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Characterization of Elastic Constants of Langatate Single
Crystals with 32 Symmetry Using Ultrasonic Pulse-Echo
Technique

Chuanwen Chen,* Lei Qin, Maoxin Su, Yang Xiang, Liguo Tang,* Kainan Xiong,
Kechen Wu, Xiaoniu Tu,* and Wenyu Luo

In this study, the propagation of plane waves in the lanthanum gallium
tantalate (langatate, LGT) single crystals is investigated. Moreover, the flight
time of different waves in the LGT rectangular parallelepiped sample is
measured using the ultrasonic pulse-echo (UPE) technique, and the elastic
constants of the LGT sample are determined. The experimental results clearly
show echoes corresponding to the longitudinal and transverse waves along
the x-axis. The waves along the z-axis have a similar property. However, the
waves along the y-axis are more complex than those along the x- and z-axes.
The echoes corresponding to the quasi-longitudinal waves along the y-axis are
clear, but those corresponding to the transverse and quasi-transverse waves
along the y-axis are not. The elastic constant can be accurately determined if
the wave echoes corresponding to this constant propagate without distinct
distortion and are clear; otherwise, it may be impossible to accurately
determine the constant using UPE. All elastic constants cEij except c

E
13 of the

LGT single crystals can be determined using UPE from one sample. This
study uses UPE to provide a reference for the characterization of elastic
constants of piezoelectric crystals with 32 symmetry from one sample.
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1. Introduction

Lanthanum gallium tantalate (langatate,
LGT) is considered a promising piezo-
electric material for fabricating high-
temperature transducers and sensors as
well as langasite (LGS) and langanite
(LGN).[1,2] They are also suitable for fab-
ricating low-loss devices used in modern
mobile communication and some other
fields because 1) their piezoelectric prop-
erties are 2–3 times greater than those
of 𝛼-quartz crystals; 2) the temperature
has a weak influence on their elastic con-
stants; and 3) they have an extremely high
mechanical quality factor.[3,4] In addition,
these crystals can be grown using the
traditional Czochralski method,[2,5–7] en-
abling large-scale production.
LGT and its isomorphs belong to

a trigonal system with 32 symmetry,
whose independent material constants
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include six elastic, two piezoelectric, and two dielectric con-
stants. The LGT single crystals are suitable for fabricating high-
temperature electromechanical devices because they can retain
piezoelectricity up to their melting points of≈1470 °C. Their ma-
terial constants must be characterized before using them to de-
sign devices. Suhak et al.[8] studied the temperature-dependent
acoustic loss in partially disordered LGS using a contactless tone-
burst excitation technique and contacting resonant piezoelectric
spectroscopy. Bohm et al.[9] obtained the elastic constants of LGS
and LGT crystals using the ultrasonic pulse-echo (UPE) tech-
nique, then applied them to calculate and compare the phase
velocities of the surface acoustic waves with the purpose of de-
riving optimized values for the elastic constants. Ju et al.[10] char-
acterized the material constants of LGN crystals by UPE using
multiple samples cut along different directions. Gureva et al.[11]

measured the piezoelectric constant d11 of LGS crystals using the
method of diffraction of synchrotron radiation. Note that the ex-
periments based on the diffraction of synchrotron radiation are
expensive.Most researchers are not available to carry out these ex-
periments. Schreuer et al.[12] studied the elastic and piezoelectric
properties of LGS and LGT crystals using resonant ultrasound
spectroscopy (RUS). Theoretically, RUS needs only a single sam-
ple to characterize all elastic and piezoelectric constants. How-
ever, the material constant cannot be accurately determined by
RUS if most resonance frequencies of the sample used in the
characterization are not sensitive to its variation.
The UPE technique is one of the most powerful[13–16] meth-

ods for characterizing the elastic constants of solidmaterials. The
elastic constants can be easily obtained using this technique by
measuring the sound velocities.[17] However, only partial elastic
constants can be determined using UPE from a single rectangu-
lar parallelepiped sample. Though all independent elastic con-
stants of some piezoelectric crystals can be determined using
UPE, multiple samples cut along different directions must be
used in the characterization. This method is less commonly used
because the preparation of these samples is difficult and time-
consuming. Therefore, it is often used as an auxiliary tool for
the electrical resonance and RUS methods, which are often used
in the characterization of piezoelectric materials. The relation-
ship between the electromechanical constants (including elastic,
piezoelectric, and dielectric constants) and the bulk wave veloci-
ties should be derived before using UPE to investigate the elastic
properties of piezoelectric samples. The Institution of Electrical
and Electronic Engineers (IEEE) Standard on Piezoelectricity[18]

presented the relationship between electromechanical constants
and bulk wave velocities corresponding to piezoelectric materi-
als with a ∞mm, 4 mm, or mm2 symmetry. Warner et al.[19] de-
termined the material constants of LiTaO3 and LiNbO3 crystals
with 3m symmetry using UPE. Chen et al.[17] obtained the elastic
constants of the [111]c poled relaxor-based single crystals using
the same technique. Though the elastic constants of LGT crys-
tals have already been investigated using UPE,[9] some important
problems have not yet been clarified, for example, the character-
istics of the echoes corresponding to longitudinal and transverse
waves propagating along different directions. Note that this de-
termines which elastic constant can be accurately characterized
using UPE.
In this study, the propagation of plane waves in LGT single

crystals was investigated, and the relationship between their elec-

tromechanical constants and bulk wave velocities of LGT single
crystals was derived. Moreover, echoes corresponding to longitu-
dinal, quasi-longitudinal, transverse, and quasi-transverse waves
along different axes of the LGT sample were measured and ana-
lyzed. Furthermore, all the elastic constants cEij except c

E
13 of the

LGT sample were determined, and compared with those pub-
lished. This study provides a reference for the characterization
of all elastic constants cEij except c

E
13 of piezoelectric crystals with

32 symmetry from one sample using UPE.

2. Theory

The elastodynamic equations for piezoelectric crystals are formu-
lated as follows:

𝜌
𝜕2uj
𝜕t2

− cEijkl
𝜕2uk
𝜕xixl

− ekij
𝜕2𝜑

𝜕xixk
= 0

(
i, j, k, l,= 1, 2, 3

)
(1)

and

eikl
𝜕2uk
𝜕xixl

− 𝜀Sik
𝜕2𝜙

𝜕xixk
= 0

(
i, j, k, l,= 1, 2, 3

)
(2)

where 𝜌 denotes the density, uj denotes the displacement com-
ponent, 𝜑 denotes the electric potential, cEijkl denotes the elastic
stiffness constant under a constant electric field, eikl denotes the
piezoelectric stress constant, and 𝜀Sik denotes the clamped dielec-
tric constant.
The displacement components and electric potential corre-

sponding to the plane harmonic waves in piezoelectric materials
are

uj = Aj cos(𝜔t − klnxn), (j, n = 1, 2, 3) (3)

𝜑 = A4 cos(𝜔t − klnxn), (j, n = 1, 2, 3) (4)

where ln denotes the cosine of the wave propagation direction and
the axis xn.
Substituting Equations (3) and (4) into Equations (1) and (2),

we obtain

𝜌v2 Aj = cEijkl lillAk + ekijlilkA4 (5)

−eikllillAk + 𝜀iklilk A4 = 0 (6)

Equations (5) and (6) are the well-known Christoffel
equation[20] for piezoelectric crystals. They can be written
as follows:

⎛⎜⎜⎜⎝
Γ11 − 𝜌v2 Γ12 Γ13 Γ14

Γ21 Γ22 − 𝜌v2 Γ23 Γ24
Γ31 Γ23 Γ33 − 𝜌v2 Γ34
Γ41 Γ24 Γ43 Γ44

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
A1
A2
A3
A4

⎞⎟⎟⎟⎠
= 0 (7)

where

Γ11 = cE11 l1l1 + cE16l1l2 + cE61l2l1 + cE15l1l3 + cE51l3l1 + cE66l2l2 + cE65l2l3

+ cE56l3l2 + cE55l3l3 (8)
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Γ22 = cE66 l1l1 + cE62l1l2 + cE26l2l1 + cE64l1l3 + cE46l3l1 + cE22l2l2 + cE24l2l3

+ cE42l3l2 + cE44l3l3 (9)

Γ33 = cE55 l1l1 + cE54l1l2 + cE45l2l1 + cE53l1l3 + cE35l3l1 + cE44l2l2 + cE43l2l3

+ cE34l3l2 + cE33l3l3 (10)

Γ44 = −
[
𝜀11l1l1 + 𝜀12l1l2 + 𝜀21l2l1 + 𝜀13l1l3 + 𝜀31l3l1 + 𝜀22l2l2

+ 𝜀23l2l3 + 𝜀32l3l2 + 𝜀33l3l3
]

(11)

Γ12 = Γ21 = cE16 l1l1 + cE12l1l2 + cE66l2l1 + cE14l1l3 + cE56l3l1 + cE62l2l2

+ cE64l2l3 + cE52l3l2 + cE54l3l3 (12)

Γ13 = Γ31 = cE15 l1l1 + cE14l1l2 + cE65l2l1 + cE13l1l3 + cE55l3l1 + cE64l2l2

+ cE63l2l3 + cE54l3l2 + cE53l3l3 (13)

Γ14 = Γ41 = e11 l1l1 + e21l1l2 + e16l2l1 + e31l1l3 + e15l3l1 + e26l2l2

+ e36l2l3 + e25l3l2 + e35l3l3 (14)

Γ23 = Γ32 = cE65 l1l1 + cE64l1l2 + cE25l2l1 + cE63l1l3 + cE45l3l1 + cE24l2l2

+ cE23l2l3 + cE44l3l2 + cE43l3l3 (15)

Γ24 = Γ42 = e16 l1l1 + e26l1l2 + e12l2l1 + e36l1l3 + e14l3l1 + e22l2l2

+ e32l2l3 + e24l3l2 + e34l3l3 (16)

Γ34 = Γ43 = e15 l1l1 + e25l1l2 + e14l2l1 + e35l1l3 + e13l3l1 + e24l2l2

+ e34l2l3 + e23l3l2 + e33l3l3 (17)

The necessary and sufficient condition for Equation (7) to have
nontrivial solutions is that the determinant of its coefficient ma-
trix must equal zero. Three different waves were traveling in each
direction. In general, the displacement vectors of the three waves
were neither perpendicular nor parallel to their propagation di-
rection. However, pure-mode waves appeared when the crystal
was highly symmetrical with respect to the propagation direction.
By substituting Equation (6) into Equation (5), we can reduce

the four equations to the following:[
cD

′

ijkllillAk − 𝜌v2𝛿jk
]
Ak = 0, (i, j, k, l = 1, 2, 3) (18)

where

𝛿jk =
{
0 j ≠ k
1 j = k

(19)

cD
′

ijkl = cEijkl + elij
emknlmln
𝜀pqlplq

, (i, j, k, l, m, n, p, q = 1, 2, 3) (20)

Equation (18) has the same form as that of a nonpiezoelectric
material. The constant cD

′

ijkl is not the same as the elastic stiffness
constant under a constant electric displacement cDijkl. Usually, the
elastic constant cijkl (i, j, k, l = 1, 2, 3) is abbreviated as cij (i, j =
1, 2, …,6) using compressed subscripts. For example, c1221, c1212,
c2121, and c2112 are abbreviated as c66. However, this method is
not suitable for cD

′

ijkl. The constants c
D′

1221, cD
′

1212, c
D′

2121, and cD
′

2112 in
Equation (20) has differentmeanings, as discussed in Section 4.1.
The LGT crystal structure belongs to a trigonal system with 32

symmetry. Its full matrix constants are formulated as follows:

[
cE
]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cE11 cE12 cE13 cE14 0 0

cE12 cE11 cE13 −c
E
14 0 0

cE13 cE13 cE33 0 0 0

cE14 −cE14 0 cE44 0 0

0 0 0 0 cE44 c
E
14

0 0 0 0 cE14 c
E
66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)

[e] =
⎡⎢⎢⎢⎣
e11 −e11 0 e14 0 0

0 0 0 0 −e14 −e11
0 0 0 0 0 0

⎤⎥⎥⎥⎦
(22)

[
𝜀S
]
=
⎡⎢⎢⎢⎣
𝜀S11 0 0

0 𝜀S11 0

0 0 𝜀S33

⎤⎥⎥⎥⎦
(23)

where cE66 =
1
2
(cE11 − cE12).

Equation (18) can be simplified significantly when the wave
propagates along the x-, y-, or z-axis. For the waves traveling along
the z-axis (l1 = 0, l2 = 0, l3 = 1), we have

⎛⎜⎜⎜⎝
cE44 − 𝜌v2 0 0

0 cE44 − 𝜌v2 0

0 0 cE33 − 𝜌v2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
A1

A2

A3

⎞⎟⎟⎟⎠
= 0 (24)

There is a one-to-one correspondence between the two elastic
constants and two wave velocities in Equation (24), i.e.,

cE33 = 𝜌(vzL)
2, cE44 = 𝜌(vzTx )

2 = 𝜌(vzTy)
2 (25)

where the superscript z represents the wave propagation direc-
tion, the subscripts x and y represent the directions of particle
vibration, and the subscripts L and T represent longitudinal and
transverse waves, respectively.

3. Experimental Section

The LGT single crystal was grown along the X-axis using an Ir
crucibles by the Czochralski method. The growth atmosphere
was nitrogen with 1–2 Vol% oxygen. The pulling rate was 0.6–
3mmh−1, and the rotation rate was varied from10 to 30 rpm. The
as-grown crystal was pale orange in color. Its diameter and thick-
ness are 82 and 100mm, respectively. The LGT sample was orien-
tated using the Laue method with an accuracy of ± 0.5°, and cut
in the principal x-y-z directions. The dimensions of the sample

Cryst. Res. Technol. 2024, 2400081 © 2024 Wiley-VCH GmbH2400081 (3 of 8)
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Figure 1. Ultrasonic pulse-echo setup.

were 5.000 × 5.040 × 5.078 mm3, which were measured using a
digital micrometer (Mikrometry DHG-050). Its density was mea-
sured using the Archimedes method to be equal to 6129 kg m−3.
All bulk waves along the x-, y-, and z-axes were measured using
the UPE setup shown in Figure 1. An ultrasonic transducer was
connected to an ultrasonic pulser/receiver (SIUI, CTS-8077PR).
The sample was put onto the transducer surface. The ultrasonic
echoes propagating in the sample were shown in a digital os-
cilloscope (Tektronix MDO3024) with a bandwidth of 200 MHz,
whichwas connected to the pulser/receiver. A 5MHz shear trans-
ducer (Olympus V156RM) and a 10 MHz longitudinal (Olympus
CN10R-5) transducer were used to excite and receive longitudi-
nal and transverse waves, respectively. The -3 dB bandwidth of
the Olympus CN10R-5 transducer ≈60%. The −6 dB bandwidth
of the Olympus V156RM transducer ≈66%.

4. Results and Discussion

4.1. Waves Traveling in the x-y Plane

The waves traveling along the x- or y-axis, whose vibration direc-
tion is neither perpendicular nor parallel to the axis, are more
complex than those traveling along the z-axis. To understand the
waves traveling along the x- or y-axis better, bulk waves travel-
ing in the x-y plane were investigated. In this case, l1, l2, and l3
in Equations (8)–(17) equal cos𝜃, sin𝜃, and 0, respectively, where
𝜃 is the angle between the wave propagation direction and the x-
axis. Thematrix elements in Equation (7) can be simplified when
l3 = 0. The constants cD

′

ijkl in Equations (18)–(20) also can be sim-

plified significantly. For example, cD
′

1221, c
D′

1212, c
D′

2121, and cD
′

2112 can
be written as

cD
′

1221 = cD
′

2121 = cE66 (26)

cD
′

2112 = cD
′

1212 = cE66 +
p
r
e26 (27)

where

p = e11 l1l1 + e26l2l2, r = 𝜀11 l1l1 + 𝜀22l2l2 (28)

Figure 2. Velocity curves of crystals in the x-y plane. a) Original LGT crys-
tal; b) LGT crystal with piezoelectric constantsmultiplied by 10. The unit of
velocity is km s−1 (the black line corresponds to a longitudinal (or quasi-
longitudinal) wave, and the red and blue lines correspond to two trans-
verse (or quasi-transverse) waves).

Equations (26) and (27) indicate that cD
′

1221 and c
D′

2112 have differ-
ent meanings. Consequently, cD

′

1221, cD
′

1212, c
D′

2121, and cD
′

2112 cannot
be represented by the same compressed subscript symbol cD

′

66 .
Therefore, the compressed subscripts cannot be used in cD

′

ijkl in
some complicated cases.
The variation in the velocity of waves traveling in the x-y plane

with the propagation direction for the LGT crystals is shown
in Figure 2a. A longitudinal or quasi-longitudinal wave has the
largest propagation velocity, which hardly changes with the prop-
agation direction, as shown in Figure 2a. To study the effect of
the piezoelectric properties of piezoelectric single crystals with
32 symmetry on the wave velocity, we artificially increased the
piezoelectric coefficients of the LGT crystals to 10 times those of
the original crystals. The results are presented in Figure 2b. The
velocity curves of the longitudinal and quasi-longitudinal waves
also exhibited hexangular symmetry. Comparing Figure 2b with
Figure 2a, we observe that the higher the piezoelectric coeffi-
cients, the stronger the influence of the propagation direction on
the wave velocity.

4.2. Waves Traveling Along the x-Axis

For waves traveling along the x-axis in the LGT crystals, we have
l1 = 1, l2 = 0, and l3 = 0, where one longitudinal wave Lx and
two transverse waves Tx

1 and T
x
2 exist. The displacement vectors

corresponding to these two transverse waves were not parallel to
the y or z-axis, as shown in Figure 3
Moreover, their velocities were determined by several elastic

constants rather than a single elastic constant. The elastic con-
stants associated with the two wave velocities vxT1 and vxT2 are la-
beled cE1 and c

E
2 , respectively. From Equation (7), we have

cD11 = 𝜌(vxL)
2, cE1 = 𝜌(vxT1)

2, cE2 = 𝜌(vxT2)
2 (29)

where

cD11 = cE11 +
e211
𝜀11

(30)

cE1 = 1
2

[(
cE44 + cE66

)
+
√(

cE44 − cE66
)2 + 4

(
cE14

)2]
(31)

Cryst. Res. Technol. 2024, 2400081 © 2024 Wiley-VCH GmbH2400081 (4 of 8)
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Figure 3. Schematic diagram of Tx1 and Tx2 when waves are propagating
along the x direction.

cE2 = 1
2

[(
cE44 + cE66

)
−
√(

cE44 − cE66
)2 + 4

(
cE14

)2]
(32)

where cDij is the elastic stiffness constant under the constant elec-
tric displacement.
Considering the two transverse waves Tx

1 and Tx
2, we substi-

tuted cE1 and cE2 into Equation (7), and the vibration amplitudes
can be written as follows:

A2

A3
=

cE14
cE1 − cE66

(for Tx
1) (33)

A2

A3
=

cE14
cE2 − cE66

(for Tx
2) (34)

The vibration direction of these two waves can be written in
vector forms as

r1 = cE14 j +
(
cE1 − cE66

)
k (for Tx

1) (35)

r2 = cE14 j +
(
cE2 − cE66

)
k (for Tx

2) (36)

It is easy to prove that the dot product of these two vectors
equals zero, i.e., r1·r2 = 0. Therefore, the vibration directions of
the two transverse waves were perpendicular to each other. The
angle 𝛼 between the displacement of Tx

1 and the y-axis can be cal-
culated using

tan 𝛼 =
|||||
cE1 − cE66
cE14

||||| (37)

Conversely, 𝛼 can bemeasured usingUPE. If the value of 𝛼 can
bemeasured accurately, then the accuracy of the determined elas-
tic stiffness constants can be evaluated by comparing the calcu-
lated andmeasured values of 𝛼. By repeating the aforementioned
analysis, we can prove that the vibration directions of the quasi-

Figure 4. Sample pulses of a longitudinal wave in LGT crystal traveling
along the x-axis.

Table 1. Phase velocities of different waves were measured using UPE and
corresponding elastic constants for LGT crystals with 32 symmetry.

Waves Lx Tx
1 Tx

2 QLy Ty
x QTy

z Lz Tz
x , T

z
y

v (m s−1) 5594 3124 2126 5572 – 2931 6544 2891

Elastic
constants c

cD11 cE1 cE2 cE3 cD66 cE4 cE33 cE44

Values of c
(1010 N/m2)

19.18 6.031 2.988 19.03 – 5.266 26.25 5.122

longitudinal and quasi-transverse waves are also perpendicular
to each other when the propagation direction is along the y-axis.
The piezoelectric constants cDn (n = 1, 2, 3, 4) for piezoelec-

tric single crystals with 3m symmetry have the same form as cEn
for piezoelectric single crystals with 32 symmetry. Replacing all
the superscripts “E” in Equations (31) and (32) with “D,” we ob-
tained the expression of cDn corresponding to single crystals with
3m symmetry. The echoes of the longitudinal wave Lx shown in
Figure 4 are very clear. Moreover, the first five echoes shown in
Figure 4 are barely distorted. Therefore, the round-trip flight time
was precisely measured. Consequently, the phase velocity of the
wave Lx and corresponding elastic stiffness constant cD11 were ac-
curately determined, as shown in Table 1.
As mentioned previously, for the two transverse waves travel-

ing along the x-axis, their vibrations were not parallel to the y-
or z-axis. Figure 5a,b shows that multiple echoes occurred when
the shear transducer vibrating along y- or z-axis was used to ex-
cite a pulse traveling along the x-axis of the LGT sample. Both
the Tx

1 and Tx
2 echoes are shown in Figure 5a,b. However, it is

difficult to identify the Tx
2 echoes from them. When measuring

the transverse waves traveling along the x-axis, clear echoes of
the transverse waves can be found in two directions by rotating
the shear transducer in the y-z plane. These two directions corre-
spond to the particle vibration directions of transverse waves Tx

1
and Tx

2. The round-trip flight times corresponding to the Tx
1 wave

can be accurately measured because its echoes propagate without
distinct distortion and are clear, as shown in Figure 5c). The ve-
locity of the Tx

1 wave, i.e., v
x
T1, can then be accurately determined,

as listed in Table 1. Furthermore, the elastic constant cE1 can be
accurately determined using Equation (29), as listed in Table 1.
However, the waveform of the first echo of the Tx

2 wave is differ-
ent from that of its second echo, which shows that it propagated

Cryst. Res. Technol. 2024, 2400081 © 2024 Wiley-VCH GmbH2400081 (5 of 8)
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Figure 5. Two transverse waves traveling along the x-axis with the trans-
ducer vibrating along a) y-axis, b) z-axis, c) vibration direction of Tx1, and
d) the vibration direction of Tx2. The red dashed lines denote the echoes of
Tx1 wave at the same phase. The blue dashed lines denote the echoes of Tx2
wave at the same phase.

with distortion. Therefore, it is difficult to accurately measure
the round-trip flight time. To reduce the measurement error, the
time interval between the first and third echoes was measured
to calculate the wave velocity, as denoted with blue dashed line
in Figure 5d. Nevertheless, the measurement error of cE2 may be
slightly large.

4.3. Waves Traveling Along the y-Axis

Three kinds of waves are traveling along the y-axis in the
LGT crystals, namely, pure transverse waves denoted as Ty

x,
quasi-transverse waves denoted as QTy

Z , and quasi-longitudinal
waves denoted as QLy. The relationships between the velocities
and the elastic constants are as follows:

cD66 = 𝜌(vyTx)
2, cE3 = 𝜌(vyQL)

2, cE4 = 𝜌(vyQT )
2 (38)

where

cD66 = cE66 +
e226
𝜀22

(39)

cE3 = 1
2

[(
cE11 + cE44

)
+
√(

cE11 − cE44
)2 + 4

(
cE14

)2]
(40)

Figure 6. Waves travel along the y-axis when the shear transducer vibrates
along a) z-axis and b) x-axis.

Figure 7. Quasi-longitudinal wave in LGT crystal traveling along the y-axis.

cE4 = 1
2

[(
cE11 + cE44

)
−
√(

cE11 − cE44
)2 + 4

(
cE14

)2]
(41)

where vyTx, v
y
QL, and vyQT are velocities of pure transverse, quasi-

longitudinal, and quasi-transverse waves, respectively.
The Ty

x and QTy
Z echoes were detected using a shear trans-

ducer. When the transducer vibrated transversely along the z-
or x-axis, no clear series of echoes was observed, as shown in
Figure 6. We note that quasi-longitudinal waves QLy also exist in
the y-z plane. Both QTy

Z and QLy waves have vibration compo-
nents in the z-axis direction. Therefore, when the transducer vi-
brated transversely along the z-axis, the echoes of these twowaves
were detected simultaneously. This may have caused the echoes
to become more complex. By contrast, both quasi-transverse and
quasi-longitudinal waves may occur in the reflected waves af-
ter the quasi-transverse or quasi-longitudinal waves are reflected
by the boundary surface of the sample.[21,22] Consequently, the
echoes shown in Fig. 6 became more complex, which makes the
measurement of the time of flight between two echoes shown in
Figure 6 subject to large errors. Therefore, the values of cE4 and
cD66 characterized using Equation (38) are likely to have large er-
rors, as shown in Table 1. The value of cE4 calculated using Equa-
tion (41) is 4.982 × 1010N m−2. The relative deviation between
this value and that in Table 1 reaches 5%.
No pure longitudinal wave traveled along the y-axis. A quasi-

longitudinal wave QLy exists. The first three echoes are clear and
without distinct distortion, as shown in Figure 7. Therefore, the
corresponding elastic constant cE3 can be accurately determined

Cryst. Res. Technol. 2024, 2400081 © 2024 Wiley-VCH GmbH2400081 (6 of 8)
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Figure 8. Longitudinal wave in LGT crystal traveling along z-axis.

Figure 9. Transverse waves a) Tzx and b) T
z
y traveling along z-axis.

using these echoes. The value of cE3 is determined from cE11, c
E
14,

and cE44, as shown in Equation (40). Theoretically, the longitudinal
mode transducer can also be used to detect the echoes of quasi-
transverse waves.

4.4. Waves Traveling Along the z-Axis

According to Equation (25), a pure longitudinal plane wave
traveling along the z-axis can be excited using a longitudinal
transducer, which is denoted as Lz. Moreover, two pure trans-
verse plane waves traveling along the z-axis can be excited using
a shear transducer, which is denoted as Tz

x and T
z
y . The subscripts

x and y represent the vibration direction. The longitudinal wave
echoes are shown in Figure 8. Based on these echoes, the elastic
constant cE33 can be accurately determined because first four
echoes are very clear and without distinct distortion. The echoes
of the two transverse waves are shown in Figure 9, from which
the time interval between two adjacent echoes can be obtained.
Then the phase velocity corresponding to these waves can be
determined. Furthermore, we can calculate the value of the
elastic constant cE44 based on Equation (25).
Other elastic constants can be derived from the obtained re-

sults. From Equations (29) and (30), we obtain

cE66 = cE1 + cE2 − cE44 (42)

and

cE14 =
√
cE44c

E
66 − cE1 c

E
2 (43)

Table 2. Elastic constants (1010 N m−2) of LGT single crystals.

Elastic constants
(1010 N m−2)

This study References [9] References [12]

cE11 18.88 18.89 18.88

cE12 11.08 10.86 10.78

cE13 – 10.44 10.02

cE14 1.394 1.374 1.350

cE33 26.25 26.45 26.11

cE44 5.122 5.129 5.095

cE66 3.897 4.019 4.050

cE66 and c
E
14 can be determined by substituting the values of cE1 , c

E
2 ,

and cE44 into Equations (42) and (43).
Moreover, cE11 can be determined precisely by substituting the

values of cE3 , c
E
14, and c

E
44 into Equation (40). Additionally, c

E
12 can

be determined using cE12 = cE11 − 2cE66. In other words, all the
elastic constants cEij except c

E
13 of the LGT single crystals can be

determined.
For comparison, the elastic constants of LGT single crystals

obtained in this study and those presented in Refs. [9, 12] were
listed in Table 2. In Ref. [9], the elastic constants obtained us-
ing UPE were used to calculate and compare the phase velocities
of the surface acoustic waves with the purpose of deriving opti-
mized values for the elastic constants of LGT crystals. In Ref. [9],
the RUS method was used to characterize the elastic and piezo-
electric constants of LGT crystals. The value of cE13 is determined
by cE11, c

E
14, c

E
33, c

E
44 and the phase velocity of a wave propagating in

a rotated Y-cut LGT sample in Ref. [9]. Therefore, their measure-
ment errors probably transfer to cE13, which may lead to a large
characterization error. Table 2 shows that the relative deviation
between the values of cE13 presented in Refs. [9, 12] reaches 4%.
The values of cE11 obtained in this study andRefs. [9, 12] agreewell,
as well as cE33 and c

E
44. However, the relative deviation between the

values of cE66 obtained in this study and Ref. [9] reaches 3%, and
that between the values of cE66 obtained in this study and Ref. [12]
reaches 4%. The error of cE66 probably be mainly from that of cE2 ,
as illustrated in Section 4.2.

5. Conclusion

Bulk waves traveling in LGT single crystals with 32 symmetry
were investigated systematically. Ferroelectric single crystals with
32 symmetry have the same elastic and dielectric constant ma-
trices as those with 3m symmetry; however, they have different
piezoelectric constant matrices. For example, the piezoelectric
constants d31, d32, and d33 of ferroelectric single crystals with 32
symmetry are equal to zero; however, these constants are nonzero
for ferroelectric single crystals with 3m symmetry. Therefore, fer-
roelectric single crystals with 32 and 3m symmetries have differ-
ent relationships between the bulk wave velocities and the elec-
tromechanical constants.
The relationships between the velocities corresponding to the

different waves traveling along the x-, y-, and z-axes, and the
electromechanical constants corresponding to the LGT crystals
were derived. Furthermore, characterizing the elastic constants
of LGT crystals using UPE was investigated. The echoes of the
longitudinal (or quasi-longitudinal) waves traveling along the x-,

Cryst. Res. Technol. 2024, 2400081 © 2024 Wiley-VCH GmbH2400081 (7 of 8)
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y- and z-axes, as well as the transverse waves traveling along the x-
and z-axes, were extremely clear. Therefore, the elastic constants
cD11, c

E
1 , c

E
3 , c

E
33, and c

E
44 could be directly determined with high ac-

curacy. Note that the echoes correspond to cE2 was clear, however,
the echoes propagated with distortion, which led a slightly large
error of the characterized cE2 . The echoes of the two transverse
(or quasi-transverse) waves traveling along the y-axis could not
be measured clearly. Consequently, the round-trip flight times
corresponding to these waves could not be determined precisely.
Therefore, the cE4 and c

D
66 levels could not be precisely determined.

Though cE13 can be determined using onemore rotated Y-cut sam-
ple by UPE, the characterization error may be large. The reason
is that the value of cE13 is not only determined by the phase ve-
locity of the wave propagating in the rotated Y-cut sample but
also by cE11, c

E
14, c

E
33 and c

E
44. Their errors will transfer to the deter-

mined value of cE13. To obtain its more accurate value, RUS is a
good alternative. Moreover, RUS can determine the temperature
dependence of all elastic constants of LGT crystals. Note that cE66
and cE14 can be determined by substituting the values of cE1 , c

E
2 , and

cE44 into Equations (33) and (34). The error of c
E
2 may be slightly

large, which is themain contribution of the characterization error
of cE66. Moreover, cE11 can be determined precisely by substituting
the values of cE3 , c

E
14, and cE44 into Equation (31). Additionally, cE12

can be determined using cE12 = cE11 − 2cE66. In other words, all the
elastic constants cEij except c

E
13 of the LGT single crystals can be

determined using UPE from one sample.
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