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ABSTRACT:
The study of transient acoustic wave propagation across the Arctic Ocean ice layer provides theoretical guidance for

the design of trans-ice acoustic communication systems. In this study, the Arctic Ocean was modeled as an ice–water

composite structure, where the ice and water are regarded as an elastic solid and liquid, respectively. An analytical

transient solution for acoustic wave propagation in this structure was derived using the eigenfunction expansion

method. Further, the numerical procedures were presented and used to analyze the acoustic wave propagation char-

acteristics across the ice layer. The results show that waveforms corresponding to the radial displacements are more

severely distorted than the axial displacements. The amplitudes of the radial and axial displacements decreased rap-

idly with increasing propagation distance. The ice thickness had a greater impact on the radial displacement than

axial displacement; the thicker the ice, the greater the distortion for both radial and axial displacements.
VC 2024 Acoustical Society of America. https://doi.org/10.1121/10.0025982
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I. INTRODUCTION

Studying acoustic wave propagation in the frozen Arctic

Ocean is of great importance to the improvement of sonar and

could help to establish various long-term acoustic systems for

the efficient monitoring of climate and environmental changes

in the Arctic. Moreover, acoustic waves provide a means of

communication across the ice (Yin et al., 2021). Setting up a

geophone on the surface of the ice to detect transient waves

can enable the transmission of acoustic signals across the ice

layer (Han et al., 2019; Dosso et al., 2002; Dosso et al., 2003;

Dosso, 2014). However, the efficacy of communication

depends on the propagation properties of acoustic waves;

therefore, it is necessary to investigate the characteristics of

transient acoustic wave propagation across ice layers in ice–

water composite structures.

Many theoretical and experimental studies have been

conducted on acoustic wave propagation in the Arctic

Ocean since the 1960s. Kutschale (1969) measured long-

distance acoustic wave propagation in the center of the

Arctic Ocean and explained group-velocity dispersion char-

acteristics using normal-mode theory. Diachok (1976) stud-

ied subglacial acoustic propagation loss in the central Arctic

Ocean by combining the Burke–Twersky scattering model

(Burke and Twersky, 1966) with ray theory. Gavrilov and

Mikhalevsky (2006) experimentally analyzed the effect of

the geometric parameters of ice sheets and acoustic velocity

profiles on propagation loss in the Arctic Franz Victoria

Sea. Hope et al. (2017) studied acoustic propagation loss in

the Arctic marginal ice zone using the wavenumber integra-

tion method and found that the roughness of the ice–water

interface was one of the most influential factors. Penhale

et al. (2018) studied the propagation characteristics of

acoustic waves through different media, including air, ice,

and underwater, using hammers (acting on the ice surface),

cannons (acting on the air), and underwater speakers as

excitation sources. They found that the propagation loss

between 125 and 2000 Hz varied from approximately 3 to

6 dB per doubling of distance. Alexander et al. (2013) simu-

lated acoustic propagation loss under Arctic ice by combin-

ing the Bellhop model with a bounce program. Yin et al.
(2021) conducted a cross-ice acoustic communication exper-

iment and explained why the sound speed of the signal

received on the upper surface of the ice was slower than that

in the water using normal-mode theory. Reeder et al. (2022)

conducted an ice-layer resonance experiment in the Arctic

Ocean and proposed a method to infer ice thickness through

acoustic waves generated by walking on snow-covered ice.

Liu et al. (2021) analyzed the dispersion characteristics and

wave structures of guided waves propagating in an Arctic

ice–water coupled system using the wave propagation

theory for solids and liquids.a)Email: liusx@xmu.edu.cn
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Trans-ice acoustic communication in the Arctic has

become a critical research topic because of its application in

marine exploration and exploitation, environmental moni-

toring, and military operations (Collins and Siegmann,

2021; Li et al., 2021; Chen et al., 2021). Trans-ice commu-

nication experiments were conducted in lakes and oceans,

yielding valuable results (Dosso et al., 2002; Dosso et al.,
2003; Yin et al., 2021). Studying the transient acoustic prop-

agation across ice is important to trans-ice acoustic commu-

nication. Although experimental measurement is the most

straightforward and effective way to obtain the transient

acoustic propagation characteristics, it is challenging and

costly to conduct on-site experiments due to the harsh

Arctic environment. Furthermore, the geometry and acoustic

parameters of the ice layer vary in different regions of the

Arctic. Consequently, the data on propagation characteris-

tics measured in one area may not be valid for other areas.

Theoretical and numerical methods are alternatives for

understanding the transient acoustic propagation characteris-

tics, as they can analyze the transient acoustic propagation

characteristics in different ocean areas by setting different

parameters with high efficiency.

The aforementioned Arctic acoustic propagation mod-

els, such as normal-mode and ray theory, primarily focus on

wave propagation in water. They cannot be used to analyze

the acoustic propagation characteristics across the ice layer

because they typically treat ice sheets as reflectors or scat-

terers. Therefore, it is necessary to extend these models or

develop a new model that can analyze the trans-ice propaga-

tion characteristics of acoustic waves. The eigenfunction

expansion method (EEM), which uses the eigenfunctions to

express a wave function, is widely used to study the tran-

sient dynamics responses of elastic solids (Reismann, 1968;

Reismann and Pawlik, 1974; Weaver and Pao, 1982; Liu

and Qu, 1998; Yin and Yue, 2002; Tang and Xu, 2010;

Tang and Wu, 2012; Tang et al., 2012). In the present study,

EEM was introduced to investigate transient acoustic wave

propagation across the Arctic Ocean ice layer. A concise

analytical transient solution to an acoustic wave propagation

in an ice–water composite structure was derived. Moreover,

the trans-ice propagation characteristics of acoustic waves

in the Arctic Ocean were numerically analyzed.

The remainder of this paper is organized as follows:

Sect. II introduces the model of acoustic propagation across

the ice layer, including the governing equations and bound-

ary conditions. Section III presents the analytical transient

solution to acoustic waves propagating in an ice–water com-

posite structure, derived using EEM. Section IV presents the

numerical procedures for calculating transient displacements

and discusses the numerical results. Finally, Sec. V con-

cludes the paper.

II. STATEMENT OF THE PROBLEM

In this study, the Arctic Ocean was regarded as an ice–

water composite structure, as shown in Fig. 1, where the

excitation source was placed in the water. An axisymmetric

cylindrical coordinate system was used, whose ordinate ori-

gin was located at the ice–water interface. A cylindrical

transducer was used as the excitation source, the center of

which was located at ð0; z0Þ. The external force generated

by the transducer was assumed to be radial.

To simplify the analysis, we assumed that ice and water

are a homogeneous isotropic elastic solid and fluid, respec-

tively. The region occupied by ice is denoted as

D1 ¼ r; h; z; q1; c1L; c1Tð Þj0 � r � R;
�
0 � h < 2p;�h1 � z � 0g; (1)

where q1 is the ice density, c1L and c1T are the velocities of

the longitudinal and transverse waves in ice, respectively, h1

is the thickness of the ice, and R is the radius of the compos-

ite structure. The region occupied by water is denoted as

D2 ¼ r; h; z; q2; c2Lð Þj0 � r � R;
�
0 � h < 2p; 0 < z � h2g; (2)

where q2 and c2L are the density and longitudinal wave

velocity corresponding to the water, respectively, and h2 is

the depth of the water. The composite structure region as a

whole is denoted as D, that is, D ¼ D1 [D2. The boundary

of region D encloses a complete space. We present a theo-

retical derivation and numerical analysis of the elastody-

namic problem in this space for the given boundary

constraints.

The vector displacements of a particle in regions D1

and D2 are denoted by u1 x; tð Þ and u2 x; tð Þ, respectively.

They are governed by the following Navier equation:

Li ui x; tð Þ½ �þqif i x; tð Þ¼ qi

@2ui x; tð Þ
@t2

; in Di; i¼ 1;2;

(3)

with the linear differential operators

L1 ¼ k1 þ 2l1ð Þrr � �l1r�r� (4)

FIG. 1. The Arctic Ocean is modeled as an ice–water composite structure.

D1 is the ice region and D2 is the water region, with depths of h1 and h2,

densities of q1 and q2, longitudinal wave velocities c1L and c2L, respec-

tively, and transverse wave velocity c1T in the ice region. The upper surface

of the ice, lower surface of the water, and ice–water interface are denoted

as S1; S2 and S0, respectively.
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and

L2 ¼ k2rr�; (5)

where k1 ¼ q1 c2
1L � 2c2

1T

� �
and l1 ¼ q1c2

1T are the Lame

constants corresponding to ice, k2 ¼ q2c2
2L corresponds to

water, and f1 x; tð Þ and f2 x; tð Þ are the body forces imposed

on the ice and water regions, respectively.

For a two-dimensional axisymmetric problem, u1 x; tð Þ
and u2 x; tð Þ can be linearly expressed in terms of the unit

vectors er and ez along the coordinate axes r and z, i.e.,

u1 x; tð Þ
u2 x; tð Þ

 !
¼

ur
1 r; z; tð Þ uz

1 r; z; tð Þ
ur

2 r; z; tð Þ uz
2 r; z; tð Þ

 !
er

ez

 !
: (6)

Assuming that the upper surface of the ice layer satisfies the

traction-free boundary condition, the ice–water interface sat-

isfies the normal displacement and stress continuities, the

shear stress vanishes at the interface, and the seafloor satis-

fies the absolute hard boundary condition, i.e., the normal

displacement is zero at the seafloor, we have

r1 x; tð Þ ¼ 0; on S1; (7)

u1 x; tð Þ � n ¼ u2 x; tð Þ � n; r1 x; tð Þ � n
¼ r2 x; tð Þ � n; rrz

1 x; tð Þ ¼ 0; on S0; (8)

u2 x; tð Þ � n ¼ 0; on S2; (9)

where ri ; i ¼ 1; 2ð Þ is the stress tensor with rrz
i ; r

zz
ið Þ com-

ponents and n denotes the outward unit normal vector of the

corresponding surface. Without loss of generality, the initial

state of the system was given by

ui x; 0ð Þ ¼ _ui x; 0ð Þ ¼ 0; i ¼ 1; 2: (10)

The analytical solution of the transient acoustic waves in the

composite structure can be obtained by solving Eq. (3)

under the boundary conditions of Eqs. (7)–(9) and initial

condition of Eq. (10).

III. ANALYTICAL SOLUTION FOR TRANSIENT
ACOUSTIC WAVES

The orthogonality and completeness of eigenfunctions

are prerequisites for applying EEM to the relevant dynamic

problems. Orthogonality guarantees that the inner product of

eigenfunctions from different modes or families is zero,

which allows the analytical solution for transient waveforms

to be presented in a concise form; completeness guarantees

that any other function in the space spanned by the eigen-

functions can be linearly expanded. For a general applica-

tion of eigenfunctions, orthogonality can be proven

according to the Sturm–Liouville theory (Love, 1944;

Stakgold and Holst, 2011). However, completeness is a

more severe problem and difficult to prove because of the

complexity of mathematics. Gurtin (1984) proved the com-

pleteness of the eigenfunctions corresponding to some

elastic problems assuming that only one eigenfunction cor-

responds to an eigenvalue. Nevertheless, the completeness

of eigenfunctions for this study is much more complex since

several eigenfunctions correspond to a given eigenvalue.

Therefore, the completeness of eigenfunctions in complex

waveguides is usually assumed but not strictly proved

(Weaver and Pao, 1982; Liu and Qu, 1998; Yin and Yue,

2002; Tang and Wu, 2012; Tang et al., 2012; Zernov et al.,
2006). This study also assumed completeness.

A. Eigenfunctions

Denote the set of eigenfunctions as ~umnðxÞ
� �

, each of

which is governed by the steady-state problem correspond-

ing to Eq. (3), that is,

Li ~uimn xð Þ½ � þ qix
2
mn~uimn xð Þ ¼ 0; in Di; i ¼ 1; 2; (11)

where xmn is the eigenvalue, n denotes the subscript of the

discrete wavenumber, and m denotes the order index of

mode corresponding to the nth discrete wavenumber.

Solving Eq. (11) with the Helmholtz decomposition method

gives the components

~ur
1mn r; zð Þ ¼ A1mncos a1mnzþ B1mnsin a1mnzð ÞknJ00 knrð Þ

þb1mn �C1mnsin b1mnzð
þD1mncos b1mnzÞknJ00 knrð Þ; (12)

~uz
1mn r;zð Þ¼a1mn �A1mnsina1mnzþB1mncosa1mnzð ÞJ0 knrð Þ

þk2
n C1mncosb1mnzþD1mnsinb1mnzð ÞJ0 knrð Þ;

(13)

~ur
2mn r; zð Þ ¼ A2mncos a2mnzþ B2mnsin a2mnzð ÞknJ00 knrð Þ;

(14)

~uz
2mn r; zð Þ ¼ a2mn �A2mnsin a2mnzþ B2mncos a2mnzð ÞJ0 knrð Þ;

(15)

where A1mn;B1mn;C1mn;D1mn;A2mn; and B2mn are constants to

be determined, kn is the discrete wavenumber in the r-direction,

a1mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

mn=c2
1L � k2

n

p
and b1mn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

mn=c2
1T � k2

n

p
are the

wavenumber of the longitudinal and transverse waves in ice in

the z-direction, respectively, a2mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

mn=c2
2L � k2

n

p
is the

wavenumber of the longitudinal wave in the water in the z-
direction, and J0 and J00 are the zeroth-order first-kind Bessel

function and its first-order derivative, respectively.

The orthogonal nature of the eigenfunctions is readily

proven, details of which can be found for a similar example

in Tang and Wu (2012). Taking the density q of the medium

as the weight, we obtain

X2

i¼1

ð
Di

qi~uimn � ~uipqdV ¼ dmpdnqcmn; (16)

where dmp and dnq are the Kronecker delta functions and cmn

denotes the modulus of the function family ~umnðxÞ
� �

.
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B. Analytical solution

Eringen and Suhubi (1975) presented a standard deriva-

tion of applying EEM for a general elastic body with bound-

aries. In the function space spanned by the eigenfunctions

~umnðxÞ
� �

, the analytical solution of transient displacement

of acoustic waves in the composite structure is given by

u x; tð Þ ¼
X
m;n

(
1

cmnxmn

ðt

0

ð
D

qf x; sð Þ

� ~umn xð Þsin xmn t� sð Þ½ �dVds

)
~umn xð Þ: (17)

The transient displacement in the ice–water composite

structure can be obtained by numerically calculating Eq.

(17). Moreover, it should be noted that the analytical solu-

tion provided by Eringen and Suhubi (1975) was derived

for a single elastic body, while Eq. (17) was developed for

solid–liquid coupled system, which would be more

complicated.

IV. NUMERICAL CALCULATION

As an example, we consider a scenario in which a cylin-

drical transducer excites acoustic waves in the water. The

force generated by the transducer is assumed to be

f r; z; tð Þ ¼ F0

d r � r0ð Þ
2pq2r

g tð Þer; z0 �
h0

2
� z � z0 þ

h0

2
;

(18)

where F0 is the amplitude of the body force, d is the Dirac

function, r0 and h0 are the radius and height of the cylindri-

cal transducer, respectively, and g tð Þ is simulated as an

eight-cycle single-frequency sine signal modulated by a

Hanning window, which is given by

g tð Þ ¼
sin 2pf0tð Þ 0:5� 0:5cos

2pf0t

8

� �	 

;

0 < t < 8=f0;

0; else;

8>>><
>>>:

(19)

where f0 is the center frequency.

C. Numerical procedure

The numerical procedures for calculating the transient

displacement are as follows.

1. Construct and solve the dispersion equation

Rose (1999) summarized a method for constructing a

dispersion equation for multilayer composite structures. For

the ice–water composite structure shown in Fig. 1, a set of

discrete wavenumbers knf gN
n¼1 was generated according to

the following equation:

J00 knRð Þ ¼ 0; n ¼ 1; 2;…;N; (20)

where N is the upper bound index of wavenumber. By

substituting kn n ¼ 1; 2;…;Nð Þ into Eqs. (7)–(9), the dispersion

equation was derived from a system of linear equations of eigen

displacement coefficients A1mn;B1mn;C1mn;D1mn;A2mn; and

B2mn in Eqs. (12)–(15), which is an implicit function consisting

of the eigenvalue xmn and wavenumber kn, that is,

Ay ¼ 0; (21)

where y ¼ A1mn B1mn C1mn D1mn A2mn B2mn½ �T is a column

vector, the superscript T represents the transpose of the

matrix, and A is a sixth-order square matrix (Liu et al.,
2021). The equivalent condition for Eq. (21) to have a non-

trivial solution is

det Að Þ ¼ 0: (22)

Equation (22) is the dispersion equation for a wave propa-

gating in the ice–water composite structure.

It should be noted that although there were infinite

eigenvalues that were associated with a given wavenumber,

only finite modes would be excited under a specific external

force. Denote the maximum mode index of eigen circle fre-

quency as M, i.e., for a given wavenumber kn, the first M
orders eigen circle frequencies xmn m ¼ 1; 2;…;Mð Þ are

required. The bisection method was used to solve Eq. (22)

since it is the easiest to implement numerically.

2. Calculate parameters based on the dispersion
relationship

The eigen displacement coefficients were obtained

according to the following Newton–Raphson iterative

scheme:

y sþ1ð Þ ¼ y sð Þ � J�1 y sð Þ
� �

g y sð Þ
� �

; (23)

where y sð Þ ¼ A
sð Þ

1mn B
sð Þ

1mn C
sð Þ

1mn D
sð Þ

1mn A
sð Þ

2mn B
sð Þ

2mn

h iT

corresponds

to kn;xmnð Þ, s is the iterative index, and g is a six-order vec-

tor with the following elements:

gp y sð Þ
� �

¼

X6

q¼1

y sð Þ
q

h i2

� 1; p ¼ 1;

X6

q¼1

Mpqy sð Þ
q ; p ¼ 2; 3;…; 6;

8>>>>><
>>>>>:

(24)

where Mpq is component of the coefficient matrix corre-

sponding to the dispersion equation (Liu et al., 2021), and

J�1 is the inversed Jacobian matrix corresponding to g, i.e.,

J�1 y sð Þ
� �

¼ inv
@ g1;…; g6ð Þ

@ y
sð Þ

1 ;…; y
sð Þ

6

� �
2
4

3
5: (25)

Furthermore, the modulus cmn of eigenfunctions was calcu-

lated by Eq. (16) when m ¼ p and n ¼ q.
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3. Calculate the transient displacement

With eigen displacement coefficients and required

parameters, the transient displacement for the mth order

mode was calculated by

um r;z; tð Þ¼
XN

n¼1

(
F0

cmnxmn

ðz0þh0=2

z0�h0=2

~ur
2mn r0;zð Þdz

�
ðt

0

g sð Þsin xmn t� sð Þ½ �ds

)
~umn r;zð Þ;

(26)

and the total transient displacement was obtained by super-

posing all excited modes, i.e.,

u r; z; tð Þ ¼
XM

m¼1

um r; z; tð Þ: (27)

D. Verification

To validate the theoretical derivation and numerical

code, the transient waveforms calculated using EEM were

compared with those simulated using the finite element

method (FEM). Without loss of generality, a small-scaled

ice–water composite structure was used. The depths of the

ice and water for the composite structure were 0.1 and

0.2 m, respectively. The following parameters were used in

the calculations (McCammon and McDaniel, 1985): The

longitudinal and transverse wave velocities in the ice were

3593.4 and 1809.8 m/s, respectively. The wave velocity in

the water was 1500 m/s. Moreover, the densities of the ice

and water were 917 and 1000 kg/m3, respectively.

The outer radius, height, and vertical position of the

cylindrical transducer were 0.05, 0.001, and 0.1 m, respec-

tively. The center frequency f0 and amplitude F0 for the

excitation pulse signal were 10 kHz and 108 N/m3, respec-

tively. The acoustic parameters of the ice and water were

unchanged for subsequent calculations.

As shown in Fig. 2(b), the energy of the signal g tð Þ
defined by Eq. (19) with a center frequency of 10 kHz con-

centrated in the frequency range of 7.5–12.5 kHz. Therefore,

modes with cutoff frequencies greater than 12.5 kHz were

ignored when using Eq. (27) to calculate the total transient

displacement. Figure 3 shows the group-velocity dispersion

curves of the first ten modes in the small-scaled ice–water

composite structure. All higher-order (greater than second-

order) modes had cutoff frequencies; moreover, the cutoff

frequency increased with mode order. The cutoff frequency

of the eighth-order mode was approximately 14.3 kHz,

meaning that external forces in the frequency range of

7.5–12.5 kHz could only excite the first seven modes of

guided waves. Consequently, these seven modes were super-

posed to calculate the total transient displacement.

Figure 4 shows the radial and axial transient displace-

ments of the first seven modes when the receiving point was

located at r ¼ 1 m on the upper surface of the ice, which

were calculated using Eq. (26). Figure 4 shows that the

fourth-order mode has the largest amplitude in both direc-

tions; therefore, it is the largest contributor to the total wave-

form. It should be noted that the excitation efficiency of

different modes depends on the geometrical and material

parameters of the composite structure and the properties of

the external force.

The total radial and axial transient displacement wave-

forms were obtained by superposing the radial and axial dis-

placements of the first seven modes directly, respectively.

The total radial and axial displacements of the receiving

point located at r ¼ 1 m on the upper surface of the ice layer

are presented in Fig. 5. The blue dot lines and red solid lines

in Fig. 5 correspond to the results calculated using EEM and

FEM, respectively. The two methods agree, which indicates

FIG. 2. The (a) time-domain waveform

and (b) frequency spectrum of signal

g tð Þ with center frequency f0 ¼ 10 kHz.

FIG. 3. Group-velocity cg dispersion curves of the first ten modes in the

small-scaled ice–water composite structure. c2L represents the longitudinal

wave velocity in the water used to normalize group-velocity. The numbers

near the curves denote the mode indices.
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that the theoretical derivation and numerical procedure are

correct and the prior assumption of completeness is reason-

able. In the radial direction, the total waveform exhibits two

packets, which are mainly contributed from the fourth- and

fifth-order mode in this direction, i.e., ur
14 and ur

15 in Fig.

4(a). In the axial direction, it seems to be only one packet,

which mainly comes from the fourth-order mode because it

has far higher magnitude over other modes; however, it

should be noted that the third- and fifth-order modes in the

axial direction also contribute to this packet, which exhibits

the combination characteristics of the third- and fifth-order

modes near 1 ms, as shown in Figs. 4(b) and 5(b).

Although total transient displacements of the ice–water

composite structure can be obtained by either EEM or FEM,

the former has the following advantages. (i) The calculation

efficiency of EEM is much higher than that of FEM (Liu

and Qu, 1998; Tang and Xu, 2010). In the same computa-

tional environment (Intel Core i7-7700, 3.6 GHz, 16 GB

RAM; Intel, Santa Clara, CA), FEM cost 18 min to obtain

the numerical results shown in Fig. 5, while EEM cost only

FIG. 4. Radial (a) and axial (b) transient displacements of the first seven modes at a receiving point located at r ¼ 1 m on the upper surface of the ice in a

small-scaled composite structure. Waveforms in both directions with the same magnitude are presented in the same scaled vertical axis.

FIG. 5. (Color online) Total radial (a)

and axial (b) displacements of the

receiving point located at r ¼ 1 m on

the upper surface of the ice. Transient

waveforms simulated by the FEM are

plotted with red solid lines and calcu-

lated by the EEM are plotted with blue

dot lines.
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7 min. The gap in computation time between FEM and EEM

will increase dramatically as the scale of the structure

increases (Collins et al., 2019; He et al., 2023). (ii) The dis-

placement corresponding to each mode can be calculated

separately using EEM; thus, the excitation efficiency and

propagation characteristics of each mode can be quantita-

tively analyzed (Tang and Wu, 2012). These advantages are

significant when analyzing transient acoustic wave propaga-

tion in the Arctic Ocean. Note that it is almost impossible to

fulfill this task using FEM owing to the large scale of the

ocean.

E. Numerical results and discussions

Here, we use the trans-ice propagation characteristics of

acoustic waves in the Arctic Ocean with a sea depth of

100 m as an example. The following parameters were used

in the calculation. R ¼ 4000 m; the center position z0, outer

radius r0, and height h0 of the cylindrical transducer were

2.1, 0.4, and 0.2 m, respectively. The center frequency and

amplitude of the external force were 1000 Hz and 108 N/m3,

respectively. As shown in Fig. 6, the energy of the signal

g tð Þ defined by Eq. (19) with frequency f0 ¼ 1000 Hz is

mostly distributed within the frequency range of

750–1250 Hz.

Figure 7 shows the group-velocity dispersion curves

within the frequency range of 700–1300 Hz with an ice

thickness of 2 m. The cutoff frequencies of the 173rd and

higher-order modes were greater than 1250 Hz, whereas

those of the 172nd and lower modes were less than 1250 Hz.

Therefore, only the first 172 modes were required to calcu-

late the total displacement in this scenario. Within the fre-

quency range of 750–1250 Hz, the group-velocity increased

with an increase in frequency and approached the acoustic

velocity of the water when the mode order was less than

110, whereas the group-velocity presented a maximum

when the mode order was equal to or greater than 110. The

frequency corresponding to the maximum moves toward

higher frequencies with increasing mode order. The maxi-

mum group-velocity of the 130th mode was approximately

2517 m/s, which is much greater than the acoustic velocity

of the water.

1. Excitation source in the water layer

Figure 8 shows the transient radial and axial displace-

ments at r ¼ 50 m. Figures 8(a) and 8(b) show the displace-

ment waveforms received on the upper surface of the ice.

Figures 8(c) and 8(d) show the displacement waveforms

received in water with a depth z ¼ 6 m. The amplitude of

the radial displacement on the upper surface of the ice was

much smaller than that in water, whereas the amplitude of

the axial displacement on the upper surface of the ice was

slightly greater than that in water, as shown in Fig. 8. The

radial displacement on the upper surface of the ice exhibited

noticeable dispersion characteristics. Its waveform consisted

primarily of three wave packets, P1; P2, and P3 in Fig. 8(a).

Moreover, the amplitudes of the first and second wave pack-

ets were significantly smaller than those of the third main

wave packet. The propagation velocities of the first and sec-

ond wave packets were approximately 1.6 c2L and 1.3 c2L,

respectively, which were close to the group-velocities of the

125th and 140th modes, respectively, as shown in Fig. 7.

The propagation velocity of the third wave packet was

approximately c2L. The dispersion characteristics of the

axial displacement on the upper surface of the ice are not

obvious, as are the radial and axial displacements in water.

Their waveforms consisted primarily of a single wave

packet.

Figure 9 shows the transient radial and axial displace-

ments on the upper surface of the ice at r ¼ 75 and 100 m.

Comparing Figs. 9 and 8, we can see that the amplitudes of

the radial and axial displacements decrease sharply with

increasing distance, and their propagation loss is greater

than 6 dB per doubling of distance. Moreover, it can be seen

FIG. 6. Spectrum distribution of signal g tð Þ with a center frequency of

1 kHz.

FIG. 7. Group-velocity cg dispersion

curves within the frequency range of

700–1300 Hz with an ice thickness of

2 m. c2L represents the longitudinal

wave velocity in the water used to nor-

malize group-velocity. The numbers

near the curves denote the mode

indices.
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from Figs. 8(a) and 9(a) and 9(c) that the relative time gap

between the two small wave packets and the main wave

packet becomes longer, further indicating that the main packet

consists of lower-order modes with a lower group-velocity,

while the two small packets consist of higher-order modes

with a higher group-velocity. It should be noted that the wave-

form shape of the radial displacement depends largely on dis-

tance, and the relative amplitude of the first two packets to the

third increases with increasing distance. This result shows a

much more evident dispersion characteristic for the radial

displacement, and its waveform is distorted more severely as

the propagating distance increases.

A frequency spectra distribution comparison of excita-

tion g tð Þ and transient waveforms shown in Figs. 8 and 9 are

presented in Fig. 10. The frequency-selective fading

occurred owing to the influence of the dispersion character-

istics, especially evident in the radial direction, as shown in

Fig. 10(a).

The ice thickness of the Arctic varies with the climate,

season, and hydrographic conditions of the sea. Its effect on

FIG. 9. Transient displacements on the upper surface of the ice layer for different propagation distances. (a) Radial and (b) axial displacement at a distance

of r ¼ 75 m; (c) radial and (d) axial displacement at a distance of r ¼ 100 m.

FIG. 8. Transient displacements at r ¼ 50 m. (a) Radial, and (b) axial displacement on the upper surface of the ice; (c) radial, and (d) axial displacement in

the water at a depth z ¼ 6 m.
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the dispersion characteristics of waves in the ice–water com-

posite structures has been previously investigated (Liu et al.,
2021). Figure 11 shows the transient displacements on the

surface of the ice for different thicknesses. The ice thick-

nesses used in the calculations of Figs. 11(a) and 11(b) were

4 m, and those corresponding to Figs. 11(c) and 11(d) were

6 m, which represents the typical mean thickness of ice in

the Arctic (Haas et al., 2010). Thicker ice results in a shift

of group-velocity dispersion curves to a lower frequency;

therefore, for a given external excitation, more guided wave

modes need to be superposed when calculating the transient

waveforms using Eq. (27). For an ice layer with 4 m, 176

modes were superposed, and for 6 m, 181 modes were

needed. Comparing Figs. 11 and 8, the ice thickness has a

significant impact on both displacements, especially on

radial displacements. In general, the thicker the ice, the

greater the waveform distortion. It should be noted that the

ice absorption loss was ignored in this study.

Figure 12 shows the frequency spectra distribution of

the radial and axial displacements on the upper surface of

the ice layer with different ice thicknesses. The ice thickness

has a significant influence on the spectra of both directions.

Moreover, the radial displacement exhibited more evident

frequency-selective fading as the thickness of the ice layer

increased. Therefore, better performance may be achieved

by using the axial information for trans-ice acoustic

communication.

2. Excitation source on the upper surface of the ice

As another application of trans-ice communication, we

considered a scenario in which the excitation source was a

disk transducer placed on the upper surface of the ice layer,

exciting acoustic waves vertically downwards. The receivers

were located 50 m from the source. The radius of the disk

transducer was r0 ¼ 0:2 m, and the center frequency and

amplitude of the external force were 1 kHz and 108 N/m3,

respectively. Accordingly, Eq. (18) must be adjusted as

follows:

f r; z; tð Þ ¼ F0

d zþ h1ð Þ
q1

g tð Þez; 0 � r � r0: (28)

FIG. 11. Transient displacements on the upper surface of the ice for different ice thicknesses. (a) Radial and (b) axial displacement for an ice thickness of

4 m, and (c) radial and (d) axial displacement for an ice thickness of 6 m.

FIG. 10. (Color online) Frequency

spectra of the transient (a) radial and

(b) axial displacements for different

propagation distances.
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The transient displacements were calculated according

to the numerical procedures described in Sec. IV A. The

numerical results are shown in Fig. 13. The depths of the ice

and water were 2 and 100 m, respectively. Comparing Figs.

8 and 13, there is no significant difference between the

waveforms of the received transient guided waves when the

transducer was placed on the upper surface of the ice layer

or in the water, except for a slight distortion in the axial dis-

placement at the receiving point in the water layer. The

radial displacement at the receiver on the ice consisted of

three wave packets, that is, P1; P2 and P3, as shown in Fig.

13(a). The propagation time of the transient guided wave in

the water layer was slightly shorter when the excitation was

located on the surface of the ice, as shown in Figs. 8(c) and

8(d), and 13(c) and 13(d). One factor contributing to this

phenomenon is the difference in acoustic speed between ice

and water; both the transverse and longitudinal speeds in the

ice layer are greater than the longitudinal speed in the water.

However, a general pattern on the amplitude of tran-

sient waveforms can be obtained by summarizing Figs. 8, 9,

11, and 13, that is, the radial displacement of the receiver on

the surface of the ice is always smaller than the axial

displacement, regardless of whether the excitation source is

on the ice or in the water, whereas this relationship is

reversed for a receiver in the water layer.

Figure 14 presents the frequency spectra distributions

of the transient waveforms shown in Figs. 8(a) and 8(b), and

13(c) and 13(d). The frequency-selective fading characteris-

tics of the signal are related to the location of the excitation

and the direction of the vector displacement. It can be con-

cluded from the spectra in Figs. 10, 12, and 14 that, if we

want to conduct trans-ice acoustic communication, using

axial displacements received in water or radial displace-

ments received on ice may be more productive than the

other way around because there are weak distortions in these

directions. Therefore, the application scenario determines

where the excitation and receiving points should be placed

and which direction should be adopted.

V. CONCLUSION

To analyze transient acoustic wave propagation across

the ice layer in the Arctic Ocean, an ice–water composite

structure was developed. An analytical solution for transient

FIG. 13. Transient displacements at r ¼ 50 m with an excitation source on the upper surface of the ice. (a) Radial and (b) axial displacement on the upper

surface of the ice, and (c) radial and (d) axial displacement in the water at depth z ¼ 2 m.

FIG. 12. (Color online) Frequency

spectra of the transient displacements

on the upper surface of the ice for dif-

ferent ice thicknesses. (a) Radial and

(b) axial displacement.
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displacement in the structure was derived using EEM.

Moreover, numerical procedures for calculating the transient

displacement were proposed. The radial and axial displace-

ments and frequency spectra were numerically analyzed.

The numerical results showed that the waveform of the

radial displacement was much more complicated than that

of the axial displacement. The amplitudes of both radial and

axial displacements decreased rapidly with increasing prop-

agation distance. The propagation losses were greater than

6 dB per doubling of distance. Ice thickness was shown to

have a significant impact on the amplitudes and waveforms

of the radial and axial displacements. Generally, the thicker

the ice, the more complicated the waveform and the greater

the distortion. Moreover, the amplitudes of the axial dis-

placements received on the surface of the ice are always

greater than the radial displacements, whereas, in the water

layer, the amplitudes of the radial displacements are always

greater than the axial displacements, regardless of the posi-

tion of the acoustic source.

The frequency spectra of the transient radial and axial

displacements exhibited frequency-selective fading owing

to dispersion characteristics. When the excitation source

was placed in the water, the frequency-selective fading cor-

responding to the radial displacement was more severe than

that corresponding to the axial displacement. In general,

radial waveforms exhibit more noticeable distortions.

Therefore, utilizing axial displacement information and gen-

erating signals in the water to perform trans-ice communica-

tion may be better than using radial information. However,

using radial displacement information may be a good choice

for other applications, such as the inversion of ice thickness

and measurement of acoustic parameters.

Compared to the reflectivity method (Muller, 1985), the

transfer matrix method (Sastry and Munjal, 1998; Yue and

Yin, 1998), and FEM, EEM has advantages in investigating

the transient response of large-scaled ice–water composite

structures for the Arctic Ocean. Each guided wave mode can

be evaluated separately using EEM, which provides a guide-

line for the excitation control of guided waves. Distributions

fields of displacement and stress can be efficiently obtained

by EEM. Further, the numerical program in this paper can

be generalized to the investigation of ice-covered deep-sea

propagation, where more modes need to be superposed and

the acoustic velocity profile should be taken into

consideration. Experimental tests will be conducted to verify

the EEM for the frozen Arctic Ocean proposed in this paper.
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