21). To see the coupling on the sub-
monthly time scale, we show in Figs. 1d–f the lagged
correction using daily time series. For the atmospheric noise-
only case, the negative correlation between SST tendency and
SHF decays drastically in a few lag days (Fig. 1d). This means

FIG. 2. Frequency spectra of (left) SHF and (right) SST. Blue line and red line represent spectrum calculated from the
daily and monthly data, respectively. Green, brown, and gray vertical lines denote 1/2 month21 (Nyquist frequency of
the monthly averaged data), 2 3 1026 s21 (forcing frequency of the oceanic noise), and 1 3 1025 s21 (forcing frequency
of the oceanic noise), respectively. (a),(b) The atmospheric noise-only case; (c),(d) the oceanic noise-only case; (e),(f) the
atmospheric and oceanic noises case; (g),(h) the purely SHF-driven case.

TABLE 2. Normalized IFs (in absolute value and written as a percentage) between SHF and SST using daily and monthly data and
30-day low-pass and 60-day low-pass filtered data for various cases. A zero-phase Butterworth filter is applied to the daily data to
obtain the low-pass filtered data. The errors shown are one standard deviation.

Daily data Monthly data
30-day

low-pass filtered data
60-day low-pass
filtered data

|tSHF"SST| |tSST"SHF| |tSHF"SST| |tSST"SHF| |tSHF"SST| |tSST"SHF| |tSHF"SST| |tSST"SHF|

Atmospheric noise only 40.8 6 1.6 0.1 6 0.0 16.1 6 1.6 0.5 6 0.1 47.7 6 0.5 4.2 6 0.1 48.8 6 0.4 12.2 6 0.4
Purely SHF driven 100.0 6 0. 0.0 6 0.0 17.1 6 16.1 0.0 6 0.0 96.9 6 7.6 0.1 6 0.1 94.8 6 9.8 0.4 6 0.3
Oceanic noise only 29.2 6 9.0 27.5 6 1.7 45.8 6 0.5 36.1 6 1.7 49.9 6 0.0 50.0 6 0.0 50.0 6 0.0 50.0 6 0.0
Atmospheric and oceanic

noises
28.2 6 4.0 2.2 6 0.3 8.8 6 3.9 9.5 6 1.4 48.4 6 4.5 6.6 6 0.9 47.4 6 7.3 11.2 6 1.7
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that the influence of atmospheric noise (i.e., synoptic transi-
ents) on the SST only lasts for a couple of days. Similarly, the
atmosphere’s response to abnormal SST signals is also very
quick (see the large positive SST tendency–SHF correlation
at lag 21 day in Fig. 1e), much shorter than 1 month as sug-
gested by the monthly mean result. Also, the simultaneous
correlations between SST and SHF for oceanic noise-only
case and the atmospheric and oceanic noises case are reduced
using daily data (Figs. 1c,f) as compared to the monthly one
(Figs. 1b,e). This is because the simultaneous correlation is
mostly determined by the low-frequency part of spectrum
(Fig. 2). Removing the synoptic noise will therefore lead to a
higher correlation with monthly smoothed data than the daily
data. These results are consistent with previous discussions on
the effects of data smoothing on the cross correlations be-
tween SST and atmospheric variables (e.g., Frankignoul and
Hasselmann 1977; Deser and Timlin 1997; Frankignoul et al.
1998).

c. Causality analysis

From the previous subsection, we have seen that under cir-
cumstances where both SHF–SST and SHF–SST tendency
correlations are weak, one cannot determine which air–sea
coupling regime is more dominant. In the following, we em-
ploy the IF-based causality analysis to quantify the causal link-
age between SST and SHF in the stochastic coupled model.

Table 2 summarizes the rates of normalized IFs between
the two variables for different cases. We first present the re-
sults using daily time series. In the case of atmospheric noise
forcing only (i.e., No 5 0), the causality is almost one way
from SHF to SST. The influence from SHF accounts for about
40.8% of the SST entropy change, whereas SST’s impact on
SHF is negligible (|tSST"SHF| 5 0.1%). Note that although in
this case the model is only driven by atmospheric noises, the
IF from SHF to SST does not equal to 100% since SST is not
only dependent on SHF but also dependent on the damping
process 2goTo [see Eq. (8)]. Now, if we let ga 5 go 5 0 and
vo 5 0, Eqs. (7) and (8) are reduced to

dq
dt

52(a 1 b 1 ga)q 2 aNa and (9)

dTo

dt
52

b

a
q: (10)

Clearly, in this case, only q drives To [see Eq. (10)], but not
vice versa. By the IF-based formula, |tSHF"SST| 5 100% and
|tSST"SHF| 5 0%, which give the result just as one would ex-
pect. Note that the SST time series in this case exhibits very
low-frequency trend (see the spectrum of SST in Fig. 2h). To
see whether the IF can be faithfully estimated for time series
with trends, we also calculate the running IFs using a 10000-day
window and find that the one-way causality holds perfectly well
throughout the entire simulation period (not shown). This indi-
cates that the IF estimation is fairly accurate.

Different from the scenario in the atmospheric noise-only
case, when the model only contains stochastic forcing from
the ocean, the IF from SHF to SST becomes comparable to

FIG. 3. Temporal-scale-dependent characteristics of |tSHF"SST|
(blue line) and |tSST"SHF| (red line) estimated from the stochastic
model with both atmospheric and oceanic noises. The solid line
stands for the ensemble mean of 1000 simulations, and the error
envelope represents the standard deviation from the ensemble
mean.

FIG. 4. Global patterns of normalized IF (in absolute value and
written as a percentage) (a) from SHF to SST (|tSHF"SST|) and
(b) from SST to SHF (|tSST"SHF|). Gray grid cells indicate missing
values of the observational data. Hatched regions in (a) and (b) de-
note regions where the estimated IF is not significant at the 99%
confidence level. (c) Natural logarithm of the ratio of |tSHF"SST| to
|tSST"SHF|. Hatched regions in (c) are regions where |tSST"SHF| is
greater than |tSHF"SST|. The minor discontinuity at the date line in
(a) and (b) is caused by the discontinuity in the OI SST fields.
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the reverse flow from SST to SHF (Table 2). Even though
the coupled model is purely forced by oceanic noise (e.g.,
mesoscale eddies and fronts), the information transferring
from SHF can still account for about one-third of the SST
entropy changes. The remaining processes contributing to
the SST entropy changes include the damping process and
the oceanic stochastic forcing [see Eq. (8)]. Note that the ex-
clusion of atmospheric noise forcing does not necessarily
imply that the magnitude of |tSHF"SST| must be lower than
that of |tSST"SHF|. The above result indicates that the SHF
and SST are mutually causal when the model only contains
stochastic forcing from the ocean. This is consistent with
previous findings that when the oceanic noise is strong, the
SHF variability is mainly driven by SST, and in turn, SHF
acts to damp the SST anomaly (e.g., Bishop et al. 2017;
Small et al. 2019).

Interestingly, when both noises from the atmosphere and
ocean are included in the model, a significant asymmetry of
causality is observed, i.e., the IF from SHF to SST is much
larger than the reverse flow from SST to SHF (|tSHF"SST| 5
28.2% 6 4.0% vs |tSST"SHF| 5 2.2% 6 0.3%). The drop of
the magnitude of |tSST"SHF| is caused by the fact that the at-
mospheric noise forcing makes a larger contribution to the
SHF variability when the model includes atmospheric noise
(i.e., the weather system). This is consistent with previous re-
sults that SHF is dominantly driven by atmospheric variability
in the extratropical ocean at regions away from strong current
systems (e.g., Small et al. 2019).

When the monthly averaged data are used, the causality es-
timations are quite different from those using daily data. For
the cases where atmospheric noises are included, the IF from
monthly mean SHF to monthly mean SST reduces signifi-
cantly as compared to the daily scenario (Table 2). To see
whether such a reduction of |tSHF"SST| in the monthly mean
case reflects the time-scale dependence of the causality, we
use low-pass filters to remove the synoptic variability from
the original daily time series of SHF and SST. We find that
the IF from low-pass daily SHF to low-pass daily SST in-
creases rather than decreases as compared to those estimated
from the original daily time series (Table 2). To further un-
derstand this discrepancy, we interpolate the monthly mean
data back to the daily resolution and find that the result is
comparable with the low-pass data (not shown). This indicates
that the different result using monthly mean and daily mean
data is actually caused by the sampling time step size. To fur-
ther test whether the causality estimation is influenced by a
more frequent sampling, we generate the model using hourly
time step and find that the IFs estimated in this way are very
similar to the daily scenario (not shown). The above results
indicate the necessity to use daily or more frequent sampling
data to estimate the causality between SHF and SST in the
stochastic model.

To further investigate the time-scale dependence of causal-
ity, we employed low-pass filters with various cutoff frequen-
cies to the daily sampled data and then calculate |tSHF"SST|
and |tSST"SHF| at each cutoff frequency. Figure 3 shows the

FIG. 5. As in Fig. 4, but for the temporally low-pass fields of SST and SHF. The cutoff periods are chosen as 5, 30, and 90 days, labeled as
1–3 in each subfigure. Hatched regions in (c) are regions where |tSST"SHF| is greater than |tSHF"SST|.
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IFs as a function of low-pass filter cutoff frequency, esti-
mated from the model with both atmospheric and oceanic
noises. It can be seen that |tSHF"SST| increases significantly
with the increasing period in the range of short time-scales
(2–10 days) and remains almost unchanged with longer time
scales (.10 days). In contrast, |tSST"SHF| increases signifi-
cantly with the increasing period over the time scales of
1 month–3 years. For time scales longer than 10 years,
|tSST"SHF| decreases with the increasing period. In the
appendix, we further show the sensitivity of causality esti-
mations to the six parameters (i.e., va, vo, ga, go, a, and b)
in the stochastic model.

4. Causality from satellite observations

The above analysis demonstrates the usefulness of the IF-
based causality formalism for identifying the causal direction
and causal strength between SHF and SST in a highly ideal-
ized stochastic model. In this section, we use eddy-permitting
global daily observational records of SHF and SST to analyze
the causality between the two variables in the real world, with
emphasis on its global distribution, spatial- and temporal-
scale dependences, and seasonal variations.

a. Global pattern

Figures 4a and 4b show the global patterns of |tSHF"SST|
and |tSST"SHF| estimated from the observational daily records
of SHF and SST over the period of 1992–2018, respectively.
As expected, both metrics reach maxima in the tropics, indi-
cating that the ocean and atmosphere are strongly coupled
there. In the eastern equatorial Pacific, the maximum contri-
bution of SHF to the SST entropy variation is over 50%,
whereas the maximum contribution of SST to the SHF en-
tropy variation is over 30%. In the tropical Indian Ocean, en-
hanced causalities from both directions are located at the
northern and southern flanks of the equator. These results are
generally in line with Docquier et al. (2023) using monthly
data.

Away from the tropics, the magnitudes of both metrics
drop significantly, with contributions typically less than 10%.
As will be seen in section 4b, the inclusion of synoptic vari-
ability in the daily data leads to small values of IF in the extra-
tropics. There is notable amount of information flowing from
SST to SHF in frontal regions such as the WBCs and the
ACC. These are regions of sharp SST gradients, where the at-
mosphere is strongly affected by the ocean (e.g., Small et al.
2008; Seo et al. 2023). This point will be further discussed in
section 4c.

The relative importance of causalities between SHF and
SST is provided by calculating the ratio of |tSHF"SST| to
|tSST"SHF| (Fig. 4c). The result is shown in logarithm such
that negative values imply that SST drives SHF more strongly
than SHF drives SST, and vice versa. The |tSHF"SST| is consid-
erably larger than |tSST"SHF| throughout most of the extra-
tropical oceans, especially in the central and eastern parts
of the subtropical–midlatitude North Pacific, South Pacific,
and North Atlantic, indicating that SHF drives the SST vari-
ability more than vice versa. This asymmetric causal relation

(i.e., |tSHF"SST| . |tSST"SHF|) estimated from observations
seems to be consistent with the stochastic model described
above with both atmospheric and oceanic noises presented.

A lower ratio is found in the tropics and extratropical fron-
tal zones due to the enhanced impact of SST variability to the
overlying atmosphere in these regions. It is worth noting that
even in most area of these regions, |tSHF"SST| is still larger
than |tSST"SHF|, except for a few areas in the tropical Atlantic,
the Southern Ocean Agulhas current region, etc. (Fig. 4c).
We will show in section 4c that the dominance of |tSHF"SST|
over |tSST"SHF| is due to the dominance of |tSHF"SST| on very
large scales (.208). Regarding spatial scales , 108, on the
contrary, there is a dominance of |tSST"SHF| over |tSHF"SST|.

b. Dependence of causality on temporal scales

Results shown in section 4a are based on daily time series,
which reveal the characteristics of couple variability with peri-
ods longer than 2 days (the Nyquist frequency of the daily
data is 1/2 day21). In this subsection, we further investigate
the temporal-scale-dependent characteristics of the causality.
As in section 3c, we employ a zero-phase Butterworth filter
with various cutoff frequencies to the daily time series at
each grid. For each cutoff frequency, we obtain the smoothed

FIG. 6. As in Fig. 4, but for the temporally high-pass (cutoff pe-
riod: 90 days) fields of SST and SHF. Hatched regions in (c) are re-
gions where |tSST"SHF| is greater than |tSHF"SST|.
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(low-pass) fields of SST and SHF and then calculate the IFs us-
ing Eq. (1).

Figure 5 shows the causality between SHF and SST as a
function of time scales. A general observation is that both
|tSHF"SST| and |tSST"SHF| get larger with increasing time
scale. The most drastic increase of |tSHF"SST| occurs on time
scales shorter than 1 month (Fig. 5a). For the time scale lon-
ger than 1 month, the magnitude of |tSHF"SST| does not
change much, with contribution greater than 50% over most
of the global ocean. In contrast, the magnitude of |tSST"SHF|
is quite low on synoptic time scales compared to |tSHF"SST|,
indicative of an atmosphere-driven regime at these high-
frequency time scales. A rapid increase is seen between time
scale of 1 and 3 months (Fig. 5b). For time scales longer than
90 days, |tSHF"SST| does not increase further (not shown),
with contribution greater than 40% over much of the global
ocean. From the ratio maps (Fig. 5c), one can see that the in-
fluence of SST on the atmosphere increases with time scales,
indicating that the ocean plays a more important role in air–
sea interactions at longer time scales.

Regarding the SST–SHF causality at short time scales (Fig. 6),
the IF from SHF to SST is larger than the reverse flow over most
of the global ocean except in the eastern-to-central equatorial Pa-
cific, the equatorial Atlantic, and the ACC (Fig. 6c). Note that
we have tested the high-pass cutoff periods varying from 10 to
180 days and find that the results are similar. In particular, the
large and dominant causality from SST to SHF in the equatorial
Pacific reveals the strong influence of SST variability on the

surface heat fluxes modulated by the tropical instability waves
(TIWs) at intraseasonal time scales (e.g., Menkes et al. 2006). In
the extratropics, the ratio of |tSHF"SST| to |tSST"SHF| is quite
large, particularly the storm-track regions (i.e., the central and
eastern parts of the midlatitude ocean basins), indicative of a re-
gime that synoptic storms drive the SST variability rather than
the other way around.

c. Dependence of causality on spatial scales

In this subsection, we further investigate the spatial-
scale-dependent characteristics of the causality. As in several pre-
vious studies (e.g., Bishop et al. 2017; Small et al. 2019; Sun and
Wu 2022), we employ a simple boxcar filter, with a cutoff side
length increasing from 18 to 208, to fulfill the scale separation. For
each cutoff length, we obtain smoothed (low-pass) fields of SST
and SHF and then calculate the IFs using Eq. (1).

Global causal structures with various smoothing lengths are
shown in Fig. 7. In the tropics, the causal strength from
SHF to SST generally increases with increasing spatial scales
(Fig. 7a). A recent study by Sun and Wu (2022) addressed the
spatial dependence of SHF–SST and SHF–SST tendency cor-
relations. The authors found that the negative SHF–SST ten-
dency correlation, indicative of SHF driving SST, increases
with spatial scales in the tropical regions. This is consistent
with our result. It is worth mentioning that the wind forcing
has been recognized as an important process in the tropical
air–sea interactions (e.g., McPhaden and Hayes 1991). The

FIG. 7. As in Fig. 4, but for the spatially low-pass fields of SST and SHF. The cutoff lengths of the low-pass boxcar filter are chosen as
18, 58, and 108, labeled as 1–3 in each subfigure. Hatched regions in (c) are regions where |tSST"SHF| is greater than |tSHF"SST|.
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influence of wind forcing in the SHF–SST relation is not con-
sidered in our analysis and will be the focus of a future study.

Regarding the causality from SST to SHF in the tropics,
it seems not sensitive to the low-pass filter cutoff length
(Fig. 7b). As a result, the ratio of |tSHF"SST| to |tSST"SHF| gets
larger with increasing scale there (Fig. 7c). Away from the
tropics, there is a reduction of |tSST"SHF| with increasing scale
in most locations, particularly in the frontal zones (Fig. 7b),
leading to larger ratio of |tSHF"SST| to |tSST"SHF| as the spatial
scale becomes larger (Fig. 7c).

In the above analysis, we have seen that smoothing the
original unfiltered fields tends to reduce the ocean’s impact
on the overlying atmosphere in the ocean frontal zones. To
further extend this point, we analyze the causality between
high-pass SST and SHF, which is obtained by subtracting the
low-pass filtered field with a cutoff length from the original
unfiltered data. From Fig. 8, it can be seen that |tSHF"SST| in-
creases with larger spatial scale, whereas |tSST"SHF| increases
with smaller spatial scale. The horizontal structure of
|tSST"SHF| exhibits high values in regions of high SST gra-
dients (Fig. 8b). For horizontal scales smaller than 108,
|tSST"SHF| is larger than |tSHF"SST| in most of the global
ocean [see the hatched regions in Fig. 8c(2)]. For horizontal
scales small than 208, the dominance of |tSST"SHF| over
|tSHF"SST| still exists in the equatorial regions, WBC regions,
and ACC region, whereas |tSHF"SST| becomes larger than
|tSST"SHF| in the interior basins. The above results indicate
that SHF drives SST variability at very large spatial scales,

whereas SST drives SHF at small scales, especially in regions
with high SST gradients.

d. Seasonality

The causalities are also expected to change with time. In
this study, we only focus on their seasonality. This is done
by applying Eq. (1) to time series of SST and SHF for
each season. Figure 9 displays the horizontal distributions of
|tSHF"SST| and |tSST"SHF| in the four seasons. There is a clear
spatial inhomogeneity in the causality seasonality. In the east-
ern equatorial Pacific, |tSHF"SST| is large throughout the year
except in boreal winter months [January–March (JFM)],
whereas |tSST"SHF| does not vary significantly by season. This
contrasts with the central equatorial Pacific where the SST
forcing is much higher during boreal autumn [October–
December (OND)] and winter (JFM) than that during spring
[April–June (AMJ)] and summer [July–September (JAS)]. In
the tropical Atlantic, |tSST"SHF| has a sharp peak during the
AMJ season, whereas |tSHF"SST| remains large throughout
the year. Away from the equator, the most pronounced sea-
sonality is found in the tropical North India and subtropical
western North Pacific. Both causality metrics reach maximum
during the AMJ season and minimum in the OND season in
this band, suggesting that the local interaction between SST
and SHF is strongest in boreal spring. Over the extratropical
ocean, the seasonal modulation of causality is in general quite
weak, except in the Kuroshio Extension and northeastern cor-
ner of the North Pacific.

FIG. 8. As in Fig. 4, but for the spatially high-pass fields of SST and SHF. The high-pass field is obtained by subtracting the low-pass fil-
tered field with a cutoff length from the original data. The cutoff lengths of the low-pass boxcar filter are chosen as 28, 108, and 208, labeled
as 1–3 in each subfigure. Hatched regions in (c) are regions where |tSST"SHF| is greater than |tSHF"SST|.
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The above identified seasonality of the causal relation be-
tween SST and SHF in the tropics is mainly determined by
the large-scale processes. The seasonal cycles of |tSHF"SST|
and |tSST"SHF| in the tropical ocean are almost identical to
those estimated from the original unfiltered time series (not
shown). The causality from SST to SHF at scales smaller than
108 dominates that from SHF to SST, and the seasonal varia-
tions in hotspots such as the WBCs and ACC are consistent
with the ones estimated from the unfiltered data (not shown).

5. Summary and discussion

This study uses a novel causal inference method to under-
stand the geographical variation, space- and time-scale depen-
dence, and seasonality of air–sea interaction in the global
oceans. The target variables are SST and SHF, which are fre-
quently used to discriminate the dominance of atmosphere
forcing or ocean forcing in idealized stochastic models as well
as in the realistic coupled climate system. The causal inference
method is based on the theory of IF, hence quantitative in na-
ture (Liang 2014, 2016). An important advantage of our

method, as compared to traditional approaches such as the
lagged correlation analysis widely used in the field of air–sea
interaction, is that it provides both the directionality and
strength of causality between mutually interacting variables.

The method is first validated with a classical stochastically
forced, coupled energy balance model. The cause–effect rela-
tion of the SST and SHF in the model can be faithfully re-
vealed by the two IF metrics, i.e., |tSHF"SST| and |tSST"SHF|,
measuring the causality strength from SHF to SST and from
SST to SHF, respectively. Particularly, it successfully verifies a
specially designed case in which only SHF drives SST. We
find that the SHF and SST are mutually causal when the
model only contains stochastic forcing from the ocean. When
the model includes both noise forcings from the atmosphere
and ocean, a significant asymmetry of causality between SHF
and SST is observed, i.e., |tSHF"SST| is much larger than
|tSST"SHF|. This because the atmospheric noise makes a larger
contribution to the SHF variability when the model includes
stochastic forcing from the atmosphere.

We further apply the method to the observational time
series of SST and SHF at a daily temporal resolution and a

FIG. 9. As in Fig. 4, but for the boreal (a1),(b1),(c1) winter (JFM), (a2),(b2),(c2) spring (AMJ), (a3),(b3),(c3) summer (JAS), and
(a4),(b4),(c4) autumn (OND). Hatched regions in (c) are regions where |tSST"SHF| is greater than |tSHF"SST|.
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0.258 spatial resolution from 1992 to 2018. As in the stochastic
model, there is an overall asymmetry of causality between the
two variables in the real ocean, namely, |tSHF"SST| is signifi-
cantly larger than |tSST"SHF| over most of the global oceans.
The SST–SHF coupling is strongest in the tropics and decreases
substantially in the extratropics. In ocean frontal regions near
the WBCs and ACC, SST makes higher contributions to the
SHF variability.

The causality is found to be scale dependent. The dominance
of SHF driving SST occurs at very large scales (.208), whereas
the dominance of SST driving SHF mostly occurs at scales
smaller than 108. The causalities in both directions get larger
with increasing time scale and are less asymmetric at longer
time scales. The causality also exhibits strong seasonality. In
the tropics, the seasonal variations of |tSHF"SST| and |tSST"SHF|
are determined by the air–sea interaction of large-scale pro-
cesses. In the extratropical frontal regions, the seasonality of
the causality from SST to SHF is modulated by the seasonal
changes of the mesoscale eddy variability.

One of the limitations of the present study is that we only
focus on the causal relation between SST and SHF. We choose
this pair of variables because it is relatively well studied in the
climate community, thus allowing for a more direct compari-
son of our results and the known results and a demonstration
of the usefulness of the IF formalism. Further studied are
needed for a better understanding of the causal links between
SST and the intrinsic atmospheric variability such as those pre-
sented by the air temperature, wind, and sea surface pressure.

Another noteworthy limitation is that the causality formula
used in this study is based on a linear assumption. Although the
formula works for the stochastic model (section 3) since the
model is linear, it remains unknown to what extend the formula
works for the real climate system which is nonlinear. A more
general IF-based formalism is yet to be explored for nonlinear
systems. Besides, the causal inference in the present study is
based on the bivariate causality formalism, which is only appli-
cable to a two-dimensional system, such as the stochastic model
in section 3. In the real climate system, more air–sea variables,
such as the wind, are involved. In that case, the multivariate
causality formalism (Liang 2021) would be promising in disen-
tangling the causality among multiple dimensional system. See
a recent attempt by Docquier et al. (2023). This is beyond the
scope of the present study and we leave it for future study.
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APPENDIX

Parameter Sensitivity of the Stochastic Model

Figure A1 presents the sensitivity of causality to the six
parameters (i.e., va, vo, ga, go, a, and b) in the stochastic
model. For each subfigure in Fig. A1, only one parameter
(horizontal axis) is allowed to vary, with other five param-
eters fixed as the values listed in Table 1. The magnitude
of IF from SST to SHF is strongly dependent on the sto-
chastic forcing frequency. In the frequency band ranging
from 1026 (’11.6) to 1025 s21 (’1.2 day21), |tSST"SHF|
decreases drastically as va increases (Fig. A1a) and in-
creases drastically as vo increases (Fig. A1b). This means
that high-frequency atmospheric stochastic forcing tends
to reduce the ocean forcing in the atmosphere, and vice
versa. The IF from SHF to SST is always larger than the
reverse flow and does not change much in the abovementioned
frequency band (Figs. A1a,b). Its magnitude drops only at very
high frequencies of atmospheric forcing (va . 1025 s21) and
very low frequencies of oceanic forcing (vo , 1026 s21).

Regarding the damping and exchange coefficients (i.e., ga, go,
a, and b), the IF from SHF to SST seems to be more sensitive
to these parameters as compared to the reverse flow. It in-
creases with increasing ga or b (Figs. A1c,f) and decreases with
increasing go or a (Figs. A1d,e). In contrast, the IF from SST
to SHF keeps a relatively low magnitude as these parameters
vary, with the exception of ga. There is a significant increase of
|tSST"SHF| as ga increases (Fig. A1c).
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