
�

� �

�

43

3

Next-Generation Sequencing Technologies and the Assembly of
Short Reads into Reference Genome Sequences
Ning Li, Xiaozhu Wang and Zhanjiang Liu

Introduction

In this chapter, the various sequencing technologies are first introduced, and then the
methods for the assembly of sequences generated using various sequencing platforms
are presented.

Understanding of DNA Sequencing Technologies

The start of the Human Genome Project (HGP) 30 years ago marks the start of a
new era in genomics. For the most part, the genomics revolution has been driven by
advances in DNA sequencing technologies, including the development of automated
DNA sequencers and powerful data-processing algorithms. Sanger sequencing (Sanger
et al., 1977), considered the “first-generation” DNA sequencing technology, dominated
the field for almost 20 years till the mid-1990s. Since then, in the last 15–20 years,
rapid progress was made in sequencing technologies. The new set of sequencing
technologies since has been collectively known as the “next-generation” sequencing
(NGS) technologies. Three platforms of NGS were initially available in the market:
the Roche/454 FLX, the Illumina sequencers, and the Applied Biosystems SOLiD
System. With years of competition in the sequencing market, the Illumina platform
is now among the most popular platforms. In addition, several additional sequencing
platforms were introduced to the market, such as Helicos Heliscope, Pacific Biosciences
SMRT, Ion Torrent Personal Genome Machine (PGM), and Oxford Nanopore MinION
sequencers.

Compared to Sanger sequencing, next-generation sequencing produces massive
amounts of data rapidly and cheaply (Mardis, 2013). A typical cloning step in Sanger
method is replaced in next-generation sequencing by adding universal adapters to the
DNA fragments (Mardis, 2011). There is also no need to perform sequencing reactions
in microtiter plate wells. Instead, the library fragments are amplified in situ on a solid
surface, which is covalently derivatized with adapter sequences. Another difference is
that next-generation sequencing conducts sequencing and detection simultaneously
(Dolník, 1999). These steps allow hundreds of millions to billions of reaction loci to

Bioinformatics in Aquaculture: Principles and Methods, First Edition. Edited by Zhanjiang (John) Liu.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.

�

� �

�

44 I Bioinformatics Analysis of Genomic Sequences

be sequenced per instrument run. Due to the signal-to-noise ratio, the read length of
next-generation sequencing is generally short. However, as detailed in the following
text, long reads can now be achieved with the third generation of sequencers such as
PacBio. The shorter read length is a major shortcoming of next-generation sequencing
for large and complex genome sequencing (Alkan, Sajjadian & Eichler, 2011). To over-
come this disadvantage, various tactics such as paired-end and mate-pair sequencing
can be applied, which help the assembly of short sequences into contigs and scaffolds,
as detailed in the following text.

Based on the chemistry, next-generation sequencing technologies can be classified
into five groups (Shendure et al., 2004): pyrosequencing (454 Life Sciences), sequenc-
ing by synthesis (Illumina), sequencing by ligation (SOLiD), semiconductor sequencing
(Ion Torrent), and single-molecule real-time sequencing (PacBio, Helicos and Oxford
Nanopore). Here, we provide some introduction of these platforms because their char-
acteristics are related to the design of a genome-sequencing project, and to the sequence
assembly strategies.

454 Life Sciences

Roche 454 sequencing system was the first next-generation sequencing platform avail-
able in the market (Margulies et al., 2005). It was founded by Jonathan Rothberg in 2005,
and bought by Roche Diagnostics in 2007. In this platform, libraries are prepared either
paired-end or mate-pair to obtain a mixture of short, adapter-flanked fragments. The
major characteristic of the 454 system is emulsion PCR (Dressman et al., 2003), which
is used to generate clonal sequencing features with amplicons captured to the surface of
28 μm beads. After amplification, the emulsion shell is broken, and successfully ampli-
fied beads are enriched through binding with streptavidin magnetic beads. A sequencing
primer is hybridized to the universal adapter at the appropriate position and orientation,
that is, immediately adjacent to the start of unknown sequences. The Pico Titer Plate is
loaded with one fragment carrying bead per well and smaller beads with the enzymes
necessary for sequencing and for packing. Sequencing is performed by the pyrosequenc-
ing method (Ronaghi et al., 1996). When ATP drives the luciferase-mediated conversion
of luciferin to oxyluciferin, a burst of light is generated in amounts that are proportional
to the amounts of ATP. Light is captured by CCD camera and recorded as a peak “pro-
portional” to the number of nucleotides incorporated.

Relative to other next-generation platforms, the key advantage of the 454 platform is
its long read length (Metzker, 2010). For example, the read length generated from a 454
instrument can reach up to 700 bp (base pairs). A major limitation of the 454 technology
relates to homopolymer repeats (multiple bases of the same identity). Because there
is no terminating moiety preventing multiple consecutive incorporations at a given
cycle, the length of all homopolymer repeats must be inferred from the signal intensity.
As a consequence, the dominant error type for the 454 system is insertion/deletion,
rather than base substitution (Fox et al., 2014). Other disadvantages include relatively
low sequence coverage and relatively high price. In October 2013, 454 Life Sciences
announced the decision to phase out their pyrosequencing-based instruments (the GS
Junior and GS FLX+) in mid-2016 (http://www.biocompare.com/Editorial-Articles/
155411-Next-Gen-Sequencing-2014-Update/).

�

� �

�

3 NGS Technologies and the Assembly of Short Reads into Reference Genome Sequences 45

Illumina Genome Analyzer

Previously known as “the Solexa”, the Illumina platform was originally introduced by
Turcatti and colleagues (Fedurco et al., 2006; Turcatti et al., 2008). This platform has
been the most popular next-generation sequencing platform in the market since it
took over the market from 454 Life Science in 2012. Illumina Genome Analyzer is a
sequencing-by-synthesis-based platform (Mardis, 2013). Libraries can be constructed
by any method as long as a mixture of adapter-flanked fragments up to 100–300 bp
in length can be obtained. Sequences are amplified through cluster generation, which
is performed on the Illumina Cluster Station (or Cbot) (Fedurco et al., 2006). In brief,
DNA fragments are individually attached to the flow cell by hybridizing to oligos
on its surface complementary to the ligated adapters. DNA molecules are amplified
by bridge PCR, and then reverse strands are cleaved and washed away in the end.
After cluster generation, the amplicons are single-stranded (linearization), and a
sequencing primer is hybridized to a universal sequence flanking the region of interest.
Clusters are sequenced simultaneously, and each cycle of sequence interrogation
consists of single-base extension with a modified DNA polymerase and a mixture of
four nucleotides. After each synthesis step, the clusters are excited by a laser, which
causes fluorescence of the last incorporated base fluorescence label. The fluorescence
signal is captured by a built-in camera, producing images of the flow cell. Then the
blocking groups are removed, allowing addition of the next base. This process contin-
ues for every base to be sequenced. The read length has increased from the original
25 bp (single-end reads) to the current 150 bp (paired-end reads) using the Illumina
HiSeq 2500 instrument. The dominant error type is base substitution, rather than
insertion/deletion as those in 454 Life Science (Fox et al., 2014). The average raw error
rate of most Illumina reads is approximately 0.5% at best, but higher accuracy bases with
error rates of 0.1% or less can be identified through quality metrics associated with each
base calling (Mardis, 2013). Low expense, high throughput, and high coverage have
made Illumina secure roughly 60% of the next-generation sequencing market. However,
its major disadvantage is the relatively short read length, making it less effective for
complex de novo assembly projects (Metzker, 2010). HiSeq 3000/4000 instruments
were introduced to the market in early 2015. The dual flow-cell HiSeq 4000 can generate
up to 1.5 TB of 150 bp pair-end reads (750 GB for HiSeq 3000). The major difference
between the HiSeq 4000/3000 and earlier models is their flow-cell design. Instead of
using non-patterned flow cell in which sequencing clusters could form anywhere on the
surface, the HiSeq 4000/3000 instruments use a patterned flow cell in which sequencing
clusters are restricted to 400 nm wells spaced 700 nm apart (http://www.biocompare
.com/Editorial-Articles/171872-Next-Gen-DNA-Sequencing-2015-Update/).

SOLiD

The SOLiD platform is based on sequencing by oligo ligation. It was invented by
Shendure and colleagues at Church’s lab and later acquired by Applied Biosystems
in 2006 (now owned by Thermo Fisher Scientific). Same as the 454 platform, clonal
sequencing features are generated by emulsion PCR, with amplicons captured to the
surface of 1 μM paramagnetic beads (Shendure & Ji, 2008). After emulsion PCR, beads
bearing templates are selectively recovered, and then immobilized to a solid surface
to generate a dense, disordered array. Sequencing is driven by a DNA ligase: first, a

�

� �

�

46 I Bioinformatics Analysis of Genomic Sequences

universal primer is hybridized and ligated to the array of amplicon-bearing beads,
and then a set of four fluorescently labeled di-base probes compete for ligation to the
sequencing primer (Housby & Southern, 1998; Macevicz, 1998; McKernan et al., 2012;
Shendure et al., 2005). Each cycle of sequencing involves the ligation of a degenerate
population of fluorescently labeled octamers. After the first ligation cycle, the extended
primer is denatured to reset the system with a primer complementary to the n − 1
position for a second round of ligation cycles. Multiple cycles of ligation, detection, and
cleavage are performed, and the number of cycles determines the eventual read length.

The efficiency and accuracy of SOLiD is enhanced by the use of two-base encoding,
which is an error-correction scheme in which two adjacent bases, rather than a sin-
gle base, are associated with one color (McKernan et al., 2012). Each base position is
then queried twice, so that miscalls can be more readily identified. High accuracy up to
99.99% can be achieved through this step. Similar to Illumina, the dominant error type
is base substitution (Fox et al., 2014). With its high levels of accuracy, SOLiD is the best
for genome resequencing or SNP capture. Short read length is the major disadvantage
for this platform. An additional disadvantage, such as that with the Roche 454 system,
is that emulsion PCR can be cumbersome and technically challenging.

Helicos

The Helicos sequencer (Harris et al., 2008) is based on the work of Quake and colleagues
(Braslavsky et al., 2003). It is the first commercial machine to sequence a single DNA
molecule rather than one copied many times. Libraries are prepared by random frag-
mentation and poly-A tailing, then captured by hybridization to surface-tethered poly-T
oligomers to yield a disordered array of primed single-molecule sequencing templates.
DNA polymerase and a single species of fluorescently labeled nucleotide are added
in each cycle, resulting in template-dependent extension of the surface-immobilized
primer–template duplexes. A highly sensitive fluorescence detection system is used
to directly interrogate individual DNA molecules via sequencing by synthesis. After
collection of images tiling the full array, chemical cleavage and release of the fluorescent
label allow the subsequent cycle of extension and imaging (Shendure & Ji, 2008).

Homopolymer repeat runs are the major problem of Helicos, almost like the situation
of the Roche 454 system. This is because, with Helicos, there is no terminating moiety
present on the labeled nucleotides. However, the problem is less serious as compared
to Roche 454 because individual molecules are being sequenced, and the problem can
be mitigated by limiting the rate of incorporation events. The dominant error type is
insertion/deletion due to the incorporation of contaminated, unlabeled, or non-emitting
bases (Fox et al., 2014).

Ion Torrent

Ion Torrent, founded by Rothberg and collogues, was commercialized in 2010 and later
purchased by Life TechnologiesTM Corp, which in turn was acquired by Thermo Fisher
Scientific in February 2014. Thus, Thermo Fisher Scientific now owns both SOLiD and
Ion Torrent. The Ion Torrent platform is based on the detection of the release of hydro-
gen ions, a by-product of nucleotide incorporation, as quantitated by changes in pH
through a novel coupled silicon detector (Rothberg et al., 2011; Mardis, 2013). Genomic
DNA is fragmented, ligated to adapters, and then clonally amplified onto beads using

�

� �

�

3 NGS Technologies and the Assembly of Short Reads into Reference Genome Sequences 47

emulsion PCR. After emulsion breaking, template-bearing beads are enriched through
a magnetic-bead-based process and primed for sequencing. This mixture is then
deposited into the wells of an Ion Chip, a specialized silicon chip designed to detect pH
changes within individual wells of the sequencer as the reaction progresses stepwise.
The upper surface of the Ion Chip is designed as a microfluidic conduit to deliver
the reactants needed for the sequencing reaction. The lower surface of the Ion Chip
interfaces directly with a hydrogen ion detector to translate the released hydrogen ions
from each well into a quantitative readout of nucleotide bases in each reaction step.

Same as 454, Helicos, and PacBio, the major error type of Ion Torrent sequencing is
caused by insertion/deletion due to homopolymer repeats, although base substitution
does occur, but at a low frequency (Fox et al., 2014). Overall, the error rate of Ion Torrent
on a per-read basis averages approximately 1% (Mardis, 2013). The average read length
obtained by the Ion Torrent has increased from originally 50 bp to 400 bp, produced as
single-end reads. Throughput has increased from 10 MB per run to 1 GB per run, on
average. Reaction volume miniaturization and mass production of the Ion Chips make
this platform relatively fast and inexpensive, and hence ideal for small-scale applications
or small laboratories that do not require large datasets.

PacBio

PacBio was commercialized by Pacific Biosciences in 2010. It is based on single-molecule
sequencing, and generally regarded as third-generation technology. It is a successful
combination of nanotechnology with molecular biology and highly sensitive fluores-
cence detection to achieve single-molecule DNA sequencing (Eid et al., 2009). On this
platform, by applying a special nanotechnology called zero-mode waveguide (ZMW),
tens to thousands of ZMWs can be fitted in a light-focusing structure as a regular array
(Mardis, 2013). With fragmented genomic DNA, after polishing their ends, the hairpin
adapters are ligated onto the ends of these fragments. Once ligated and denatured, these
molecules can form DNA circles, and at the same time reaction by-products should be
removed before binding library fragments with DNA polymerase molecules through a
primer complementary to the adapter. Then, these mixed molecules are deposited onto
the surface of the ZMW chip (SMRT Cell). The instrument excitation/detection optics
can be trained on the bottom of each ZMW, where the polymerase attaches. Once flu-
orescent nucleotides are added to the chip surface, the instrument optics collect the
sequencing data by actively monitoring each ZMW to record the incorporating fluo-
rescent molecules dwelling in the active site as identified by their emission wavelength.
Here, the highly sensitive fluorescence detection is aimed at single-molecule detection
of fluorescently labeled nucleotide incorporation events in real time, as the DNA poly-
merase is copying the template.

Depending on the size of the library fragments and the time of data collection, this
platform produces some of the longest average read lengths available in the market.
The average read length is currently up to 10 KB, while some reads can reach 85 KB
using a new sequencing chemistry called P6-C4. However, an overall high error rate
is the major disadvantage of PacBio. On a per-read basis, the error rate is approxi-
mately 10–15% (Mardis, 2013). The dominant error type is insertion/deletion, although
a small proportion of base substitution does occur (Fox et al., 2014). This platform is
mainly used in assembling bacterial genomes and gap filling for sequencing projects
with large genomes.

�

� �

�

48 I Bioinformatics Analysis of Genomic Sequences

Oxford Nanopore

Oxford Nanopore platforms (the GridION and MinION), first announced by a UK
startup Oxford Nanopore Technologies in 2012 (Eisenstein, 2012), are label-free and
light-free exonuclease sequencing platforms. Library preparation is similar to that for
other next-generation sequencing applications, including DNA shearing, end repair,
adapter ligation, and size selection. The library must be conditioned by addition of a
motor protein, and then mixed with buffer and a “fuel mix” and loaded directly into
the sequencer. As the sequencer runs, DNA is chewed up base by base by exonuclease
tethered to a nanopore, and each base generates a different electric current pattern.
Base calling takes place in real time using Oxford Nanopore’s Metrichor cloud service.
Data can be analyzed using either 1D or 2D workflows. The ingenious 2D workflow
uses a hairpin adapter, which links the top and bottom strands of double-stranded
DNA into one strand. The base caller recognizes the hairpin sequence and aligns both
strands of the template molecule, with the goal of improving sequencing accuracy.
The first device, MinION, a USB device, was available through the MinION Access
Programme (MAP) (Loman & Watson, 2015). PromethION and GridION are still
under development (http://www.biocompare.com/Editorial-Articles/171872-Next-
Gen-DNA-Sequencing-2015-Update/). For MinION, with continuing updates of this
instrument, especially the so-called “2D” reads, more and more positive publications
have emerged to give credit to the accuracy and satisfying read length of this platform
(Ammar et al., 2015; Jain et al., 2015). Its success in the future awaits validation of large
sequencing projects.

Preprocessing of Sequences

During the library preparation and sequencing process, a variety of sequence arti-
facts, including adapter/primer contamination, base calling errors, and low-quality
sequences, will negatively affect the quality of raw data for downstream analyses.
Therefore, these quality issues necessitate better programs for quality control and
preprocessing of all the raw data (Patel & Jain, 2012; Schmieder & Edwards, 2011;
Trivedi et al., 2014).

Data Types

Single-end data: Single-end sequencing only sequences DNA fragments from one direc-
tion, so all the fragments in the library are only sequenced one end, which means there
is only one data output file from each sequencing template.

Paired end data: Paired-end sequencing sequences the same DNA fragment from
both directions, which produces a pair of reads for each fragment. The genomic distance
between these two reads was chosen during the size selection process and is used to con-
strain assembly solutions (Nagarajan & Pop, 2013). As a result, there are two output files
for each of the sequencing templates in the form of paired-end data.

Mate pair: Mate pair sequencing requires long-insert-size paired-end libraries
that are useful for a number of sequencing applications, such as de novo assembly
and genome finishing. With large inserts, library preparation is more complicated
than with short-insert libraries. Genomic DNA is fragmented to an approximate

�

� �

�

3 NGS Technologies and the Assembly of Short Reads into Reference Genome Sequences 49

size range, usually 3–5 KB, 6–8 KB, or 7–10 KB. Fragments are then end-repaired
with biotinylated nucleotides and go through size selection more specifically. After
circularization, non-circularized DNA is removed by digestion, while those circu-
larized fragments are then subjected to a second round of fragmentation, and the
labeled fragments (corresponding to the ends of the original DNA ligated together)
are purified by biotin–streptavidin cleanup. Purified fragments are end-repaired and
ligated to sequencing adapters (http://www.illumina.com/technology/next-generation-
sequencing/mate-pair-sequencing_assay.html).

The length of the initial size selection determines the mate pair gap size expected
during the scaffolding of contiguous sequences (contigs). Combining mate pair data with
data from short-insert-size paired-end reads provides a powerful tool for good assembly
and high sequencing coverage across the genome. However, the ligation process may
create chimeric molecules, which is a major source for artificial structural variations.

Quality Control

The quality control process of sequencing data typically involves assessing the qual-
ity metrics of the raw reads. One of the most popular programs for performing this
is FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). It is a useful
tool with a graphical user interface (GUI), and is widely used as an initial checkpoint to
ensure the overall quality of the sequence datasets. Use:

fastqc PATH_TO_SEQUENCE_FILE

The evaluating result is named “FILENAME_fastqc.html”, which can be opened in a
browser. There are 12 tabs displaying 12 quality metrics, with the exclamatory mark
representing “warning” and the cross representing “failure”.

Some important quality metrics are: the basic statistics, which helps in the selection
of assembly programs; the per-base sequence quality, which shows the overall quality
distribution and average quality from the first base to the last base, helping to set the
quality threshold for quality trimming; and the per-base sequence content, which may
imply the existence of primers or adapters based on the non-random-sequence content
distribution at the beginning. Furthermore, the last three tabs also function closely to
display the primers or adapters.

Trimming

Based on the results from FastQC, adapter/primer trimming and quality trimming
should be carried out before downstream analyses. Take mapping programs as an
example: most popular mapping tools use global matching algorithms, trying to map the
whole length of reads to reference genomes if the number of mismatches is below the
user-defined threshold. If the adapter/primer sequences are not removed completely,
the reads containing the adapter/primer sequences may not be mapped to reference
genomes. Similarly, quality trimming is also important (Kong, 2011; Lindgreen, 2012).
Besides these two trimming types, there are also ambiguity trimming (to remove
stretches of Ns), length trimming (to remove reads shorter or longer than a specified
length), and base trimming (to remove a specified number of bases at either 5’ or 3’ end
of the reads). The choices of trimming types and trimming threshold depend on the
needs of further analyses.

�

� �

�

50 I Bioinformatics Analysis of Genomic Sequences

A number of trimming programs have been developed, such as Skewer (Jiang et al.,
2014), Trimmomatic (Bolger, Lohse & Usadel, 2014), Btrim (Kong, 2011), Adapter-
Removal (Lindgreen, 2012), and cutadapt (Martin, 2011). Here, we will describe the
detailed usage of cutadapt (https://pypi.python.org/pypi/cutadapt).

Base Trimming The parameter –u is used to remove a specified number of bases from
the beginning or end of each read. If the value is positive, the bases are trimmed from
the beginning; and if the value is negative, the bases are trimmed from the end. Base
trimming is always performed before adapter trimming. For example, the following
command removes five bases from the end of each read. The trimmed output is stored
in the “output.fastq” file.

cutadapt –u –5 –o output.fastq input.fastq

Quality Trimming The parameter –q is used to trim low-quality ends from each read
before adapter trimming. This step achieves the same goal with base trimming, so they
usually do not appear in the same command.

cutadapt –q 10,15 –o output.fastq input.fastq

In this command, the value before the comma is the cutoff for the 5’ end of each read,
and the one after the comma is for the 3’ end. If you only want to trim the 3’ end, then
use –q 15. If you only want to trim the 5’ end, then use 0 for the 3’ end; for example, –q
10,0.

Adapter Trimming Adapter trimming is complex due to the location of the adapters. The
parameter –a is set for trimming the 3’ adapter, while –g is used for trimming the 5’
adapter. If it is possible for adapters to appear in both ends of the reads, then –b will fix
this kind of problem. No matter what parameter is used for trimming, it is followed by
the adapter sequences.

For the 3’ adapter, –awill remove the whole or partial matches, and also any sequence
that may follow. For example, the sequence of interest is SEQUENCE and the adapter is
ADAPTER. The reads before trimming and the trimmed reads may look like this:

SEQUEN - SEQUEN
SEQUENCEADAP - SEQUENCE
SEQUENCEADAPTER - SEQUENCE
SEQUENCEADAPTERSOMETHING - SEQUENCE
ADAPTERSOMETHING - (all trimmed)

For the 5’ adapter,–g will remove the whole or partial matches, and also the sequences
preceding the adapter. Again, assume the sequence of interest is SEQUENCE and the
adapter is ADAPTER. The reads and the trimmed reads may look like this:

ADAPTERSEQUENCE - SEQUENCE
PTERSEQUENCE - SEQUENCE
SOMETHINGADAPTERSEQUENCE - SEQUENCE
SOMETHINGADAPTER - (all trimmed)

For the 5’ or 3’ adapter, –b has a rule for deciding which part of the read to remove: if
there is at least one base before the adapter, then the adapter itself and everything that

�

� �

�

3 NGS Technologies and the Assembly of Short Reads into Reference Genome Sequences 51

follows it are removed. Otherwise, only the adapter at the beginning is removed, and
everything that follows it remains.

Paired-end Reads Trimming The parameter –p is used to trim paired-end reads sepa-
rately at the same time, avoiding running cutadapt twice. But it functions properly
only when the number of reads is the same in both files and the read names before the
first space match. Moreover, both of them are processed in the meantime to make sure
they are synchronized. For example, if one read is discarded from one file, it will also be
removed from the other file. Assume paired-end files “read_1.fastq” and “read_2.fastq”
have adapters ADAPTER_1 and ADAPTER_2 separately. The trimming command may
look like this:

cutadapt –a ADAPTER_1 –A ADAPTER_2 –o out_1.fastq –p
out_2.fastq read_1.fastq read_2.fastq

The parameter –A is used to specify the adapter that cutadapt should remove in
the second file. There are also the parameters –G and –B. All of them only work in the
paired-end reads trimming.

Length Trimming This process only functions after all the other types of trimming are
completed. The trimmed reads that are shorter than a specified length are discarded
using –m, while the ones that are longer than a specified length are discarded using –M .

Different kinds of parameters could be combined in a single command to perform a
complete trimming process. Here is an example:

cutadapt –q 20,20 –a ADAPTER_1 –A ADAPTER_2 –g ADAPTER_3 –G
ADAPTER_4 –m 30 –o out_1.fastq –p out_2.fastq
read_1.fastq read_2.fastq

All the reads are first quality trimmed from both ends using 20 as the quality threshold,
and then the 3’ adapter ADAPTER_1 and 5’ adapter ADAPTER_3 are trimmed from the
first file “read_1.fastq”. At the same time, the 3’ adapter ADAPTER_2 and 5’ adapter
ADAPTER_4 are trimmed from the second file “read_2.fastq”. After quality trimming
and adapter trimming, the reads whose lengths are shorter than 30 are discarded in both
“read_1.fastq” and “read_2.fastq”. The final trimmed reads are kept in the “out_1.fastq”
and “out_2.fastq” files.

A trimming report is printed after cutadapt has finished processing the reads. And
then FastQC (described in the previous section) could be used to check the overall
quality of the trimmed reads again to make sure all the issues have been addressed.

Error-Correction

After quality trimming, all the reads are above the quality threshold, but the good
quality value does not mean the read is totally error free. That is the reason why we
need an error-correction step prior to sequence assembly. Although many assembly
programs have their error-correction modules in the packages, such as ALLPATHS-LG
(Gnerre et al., 2011), many stand-alone error correction programs have been developed
as well, such as Quake (Kelley, Schatz & Salzberg, 2010), BLESS (Heo et al., 2014),
and Lighter (Song, Florea & Langmead, 2014). As errors are random and infrequent,

�

� �

�

52 I Bioinformatics Analysis of Genomic Sequences

the reads containing an error in a specific position can be corrected by the majority of
reads containing the correct base (Yang, Chockalingam & Aluru, 2013).

Here, we will introduce one stand-alone error-correction tool, Lighter (https://
github.com/mourisl/Lighter) (Song et al., 2014). It is a fast and memory-efficient
sequencing error-correction program without counting k-mers. Running this program
is simple, without too many parameters. Assume we have a species with a genome size
of 1 GB, and paired-end sequencing reads files “read_1.fastq” and “read_2.fastq” yielding
a genome coverage of 70. Then the error-correcting command simply looks like:

lighter –r read_1.fastq –r read_2.fastq –k 17 1000000000
0.1 –t 10 –od output

Here, –r is a required parameter to exhibit the input files. If the data set is a
single-end read file, then only one –r is used; –k is followed by k-mer length, genome
size, and alpha (alpha = 7/coverage, here 70); and the genome size does not need
to be accurate. Instead, –K (capital K) can be used, followed by k-mer length and
genome size. However, for –K , the genome size should be more accurate, because
Lighter will go through the calculation to acquire the value of alpha. Considering
running in parallel, –t could be used to set the number of threads. For each input file,
Lighter will generate an error-corrected file in the directory “output”, created by the
parameter –od. In this case, the error-corrected files will be named “read_1.cor.fastq”
and “read_2.cor.fastq”. As for the determination of k-mer length, the performance of
Lighter is not overly sensitive to it (Song et al., 2014).

Sequence Assembly

The sequence assembly process is more like solving a jigsaw puzzle (Pop, 2009). Assem-
bling small DNA fragments into whole genome sequences is similar to assembling small
puzzle pieces into a whole picture. For jigsaw puzzles, complexity increases with the
number of pieces, the size of the picture, and especially the ambiguous but similarly col-
ored pieces. Similarly, the difficulty of the assembly process increases with the number
of reads, the size of genomes, and the content of repetitive sequences.

Reference-Guided Assembly

After error-correction, the reads could be aligned to a known reference genome
sequence or assembled de novo. Mapping reads to a known reference genome is also
called reference-guided assembly. Two different aligners, BWA (Li & Durbin, 2009;
2010) and Stampy (Lunter & Goodson, 2011), are often utilized to do the mapping work.
BWA consists of three algorithms: BWA-backtrack, BWA-SW, and BWA-MEM. The
first one is designed for Illumina sequence reads of up to 100 bp, while the other two
are for longer sequences ranging from 70 bp to 1 MB (http://bio-bwa.sourceforge.net/
bwa.shtml). Stampy allows variation during mapping (particularly insertion/deletions),
and thus can be used if you do not have a closely related reference genome sequence.
In any case, reference genome sequences are required for mapping, and therefore it is
not applied to numerous species assemblies without references. For most aquaculture
species, reference genome sequences are not yet available, and, therefore, we will focus
on de novo assembly.

�

� �

�

3 NGS Technologies and the Assembly of Short Reads into Reference Genome Sequences 53

De Novo Assembly

“De novo” literally means “from the beginning” in Latin. For genome projects, de novo
assembly refers to assembly entirely based on reads generated from sequencing
instruments. In other words, no prior assembled sequence data is utilized during
assembly, such as pre-assembled sequences from genomes, transcripts, and proteins
(Rodríguez-Ezpeleta, Hackenberg & Aransay, 2012). The software packages designed
for sequence assembly are called assemblers. All assemblers rely on the simple assump-
tion that highly similar DNA fragments originate from the same position within a
genome (Nagarajan & Pop, 2013).

There are mainly three categories of assemblers: greedy graph-based assemblers,
overlap-layout-consensus (OLC) assemblers, and de Bruijn graph (DBG) based
assemblers.

Graph
A graph is the representation of a set of objects (also called vertices or nodes) where some
pairs of objects are connected by links (also called edges or arcs). If the edges are only
traversed in one direction between its connected nodes, they are called directed edges.
Each directed edge connects a source node and a sink node. In a path where edges visit
nodes in some order, the sink node of one edge is also the source node for any subsequent
node. However, if the edges may be traversed in either direction, then they are called
undirected edges. A graph can be conceptualized as a set of balls representing its nodes
with connecting arrows representing its edges (Miller, Koren & Sutton, 2010).

When building graphs from real data, there are several complicated situations (Miller
et al., 2010). Spurs are short, dead-end subpaths diverging from the main path, which is
shown in Figure 3.1A. They are mainly induced by sequencing error toward one end of
a read. In a frayed-rope pattern shown in Figure 3.1B, paths converge and then diverge,
which are induced by repeat sequences. Paths that diverge and then converge as shown
in Figure 3.1C form bubbles. They are induced by sequencing error in the middle of a
read and polymorphism in the genome. Cycles occur when paths converge on them-
selves, which are also induced by repeat elements in the genome.

Greedy Assemblers
Early assemblers were based on the greedy algorithm, such as phrap and TIGR Assem-
bler. The term “greedy” refers to the fact that the decisions made by the algorithm opti-
mize a local objective function (Pop, 2009), which means the assembler always joins the
reads that overlap best and end until no more reads or contigs can be joined. The scoring
function for “overlap best” commonly measures the number of matches in the overlap
and level of identity (percentage of base pairs shared by the two reads) between the reads
within the overlapping region (Pop, 2009). As an optimization, the greedy algorithm may
utilize just one overlap for each read end and then may discard each overlap immedi-
ately after the highest-scoring reads were recruited to extend the contig. Consequently,
it can get stuck at local maxima if the current contig is extended by reads that may have
helped other contig extensions (Miller et al., 2010).

Since overlaps induced by repetitive sequences may score higher than true overlaps,
the greedy algorithm needs mechanisms to avoid the incorporation of false-positive

�

� �

�

54 I Bioinformatics Analysis of Genomic Sequences

(a)

(b)

(c)

Figure 3.1 Several different types of
graph complications are shown
using balls representing nodes with
connecting arrows representing
edges: (1) spur, (2) frayed-rope, and
(3) bubble (adopted from
Rodríguez-Ezpeleta et al., 2012).

overlaps into contigs (Rodríguez-Ezpeleta et al., 2012). Otherwise, the assembler may
join unrelated reads to either side of a repeat to create mis-assemblies. The greedy algo-
rithm is not widely used any more (Nagarajan & Pop, 2013) due to the inherently local
assembly process that does not use global information (such as mate-pair reads) to
resolve repeats.

SSAKE SSAKE (Warren et al., 2007) was the first short-read assembler, which was
designed for unpaired short reads of uniform length (Miller et al., 2010). It is written
in PERL and runs on Linux. The algorithm assembles 25–300 bp reads from viral,
bacterial, and fungal genomes (http://www.bcgsc.ca/platform/bioinfo/software/ssake).
It is also the core of many other assemblers (such as VCAKE, QSRA, and SHARCGS).

SSAKE stands for short sequence assembly by progressive K-mer search and 3’ read
extension program, populating a hash table that is keyed by unique reads with values
representing the number of occurrences in a single multi-fasta file (Warren et al., 2007).
The sequence reads are sorted by decreasing values to display coverage and identify
reads that may contain errors. The first 11 of the 5’ end bases are memorized in a prefix
tree, and each unassembled read (r) is utilized to start an assembly. SSAKE uses the
prefix tree to progressively perform perfect matches of each possible k-mer with another
read (r’). Once perfect match is determined, r is extended by the 3’ end bases of r’, and r’
is discarded from the hash table and the prefix tree. The output files are one log file with
run information, one fasta file containing contig sequences, and one fasta file containing
the unassembled reads.

One way to avoid mis-assemblies is to terminate the extension when a k-mer matches
the 5’ end bases of more than one read (–s 1), which could cause shorter contigs. The
other way to control the stringency is to terminate the extension when a k-mer length
is shorter than a user-set minimum word length (m).

�

� �

�

3 NGS Technologies and the Assembly of Short Reads into Reference Genome Sequences 55

VCAKE VCAKE (Jeck et al., 2007) (verified consensus assembly by K-mer extension) is
another iterative extension algorithm. Its assembly process is nearly the same as SSAKE,
where sequence reads are searched from a hash table. However, compared to SSAKE,
the main improvement of VCAKE is its ability to process imperfect matches during
contig extension. Specifically, when extending contigs, each read offers a “vote” for the
first overhanging base called by the contig (Jeck et al., 2007). The votes are summed, and
the base that exceeds a threshold (–c, which is the ratio of the most represented base
required to extend assembly) is used to extend the contig. In this way, error-containing
reads could be used for extension by adding one base at a time until no matches are
found or the contig is stopped because of assumed repeat sequences.

QSRA QSRA (Bryant, Wong & Mockler, 2009) (quality-value-guided short read assem-
bler) builds directly upon the VCAKE algorithm, where voting method is utilized to
extend contigs one base at a time. To lengthen contigs past low coverage regions, one
of the main improvements of QSRA is the usage of quality values in the contig exten-
sion. As long as the bases match the contig suffix or reach (or exceed) a minimum
user-defined q-value (–m) at the overhanging region, the current assembly process con-
tinues. Another improvement of QSRA is the availability of suspect repeat sequences in
a separate fasta file for repeat-related analysis.

Overlap-Layout-Consensus (OLC) Assemblers
Unlike the inherently local assembly in greedy algorithm, OLC assemblers use three
stages to enable a global analysis of the relationships between the reads (Pop, 2009). The
first two stages are to compute all-against-all comparison of reads and then construct
an overlap graph. The overlap graph contains each read as a node, and an edge connects
two reads that overlap each other. Overlaps are only taken into consideration between
reads when they share a segment of sequences of length k, which is referred to as a
k-mer. Therefore, the choice of k-mer minimum overlap length and percentage of iden-
tity required for an overlap are key factors that would affect discovery of overlaps and
construction of graphs (Miller et al., 2010). Larger parameter values increase accuracy
of contigs but decrease the length. After these two steps, the optimized overlap graph
produces an approximate read layout.

The last step is to determine the precise layout and then the consensus sequence by
computing multiple sequence alignment (MSA) among the reads, which correspond to
a single path traversing each node in the graph at most once. Full information of each
read needs to be loaded into memory for base calls, but it can run in parallel, and be
partitioned by contigs (Miller et al., 2010).

Celera Assembler The Celera Assembler (Myers et al., 2000) was originally a Sanger OLC
assembler, and then was modified for combinations of Sanger and 454 data in a pipeline
called CABOG (Celera Assembler with the Best Overlap Graph) (Miller et al., 2008),
which is robust to homopolymer run length uncertainty, heterogeneous read lengths,
and high read coverage.

In order to exploit the increased expected read coverage, CABOG performs an
overlap-based trimming step first. After that, it uses exact-match seeds (k-mer) to
detect candidate overlapping reads quickly. To avoid highly repetitive k-mers, it
precomputes a threshold M (k-mer with more than M occurrences accounts for at

�

� �

�

56 I Bioinformatics Analysis of Genomic Sequences

most 1% of all k-mer occurrences) for determining overlap seeds range. After this
“anchors and overlaps” stage, directed overlaps with each overlap region spanning at
least 40 bases at two-read ends and 94% or higher sequence identity are output for
the next stage. Based on overlapping information, the best overlapping graph (BOG)
is built by loading the best edge (i.e., best overlap alignment) connecting each node
(read). Furthermore, any cycle is eliminated by random deletion of one edge. Then
CABOG sorts the reads by their scores, which are counted by the number of other
reads reachable from them in BOG paths. Starting from higher-scoring reads, unitigs
(uniquely assemblable contigs) are constructed by following paths until reaching a path
end or a read already being used for building some unitigs. On paths with a single
intersection, CABOG always chooses the longer one first, while multiple intersections
would lead to shorter unitigs. By incorporating paired-end constraints, contigs and
scaffolds are created from unitigs, and, finally, CABOG derives consensus sequences
through computing multiple sequence alignments from scaffold layouts and read
sequences. One strength of Celera Assembler is its ability to handle various types of
data, including those from sequencing by synthesis platforms (i.e., Illumina HiSeq) and
single-module sequencing platforms (i.e., Pacific Biosciences) (Berlin et al., 2015).

Edena Most OLC assemblers focus on assembly on Sanger and 454 data, while Edena
(Hernandez et al., 2008) (Exact DE Novo Assembler) applies the OLC approach to
homogeneous-length short reads from the SOLiD and Illumina platforms. In order to
improve assembly of such short reads, Edena employs two features: exact matching,
and detection of spurious reads. First, it removes duplicate reads and finds all overlaps
of a minimum length to build an overlap graph; and then the graph is cleaned by the
removal of redundant overlaps and spurious edges and the resolution of ambiguity.
Finally, all unambiguous paths in the graph are output as assembled contigs.

De Bruijn Graph (DBG) Approach
The DBG approach is also known as the k-mer graph approach or Eulerian path
approach (Pevzner, Tang & Waterman, 2001). DBG-based assemblers are widely
applied to short reads from the SOLiD and Illumina platforms. A whole set of programs
have been developed using this approach, including Velvet (Zerbino & Birney, 2008),
ABySS (Simpson et al., 2009), SOAPdenovo (Li et al., 2010; Luo et al., 2012), and
ALLPATHS (Butler et al., 2008; Gnerre et al., 2011; Maccallum et al., 2009). Unlike the
OLC approach, the DBG approach does not require all-against-all overlap search, and
consequently, does not need to store reads or their overlaps, which makes it memory
efficient for small genome assembly. Still, for large genomes, a massive amount of
memory is still necessary for containing actual sequence and the graph.

During the construction of DBG, the reads are chopped up into a set of k-mers. Similar
to the OLC approach, k-mers are represented as the nodes in the graph, and the edges
connect the adjacent k-mers whose overlaps are exactly k − 1 letters (for instance, the
4-mers ATCG and TCGA share exactly three letters, “TCG”). And then, all the k-mers
are stored in a hash table for graph construction. Hence, the assembly process is simply
changed to finding a path that visits each node in the graph at most once.

In most cases, the DBG assemblers attempt to construct contigs originating from
unambiguous and unbranching paths in the graph. Unfortunately, three factors in the
real sequencing data complicate this process (Miller et al., 2010). The first is that DNA

�

� �

�

3 NGS Technologies and the Assembly of Short Reads into Reference Genome Sequences 57

is double-stranded. The forward sequence of a read may overlap the forward sequence
or reverse complement sequence of another read. Currently, different implementations
have been developed to handle this forward–reverse overlap. The second problem is
sequencing error. However, many errors are easily recognized during graph construc-
tion. For example, errors in the middle of a read lead to bubbles in the path, and errors
at the end of a read usually result in a single k-mer in the graph. Some assemblers
preprocess the reads to remove errors by correcting erroneous bases or discard
error-containing reads. Some discard those paths that are not supported by a high
number of k-mers. Others convert paths to sequences for alignment algorithms and
then collapse those nearly identical paths. The last factor is the repeats in the genome.
Repeat regions always create branches in the paths, which means paths converge in the
repeats and then diverge. Successful assembly usually collapses the repeats to avoid
mis-assembly. On the other hand, mate-pair information is always used to resolve
repeat-induced complications.

ABySS ABySS (Simpson et al., 2009) (Assembly By Short Sequences) was originally
developed for assembly of large data sets from individual human genome sequencing.
In order to achieve that goal, ABySS applies a distributed representation of a de Bruijn
graph, which allows parallel computation of the algorithm across a set of computers to
utilize their combined large memory. It is implemented in C++, and the MPI (Message
Passing Interface) protocol is employed for communication between nodes (an object
on a network). The assembly process is mainly performed in two steps. First, paired-end
information is applied to contigs extension until no unambiguous bases could be added
or the path goes to a blunt end because of low coverage. Paired-end information is
then applied to resolving ambiguities and merging contigs. Here, the usage of ABySS on
Linux will be briefly discussed, including installation of the program, basic commands
for assembly process, and simple analysis of assembly results.

The installation of ABySS requires several dependencies: Boost, Open MPI, and
sparsehash. With all these libraries installed, the program can be downloaded (http://
www.bcgsc.ca/platform/bioinfo/software/abyss). The next step is to compile this
program from source (http://seqanswers.com/wiki/ABySS).

Compiling ABySS from Source
The following command line should compile and install ABySS:

./configure && make && make install

To install ABySS in a specified directory (i.e., ABySS), type:

./configure --prefix=PATH_TO_ABySS

As described earlier, ABySS uses the MPI protocol, so if you wish to build the parallel
assembler with MPI support, type:

./configure --with-mpi=PATH_TO_openmpi

The Google sparsehash library should be used for internal hash table construction to
reduce memory usage:

./configure --CPPFLAGS=-IPATH_TO_sparsehash/include

�

� �

�

58 I Bioinformatics Analysis of Genomic Sequences

The default maximum k-mer size is 64 and may be decreased to reduce memory usage
or increased during compiling. The value must be a multiple of 32 (i.e., 32, 64, 96, etc.):
./configure --enable-maxk=96

If so desired by the users, the preceding command lines can be combined into one
command for compiling. To run ABySS, its executables should be found in the PATH:
PATH=$PATH:PATH_TO_ABySS/bin

Assembling Reads from Different Libraries
After compiling, ABySS can be utilized to assemble reads from different libraries. For

example, we are going to assemble six data sets with three different fragment libraries,
including two mate-pair reads, two paired-end reads, and two single-end reads.
Library pe180 has reads in two files, “pe180_1.fa” and “pe180_2.fa”
Library pe250 has reads in two files, “pe250_1.fa” and “pe250_2.fa”
Library mp3k has reads in two files, “mp3k_1.fa” and “mp3k_2.fa”
Library mp5k has reads in two files, “mp5k_1.fa” and “mp5k_2.fa”
Single-end reads are stored in two files, “se1.fa” and “se2.fa”

To assemble this dataset into contigs in a file named “human-contigs.fa” and scaffolds
in a file named “human-scaffolds.fa”, run the command:
abyss-pe -C PATH_TO_RESULTS k=64 name=human lib=’pe180

pe250’ mp=’mp3k mp5k’ \
pe180=’pe180_1.fa pe180_2.fa’ pe250=’pe250_1.fa

pe250_2.fa’ \
mp3k=’mp3k_1.fa mp3k_2.fa’ mp5k=’mp5k_1.fa mp5k_2.fa’

se=’se1.fa se2.fa’

Where –C defines the specified directory for storing results; k is the k-mer length;
name is the prefix for all the filenames in the results directory; lib is for fragment library;
and mp is for mate-pair library. However, mate-pair libraries are used only for scaffold-
ing (join disconnected contigs together), and they do not contribute to building contigs,
per se.

Optimizing k-mer Length
In order to compute the best value for the parameter k, run multiple assemblies and

then check the assembly statistics to determine the best k-mer length. The following
command example would assemble every k-mer length from 40 to 70:
export k
for k in {40..70}; do
mkdir k$k
abyss-pe –C k$k name=human lib=’pe180’ pe180=’pe180_1.fa

pe180_2.fa’
done
abyss-fac k∗/human-contigs.fa

mkdir is used to create new directory for storing results, corresponding to param-
eter –C . “abyss-fac” is used for analysis of assembly results, which can help determine
the best k-mer value. The results of “abyss-fac” will be shown in the file named
“human-stats.csv”.

�

� �

�

3 NGS Technologies and the Assembly of Short Reads into Reference Genome Sequences 59

ALLPATHS ALLPATHS is a DBG assembler that can generate high-quality assemblies
from short reads. It was originally published as an assembler based on simulated data
(Butler et al., 2008), and then revised for real data (Maccallum et al., 2009).

First, ALLPATHS removes all read pairs containing 90% or more “A” bases, which
are nearly always artifacts of the Illumina sequencing process. It then begins an
error-correcting preprocessor by identifying putatively correct (or “trusted”) k-mers
in the reads based on high frequency and high quality (where each base must be
confirmed by a minimum number of base calls with a quality score above a threshold).
With lower-quality reads, they could be kept under two circumstances—(1) where up
to two base substitutions to low-quality base calls make its k-mers trusted, or (2) if
the read is essential for building a path. Another preprocessor step is called unipath
creation. This step starts with the calculation of perfect read overlaps seeded by k-mers.
An index is assigned to each k-mer, and a compact searchable database is built for
constructing unipaths.

After the initial unipath creation, those with branching paths shorter than 20 k-mers,
which are always caused by read errors, are removed to provide longer alternative
branches. This step is also called “unipath graph shaving”. Now, with the unipaths and
read pairs in hand, those unipaths around which genome assembly will be constructed
are picked as “seeds” (the perfect seeds being long and of low copy number). The
genomic region containing the seed and extending 10 KB on both sides is called the
“neighborhood” of the seed. The goal is to assemble the neighborhood with help of
unipaths and paired-end reads.

In order to resolve repeat regions, ALLPATHS assembles the locally non-repetitive
sequences first. This step runs in parallel. Once it ends, the gluing process is applied to
iteratively joining together the output graphs that have long end-to-end overlaps. Next,
a series of editing steps are carried out to remove spurs and ambiguous regions to yield
the final assembly. Those unipaths that are not represented in the assembly are extended
unambiguously where possible and then added to the final assembly results.

ALLPATHS-LG (Gnerre et al., 2011) is an updated version of ALLPATHS, which is
designed for large genomes from massively parallel sequence data. It requires construc-
tion of two different paired reads: a fragment library and a jumping library. The fragment
library has a short insert size that is less than twice the read length, so that the two
paired reads may overlap to produce a single longer “read” (i.e., read length is 100 bp and
insert size is 180 bp, then these two reads have an overlap of 20 bp). The jumping library
generates long-range mate-pair reads. This new version also makes extensive improve-
ments in handling repetitive sequences and low coverage region, error-correction,
and memory usage. Here, we will describe the detailed usage of the ALLPATHS-LG
program.

Requirements for ALLPATHS-LG
ALLPATHS has a number of requirements, including:

1) A minimum of two paired-end libraries as described earlier: one fragment library
whose insert size is less than twice the read length, and one jumping library.

2) Memory peak usage is around 1.7 bytes per read base. To compile and run
ALLPATHS-LG on a Linux/UNIX system, a minimum of 32 GB memory for small
genomes and 512 GB memory for large genomes are suggested.

3) The g++ compiler from GCC (https://gcc.gnu.org/).

�

� �

�

60 I Bioinformatics Analysis of Genomic Sequences

4) The GMP library (https://gmplib.org/) compiled with C++ interface, which may
already be included in GCC.

5) The Picard command-line utilities for SAM file manipulation (http://broadinstitute
.github.io/picard/).

ALLPATHS Installation
The ALLPATHS-LG source code is available for download (http://www.broadinstitute

.org/software/allpaths-lg/blog/?page_id=12). After the latest version of the program is
downloaded, it can be decompressed using tar. Then, it can simply be compiled with
./configure and make, and, at the same time, the --prefix parameter can be
used to define the installation directory. All the source code is in the unpacked directory
called “allpathslg- < revision>”.

tar xzf allpathslg-<revision>.tar
cd allpathslg-<revision>
./configure --prefix=PATH_TO_INSTALLATION_DIRECTORY
make
make install

To run ALLPATHS-LG, its executables should be added to the PATH .

ALLPATHS-LG Pipeline Directory Structure
The assembly pipeline uses the following directory structure to store its inputs and

outputs. If the directory does not exist, it can be automatically created by the pipeline.
The names shown here are only for descriptions of the structure, and they are deter-
mined by the actual command line.

“PRE / REFERENCE / DATA / RUN / ASSEMBLIES / SUBDIR”
The “PRE” directory is the root for the assemblies, and there could be a number of

“REFERENCE” directories in it. The “REFERENCE” directory is also called organism
directory; in other words, it is used to separate assembly projects by organism. The
“DATA” directory consists of the data whose formats are changed by the ALLPATHS-LG
pipeline. The “RUN” directory contains intermediate files generated from the read data
in preparation for the final assembly process and intermediate files used for evaluation.
The “ASSEMBLIES” directory is the actual assembly directory, and its name is fixed.
The “SUBDIR” directory (its name is “test”, and it is also fixed) is where the localized
assembly is generated.

Prepare the Data
Before assembly, original data (BAM, FASTQ, FASTA, or FASTB) needs to be pre-

pared and imported into the ALLPATHS-LG pipeline. This step is completed by adding
two comma-separated-values (csv) metadata files to describe the locations and library
information.

“in_groups.csv”
“in_libs.csv”

Each line in “in_groups.csv” provides the following information:

group_name: a unique name for the data set
library_name: the library to which the data set belongs

�

� �

�

3 NGS Technologies and the Assembly of Short Reads into Reference Genome Sequences 61

file_name: the absolute path to the data set. Wildcards “*” and “?” are accepted for
specifying multiple files (i.e., two paired files)

Here is one example for the “in_groups.csv” file:

group_name, library_name, file_name
1, paired-end, /illumina/reads1*.fastq
2, mate-pair, /illumina/reads2*.fastq

Each line in “in_libs.csv” provides the following information:

library_name: matches the same field in “in_groups.csv”
project_name: a string naming the project
organism_name: the name of the organism
type: fragment, jumping, etc.; field not necessary
paired: “0” for unpaired reads and “1” for paired reads
frag_size: estimated average fragment size
frag_stddev : estimated fragment size standard deviation
insert_size: estimated jumping average insert size
insert_stddev : estimated jumping insert size standard deviation
read_orientation: inward for fragment reads and fosmid jumping reads, outward

for jumping reads
genomic_start: index of the first genomic base in the reads; if non-zero, trim all the

bases before genomic_start
genomic_end: index of the last genomic base in the reads; if non-zero, trim all bases

after genomic_end; if both genomic_start and genomic_end are blank or
zero, keep all bases

Here is an example for the “in_libs.csv” file (Note: There should be three lines for this
example, in which “…” means “to be continued”.):

library_name,project_name,organism_name,type,paired,
frag_size,...

paired-end,genome,human,fragment,1,180,...
mate-pair,genome,human,jumping,1, ,...
frag_stddev,insert_size,insert_stddev,read_orientation,...
20, , ,inward,...

,2000,200,outward,...
genomic_start,genomic_end

,
,

With these two description files, a Perl script is required to convert the original reads.
“DATA_DIR” is the location of the DATA directory where the converted reads are
stored. “PICARD_TOOLS_DIR” is the path to the Picard tools for reads conversion,
if the data is in BAM format. “PLOIDY” indicates the genome, with “1” for haploid
genomes and “2” for diploid genomes. Here is an example:

PrepareAllpathsInput.pl
DATA_DIR=PATH_TO_DATA_DIRECTORY
IN_GROUPS_CSV=PATH_TO_<in_groups.csv>

�

� �

�

62 I Bioinformatics Analysis of Genomic Sequences

IN_LIBS_CSV=PATH_TO_<in_libs.csv>
PLOIDY=<1 or 2>
PICARD_TOOLS_DIR=PATH_TO_<Picard_tools>
HOSTS=<list of hosts to be used in parallel>

After a successful run of “PrepareAllpathsInput.pl”, the necessary input files are ready
for the assembly stage.

Assembling
There are a series of modules in ALLPATHS-LG. Each module performs one step of

the assembly process. However, a single module called RunAllpathsLG controls the
entire pipeline, assigning different modules to run efficiently at the proper time. This
step specifically names the directories that were described in the directory structure
part. Here is a basic example:

RunAllpathsLG
PRE=allpaths
REFERENCE_NAME=reference
DATA_SUBDIR=data
RUN=run

These command lines will create (if it does not exist) the following directory structure:
“allpaths / reference / data / run / ASSEMBLIES / test”.
Assembly Results
In the preceding example, the assembly results are in the “test” directory. Both files

(“final.assembly.fasta” and “final.assembly.efasta”) are scaffold results, where the Ns rep-
resent the gaps between contigs. In the fasta file, an ambiguous base is represented by
an N within each contig. For example, a C/G SNP is shown as “ATCNTGC”. The efasta
is “enhanced” fasta, which is generated and used by ALLPATHS-LG. In the efasta file,
ambiguity is represented by listing all the possible bases within a pair of braces. For
example, a C/G SNP is shown as “ATC{C,G}TGC”. The options in the braces are ordered
by decreasing likelihood. Hence, the fasta file can be easily generated from the efasta file
by picking the first option for every ambiguity. Moreover, statistics for assembly results
could be found in the “assembly.report” file.

PacBio Long Reads and Their Applications
Despite many advances in genome assembly programs, generation of complete and
accurate assembly of genomes using only short reads data is still difficult, largely due
to repetitive sequences (Alkan et al., 2011; Kingsford, Schatz & Pop, 2010). Repetitive
sequences can be properly assembled only when the read length is long enough to span
the whole repetitive sequences or the read pair is uniquely anchored on both sides of
the repeats. In 2011, Pacific Biosciences released their commercial “third-generation”
sequencing instrument PacBio RS (Eid et al., 2009). According to the information
on the PacBio website (http://www.pacb.com/smrt-science/smrt-sequencing/read-
lengths/), the average read length could reach 10 KB. Unfortunately, the long reads
also come with relatively low nucleotide accuracy (∼85%), compared with the 98%
accuracy from short reads. However, short reads can be utilized to correct the long
reads, allowing potential use of the long reads for the assembly.

�

� �

�

3 NGS Technologies and the Assembly of Short Reads into Reference Genome Sequences 63

Hybrid Assembly Short reads can be used in combination with long reads to improve
the completeness and correctness of an assembly, making it a hybrid assembly strategy.
Several programs have been developed to take advantage of both short and long reads.
A PBcR (PacBio corrected Reads) algorithm (Koren et al., 2012), implemented in the
Celera Assembler, trims and corrects individual long reads by simultaneously mapping
high-identity short reads to them and computing a highly accurate consensus sequence
for each of them. This “hybrid” correction could achieve >99.9% base-call accuracy, and
then the corrected reads may be de novo assembled or co-assembled with other data
types using OLC assembly techniques. This method allows for the assembly of large
genomes, but requires a large amount of running time for the correction process.

Cerulean (Deshpande et al., 2013), unlike other hybrid assembly programs, does not
use the short reads directly. Instead, it starts with a graph from ABySS (Simpson et al.,
2009) and extends contigs by resolving bubbles in the graph using PacBio long reads.
The advantages of this method are that it requires minimal computational resources,
and results in a highly accurate assembly. But the efficiency of cerulean when applied to
large genomes remains to be verified.

ALLPATHS-LG (Gnerre et al., 2011; Ribeiro et al., 2012) is another program that can
deal with PacBio long reads in combination with short reads from Illumina sequencing
platforms. As described in the preceding section, it requires one fragment library and
also a jumping library. These three different data types, whose accuracy, coverage, and
range of repeat resolution are compensatory, thus enable satisfying assembly results.
However, good performance requires much more efforts and money to construct the
libraries and larger amounts of time to compute the data, which limits its application to
large genomes. The assembly algorithm is implemented as parts of ALLPATHS-LG and
is automatically invoked when PacBio data are provided as input to the algorithm.

Here is an example of descriptions for “in_groups.csv” and “in_libs.csv” when PacBio
data is utilized for assembly:

For “in_groups.csv”:
group_name, library_name, file_name
1, paired-end, /illumina/reads1*.fastq
2, mate-pair, /illumina/reads2*.fastq
3, pacbio, /pacbio/reads.fastq

For “in_libs.csv” (Note: There should be four lines for this example, in which “…”
means “to be continued”.):
library_name,project_name,organism_name,type,paired,

frag_size,...
paired-end,genome,human,fragment,1,180,...
mate-pair,genome,human,jumping,1, ,...
pacbio,genome,human,long,0, ,...
frag_stddev,insert_size,insert_stddev,read_orientation,...
20, , ,inward,...

,2000,200,outward,...
, , , ,...

genomic_start,genomic_end,
,
,
,

�

� �

�

64 I Bioinformatics Analysis of Genomic Sequences

PacBio-only Assembly In order to avoid using different sequencing libraries and multiple
sequencing platforms, a homogeneous workflow requiring only PacBio reads is favored
to increase efficiency. The Hierarchical Genome Assembly Process (HGAP) (Chin et al.,
2013) was developed for high-quality de novo microbial genome assemblies using only
PacBio long reads. This method uses the longest reads as seeds to recruit all the other
reads to map to them, resulting in long and highly accurate preassembled reads. Next,
quality trimming of preassembled reads is performed to improve the ability to detect
sequence overlaps. OLC assemblers are then used for de novo assembly of multi-KB
trimmed reads. To significantly reduce the remaining errors in the draft assembly, a
quality-aware consensus algorithm implemented in HGAP is computed to derive a
highly accurate consensus for the final assembly (99.999% accuracy). Undoubtedly,
this method is successful with such high completeness and correctness. However,
overlapping steps still consume large amounts of time, making it less computationally
efficient for large genomes.

Scaffolding

The output of most assemblers is a large collection of fragmented contigs. However,
downstream analyses such as analyzing gene synteny and carrying out comparative or
functional genomics rely heavily on an assembly with good continuity (Hunt et al., 2014).
Hence, it is necessary to join disconnected contigs into continuous genome sequences in
the correct orientation and order. This process is also called scaffolding, and it includes
contig orientation, contig ordering, and contig distancing (Barton & Barton, 2012).

Contig Orientation Each strand of DNA could be sequenced to generate reads, and there-
fore the constructed contigs from assemblers could represent either strand. When scaf-
folding, contig orientation needs to be performed to keep contigs in the same direction,
which requires reverse complementing sequences where necessary (Barton & Barton,
2012).

Contig Ordering Contigs are ordered within each scaffold, reflecting their spatial place-
ment in the true genome sequences (Barton & Barton, 2012).

Contig Distancing Given the correct orientation and order, the distance is determined by
putting certain numbers of “Ns”, which represent unknown nucleotides, between con-
tigs. The size of each inter-contig gap corresponds to the number of Ns between them.
The total length of known and unknown regions is an estimate of the complete genome
size (Barton & Barton, 2012).

Most commonly, the process of scaffolding is achieved from mate-pair information.
Two contigs may be scaffolded together if one end of a mate-pair is assembled within
the first contig, and the second contig contains the other end of the mate-pair. And the
insert size of the mate-pair library provides an estimate for how far apart each read
should appear in the final assembly (Paszkiewicz and Studholme, 2010). Furthermore,
scaffolding information can also be obtained from whole-genome mapping data (Pop,
2009), which can be achieved from the program SOMA (Nagarajan, Read & Pop, 2008).

Several assemblers also contain a scaffolding module, such as Celera Assembler
(Myers et al., 2000), ABySS (Simpson et al., 2009), SOAPdenovo (Li et al., 2010; Luo

�

� �

�

3 NGS Technologies and the Assembly of Short Reads into Reference Genome Sequences 65

et al., 2012), and ALLPATHS-LG (Gnerre et al., 2011). Stand-alone scaffolders are also
available, such as GRASS (Gritsenko et al., 2012), Scaffolder (Barton & Barton, 2012),
SSPACE (Boetzer et al., 2011), and SOPRA (Dayarian, Michael & Sengupta, 2010). Due
to genomic complexity and missing data, scaffolding may finally produce a collection
of scaffolds instead of a completed sequence, but a wise choice of scaffolder still can
yield a decent scaffolding result. A comprehensive evaluation of scaffolding tools was
performed to test their overall performance (Hunt et al., 2014). Scaffolding tools vary
in their ease of use, speed, and the number of correct and missed joins between contigs.
The quality of the results depends highly on the choice of mapping tools and genome
complexity. In general, SGA’s scaffolding module (Simpson & Durbin, 2012), SOPRA
(Dayarian et al., 2010), and SSPACE (Boetzer et al., 2011) perform better on the tested
data sets (Hunt et al., 2014).

Here, we introduce SSPACE and its detailed usage for scaffolding. SSPACE starts with
the longest contig to build the first scaffold and continues to make joins with the majority
of read pairs supporting it (Hunt et al., 2014). It uses Bowtie (Langmead et al., 2009)
to map all the reads to the contigs, and, if desired, unmapped reads are used for contig
extension. It requires limited computation resources and is able to handle large genomes
in a reasonable amount of time (Boetzer et al., 2011).

To apply for the basic version of SSPACE (free for academics), one needs to register on
its website (http://www.baseclear.com/genomics/bioinformatics/basetools/SSPACE).
Then, a library file containing information about each library needs to be established.
All the columns are separated by spaces. Here is an example:

lib1 bowtie file1_1.fasta file1_2.fasta 200 0.25 FR
lib2 bowtie file2_1.fastq file2_2.fastq 2000 0.25 RF
unpaired bwa unpaired_reads.fasta

Column 1 Name of the library. Libraries of the same name are considered to possess
the same insert size and deviation (columns 5 and 6). Moreover, they are used for the
same scaffolding iteration. Libraries should be sorted by insert size (column 5). The first
library is always scaffolded first, followed by the next libraries. For unpaired reads, the
library name is “unpaired”, as shown in the example.

Column 2 Name of the read aligner (bowtie, bwa, or bwasw).

Columns 3 and 4 Fasta or fastq files for datasets. For paired reads, the first read file is in
column 3, and the second read file in column 4. They are always on the same line. For
unpaired reads, only column 3 is required.

Columns 5 and 6 Column 5 represents the mean distance between paired reads, which is
200 for lib1 in the example. Column 6 represents the minimum allowed deviation of the
mean distance, which is 0.25 for lib1. This means the distance for paired reads in lib1 is
between 150 and 250.

Column 7 Column 7 indicates the orientation of paired reads. F means forward, and R
means reverse. Usually for the case of mate-pair data, it is RF .

�

� �

�

66 I Bioinformatics Analysis of Genomic Sequences

Before running SSPACE, its executables should be added to the PATH . There is one
contig extension option (–x) whose values indicate whether to do extension using
unmapped reads. Based on this option, different parameters are used in the commands.

Here is one example for scaffolding contigs without extending them:

perl SSPACE_Standard_v3.0.pl –l library_file –s contig_file
–k 5 –a 0.7 –x 0 –b scaffolds_no_extension

–l is followed by the library file, and –s is followed by contig sequences file. To
run SSPACE without extension, –x should be set to 0. –k and –a are parameters for
controlling the scaffolding process. –k is the minimum number of read pairs (links)
to compute scaffolds, and –a is the maximum link ratio between the two best contig
pairs. Their default values are 5 and 0.7, which do not have to be listed if not reset. The
final results are generated in the folder named “scaffolds_no_extension”. The file “scaf-
folds_no_extension.summaryfile.txt” contains the statistics for the final scaffolds. The
file “scaffolds_no_extension.final.scaffolds.fasta” contains the resulting scaffolds.

To run SSPACE with contig extension, –x should be set to 1. –k and –a use default
values. Here, the minimal overlap of the reads with the contig during overhang consen-
sus build-up is at least 32 bases (–m). The minimum number of reads required to extend
a contig is 20 (–o). These two numbers are also default values for SSPACE version 3.0.
The file “scaffolds_extension.summary.txt” in the folder “scaffolds_extension” contains
the information on extended contigs. The sequences of the extended contigs are kept in
the “intermediate_results” folder.

perl SSPACE_Standard_v3.0.pl –l library_file –s contig_file
–x 1 –m 32 –o 20 –b scaffolds_extension

Considering that PacBio long reads are playing an increasingly important role in scaf-
folding genome assemblies in a cost-effective manner, SSPACE-LongRead (Boetzer and
Pirovano, 2014) was developed to scaffold pre-assembled contigs using long reads as
a backbone. This may enhance the quality of incomplete and inaccurate genomes con-
structed from next-generation sequencing data.

Gap Filling (Gap Closing)

In scaffolds construction, contigs with certain distance relationships are connected with
Ns. The majority of these gaps are composed of repetitive and low-coverage regions,
which may contain essential sequences for the downstream analyses and need to be
filled. The standard strategy to address this problem usually involves the design of spe-
cific primers to undergo target Sanger sequencing at contig ends (Tsai, Otto & Berriman,
2010). Without doubt, this method is expensive, labor intensive, and time consuming.
At present, the gap-filling process can be made easier by using the original read-pair
information (Ekblom and Wolf, 2014) with programs such as IMAGE (Tsai et al., 2010),
GapCloser (a module for SOAPdenovo2) (Luo et al., 2012), FGAP (Piro et al., 2014),
GapFiller (Boetzer and Pirovano, 2012), and PBJelly (English et al., 2012).

IMAGE (Iterative Mapping and Assembly for Gap Elimination) uses Illumina
sequence data to improve draft genome assemblies by aligning paired-reads against
contig ends and performing local assemblies to produce gap-spanning contigs (Tsai

�

� �

�

3 NGS Technologies and the Assembly of Short Reads into Reference Genome Sequences 67

et al., 2010). Similarly, this method also functions in GapCloser and GapFiller. But the
improvement in GapFiller is that it takes into account the estimated gap size prior to
closure and closes the gap only if the size of the sequence insertion corresponds closely
to the estimated size. This will ensure that the local assembly results may reflect the
true genomic situation. It also takes into account the contig edges, which is often a
source of mis-assemblies, and trims them prior to gap filling (Boetzer and Pirovano,
2012). PBJelly was designed for genome finishing using long reads from the Pacific
Biosciences RS platform (English et al., 2012).

Here, we will introduce the detailed usage of GapFiller. It was developed by the same
group as SSPACE. You need to register for downloading the program (free for aca-
demics) (http://www.baseclear.com/genomics/bioinformatics/basetools/gapfiller). The
library information file from SSPACE is also applied to GapFiller. Before running, its exe-
cutables should be added to the PATH . Here is an example of the gap-filling command:
perl GapFiller.pl –l library.txt –s scaffolds.fa –m 29 –o 2

–r 0.7 –d 50 –n 10 –t 10 –T 1 –i 10 –b gapfiller

This command uses the paired reads in the “library.txt” to fill the scaffolds of
“scaffolds.fa”. The –s parameter should be followed by a fasta format file. –m is the
minimum number of overlapping bases of the reads with the edge of the gap. It is
suggested to take a value close to the read length. For example, it is suggested to use
30–35 as the –m value for a library with 36 bp reads. –o is the minimum number of
reads required to extend the edge during gap filling. –r is the minimum base ratio
needed to accept an overhang consensus base. Higher values of these three values lead
to more accurate gap filling. –d is the maximum difference between the estimated gap
size and the number of gap-closed sequences. Extension is stopped if the difference
exceeds 50 bases for this case. –n is the minimum overlap for merging two sequences.
–t is the number of nucleotides to be trimmed from the sequence edges of the gap.
This parameter may discard low-quality and misassembled sequences to ensure correct
overlap and extension. –T indicates the number of threads for reading in the files and
mapping of the reads. –i is the number of iterations used to fill the gaps. GapFiller
keeps using original reads and mapping them against the scaffold gaps until no more
reads are used for gap filling or until the specified number of iterations is reached. –b
gives the name for the output folder. In this case, all the gap-filling results are stored
in the “gapfiller” folder, and the gapclosed sequences are in “gapfiller.gapfilled.final.fa”,
with the statistics information in “gapfiller.summaryfile.final.txt”. The assembly process
in silico is now considered to be finished.

Evaluation of Assembly Quality

Evaluation of assembly quality is of great importance. Considering the large number
of operations and uncertain factors in the assembly processes, this evaluation can be
complex and challenging. It is less difficult for the evaluation of reference assembly
sequences. Since an available reference genome provides a comparable ground truth, we
can assess the quality of a new assembly by simply comparing it to the reference genome.
However, the lack of a reference genome makes the evaluation of de novo assembly a lot
more complicated, and there are still no well-accepted measures to date. Before we get
into the specific evaluation protocols, it should be very helpful to know the potential

�

� �

�

68 I Bioinformatics Analysis of Genomic Sequences

errors that may exist in the assembled sequences. Potential mis-assemblies (Phillippy,
Schatz & Pop, 2008) may include: (1) repeat collapse regions where an assembler incor-
rectly joins distinct repeat copies into a single unit, resulting in increased coverage of the
read density and sometimes generating “orphan” regions; (2) repeat expansion regions
where the addition of copies occurs and the read density drops below normal coverage;
and (3) rearrangement regions where the order of multiple repeat copies shuffles lead-
ing to the misplacement of the unique sequences, in a special case, inversions may occur
when two repeat copies are oppositely oriented. Clearly, most of these mis-assemblies
have always been caused by repeats, and the longer the reads, the fewer the repeats that
cause errors in the assembly process.

The quality of assembled sequences is basically assessed through two indexes: size
statistics and correctness scores. In the case of size statistics, commonly considered
statistical values include maximum contig/scaffold length, minimum contig/scaffold
length, mean contig/scaffold length, genomic coverage, and N50 size. In particular,
the N50 size is the most widely used statistic, which is the minimum size of the
contig/scaffold making the sum of the lengths equal to or greater than 50% of the
entire genome size after sorting all contigs/scaffolds from longest to shortest. The N50
size can be used to compare different programs only if it is measured with the same
combined length value.

The correctness of an assembly is very difficult to measure. Scientists tend to focus on
contiguity and ignore the accuracy. To detect mis-assemblies, one measurement relies
on comparing assemblies with other independently generated data such as finished BAC
sequences (Istrail et al., 2004), mapping data (Nagarajan et al., 2008), transcriptome data
(Zimin et al., 2009), or the genomes of closely related organisms (Gnerre et al., 2009).
Another measurement uses intrinsic consistency to identify mis-assemblies. One case
is the detection of regions with unusual depth of coverage (too high or too low); as we
mentioned earlier in error types, repeat collapse or expansion may cause changes in the
read density.

In addition, some computational technologies provide tools to evaluate assembly
results, including: (1) AMOSvalidat (Phillippy et al., 2008), a tool collected with
several detecting mis-assembly mechanisms; (2) GAV (Choi et al., 2008), an approach
combined with multiple accuracy measures; (3) CGAL (Rahman & Pachter, 2013), a
measurement considering both genome coverage and assembly accuracy with no need
of reference sequences; (4) GAGE (Salzberg et al., 2012), an evaluation of the very latest
large-scale genome assembly algorithms; (5) REAPR (Hunt et al., 2013), an evaluation
tool providing a positional error call metric and identifying potential collapsed repeats;
(6) SuRankCo (Kuhring et al., 2015), a machine learning approach to predict quality
scores and ranking for contigs; and (7) the validation scripts used in Assemblathon
(Bradnam et al., 2013; Earl et al., 2011), which is a competition aiming to improve
methods of genome assembly.

Even though there are so many methods out there evaluating assembly results, they
only aim to display the issues existing in the sequences. Fixing them by sequencing
technologies and varieties of programs is key to acquiring a complete and high-quality
genome sequence as the ultimate resource for further genomic approaches. However, in
our experience, validation using an independent method such as high-density linkage
mapping is quite effective for the assessment of the sequence assembly. The order of the

�

� �

�

3 NGS Technologies and the Assembly of Short Reads into Reference Genome Sequences 69

SNP markers along the linkage map and along the whole-genome reference sequence
should be the same, if the whole genome is assembled correctly.

References

Alkan, C., Sajjadian, S. and Eichler, E.E. (2011) Limitations of next-generation genome
sequence assembly. Nature Methods, 8, 61–65.

Ammar, R., Paton, T.A., Torti, D., Shlien, A. and Bader, G.D. (2015). Long read
nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes.
F1000Research, 4, 17.

Barton, M.D. and Barton, H.A. (2012) Scaffolder – software for manual genome scaffolding.
Source Code for Biology and Medicine, 7, 4.

Berlin, K., Koren, S., Chin, C.-S. et al. (2015) Assembling large genomes with
single-molecule sequencing and locality-sensitive hashing. Nature Biotechnology, 33,
623–630.

Boetzer, M., Henkel, C.V., Jansen, H.J. et al. (2011) Scaffolding pre-assembled contigs using
SSPACE. Bioinformatics, 27, 578–579.

Boetzer, M. and Pirovano, W. (2012) Toward almost closed genomes with GapFiller.
Genome Biology, 13, R56.

Boetzer, M. and Pirovano, W. (2014) SSPACE-LongRead: scaffolding bacterial draft
genomes using long read sequence information. BMC Bioinformatics, 15, 211.

Bolger, A.M., Lohse, M. and Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics, 30, 2114–2120.

Bradnam, K.R., Fass, J.N., Alexandrov, A. et al. (2013) Assemblathon 2: evaluating de novo
methods of genome assembly in three vertebrate species. GigaScience, 2, 10.

Braslavsky, I., Hebert, B., Kartalov, E. and Quake, S.R. (2003) Sequence information can be
obtained from single DNA molecules. Proceedings of the National Academy of Sciences of
the United States of America, 100, 3960–3964.

Bryant, D.W. Jr.,, Wong, W.K. and Mockler, T.C. (2009) QSRA: a quality-value guided
de novo short read assembler. BMC Bioinformatics, 10, 69.

Butler, J., MacCallum, I., Kleber, M. et al. (2008) ALLPATHS: De novo assembly of
whole-genome shotgun microreads. Genome Research, 18, 810–820.

Chin, C.-S., Alexander, D.H., Marks, P. et al. (2013) Nonhybrid, finished microbial genome
assemblies from long-read SMRT sequencing data. Nature Methods, 10, 563–569.

Choi, J.-H., Kim, S., Tang, H. et al. (2008) A machine-learning approach to combined
evidence validation of genome assemblies. Bioinformatics, 24, 744–750.

Dayarian, A., Michael, T. and Sengupta, A. (2010) SOPRA: scaffolding algorithm for paired
reads via statistical optimization. BMC Bioinformatics, 11, 345.

Deshpande, V., Fung, E.K., Pham, S. and Bafna, V. (2013) Cerulean: a hybrid assembly using
high throughput short and long reads, in Algorithms in Bioinformatics (eds A. Darling
and J. Stoye), Springer Berlin, Heidelberg, pp. 349–363.

Doln𝚤k, V. (1999) DNA sequencing by capillary electrophoresis (review). Journal of
Biochemical and Biophysical Methods, 41, 103–119.

Dressman, D., Yan, H., Traverso, G. et al. (2003) Transforming single DNA molecules into
fluorescent magnetic particles for detection and enumeration of genetic variations.

�

� �

�

70 I Bioinformatics Analysis of Genomic Sequences

Proceedings of the National Academy of Sciences of the United States of America, 100,
8817–8822.

Earl, D., Bradnam, K., St. John, J. et al. (2011) Assemblathon 1: a competitive assessment of
de novo short read assembly methods. Genome Research, 21, 2224–2241.

Eid, J., Fehr, A., Gray, J. et al. (2009) Real-time DNA sequencing from single polymerase
molecules. Science, 323, 133–138.

Eisenstein, M. (2012) Oxford nanopore announcement sets sequencing sector abuzz.
Nature Biotechnology, 30, 295–296.

Ekblom, R. and Wolf, J.B. (2014) A field guide to whole-genome sequencing, assembly and
annotation. Evolutionary Applications, 7, 1026–1042.

English, A.C., Richards, S., Han, Y., Wang, M., Vee, V., Qu, J. et al. (2012). Mind the gap:
upgrading genomes with pacific biosciences RS long-read sequencing technology. PLoS
ONE, 7, e47768.

Fedurco, M., Romieu, A., Williams, S. et al. (2006) BTA, a novel reagent for DNA
attachment on glass and efficient generation of solid-phase amplified DNA colonies.
Nucleic Acids Research, 34, e22.

Fox, E.J., Reid-Bayliss, K.S., Emond, M.J. and Loeb, L.A. (2014) Accuracy of next generation
sequencing platforms. Journal of Next Generation, Sequencing & Applications, 1,
1000106.

Gnerre, S., Lander, E.S., Lindblad-Toh, K. and Jaffe, D.B. (2009) Assisted assembly: how to
improve a de novo genome assembly by using related species. Genome Biology,
10, R88.

Gnerre, S., MacCallum, I., Przybylski, D. et al. (2011) High-quality draft assemblies of
mammalian genomes from massively parallel sequence data. Proceedings of the National
Academy of Sciences, 108, 1513–1518.

Gritsenko, A.A., Nijkamp, J.F., Reinders, M.J.T. and de Ridder, D. (2012) GRASS: a generic
algorithm for scaffolding next-generation sequencing assemblies. Bioinformatics, 28,
1429–1437.

Harris, T.D., Buzby, P.R., Babcock, H. et al. (2008) Single-molecule DNA sequencing of a
viral genome. Science, 320, 106–109.

Heo, Y., Wu, X.-L., Chen, D. et al. (2014) BLESS: Bloom filter-based error correction
solution for high-throughput sequencing reads. Bioinformatics, 30, 1354–1362.

Hernandez, D., François, P., Farinelli, L. et al. (2008) De novo bacterial genome sequencing:
Millions of very short reads assembled on a desktop computer. Genome Research, 18,
802–809.

Housby, J.N. and Southern, E.M. (1998) Fidelity of DNA ligation: a novel experimental
approach based on the polymerisation of libraries of oligonucleotides. Nucleic Acids
Research, 26, 4259–4266.

Hunt, M., Kikuchi, T., Sanders, M. et al. (2013) REAPR: a universal tool for genome
assembly evaluation. Genome Biology, 14, R47.

Hunt, M., Newbold, C., Berriman, M. and Otto, T. (2014) A comprehensive evaluation of
assembly scaffolding tools. Genome Biology, 15, R42.

Istrail, S., Sutton, G.G., Florea, L. et al. (2004) Whole-genome shotgun assembly and
comparison of human genome assemblies. Proceedings of the National Academy of
Sciences of the United States of America, 101, 1916–1921.

Jain, M., Fiddes, I.T., Miga, K.H. et al. (2015) Improved data analysis for the MinION
nanopore sequencer. Nature Methods, 12, 351–356.

�

� �

�

3 NGS Technologies and the Assembly of Short Reads into Reference Genome Sequences 71

Jeck, W.R., Reinhardt, J.A., Baltrus, D.A. et al. (2007) Extending assembly of short DNA
sequences to handle error. Bioinformatics, 23, 2942–2944.

Jiang, H., Lei, R., Ding, S.-W. and Zhu, S. (2014) Skewer: a fast and accurate adapter
trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics,
15, 182.

Kelley, D., Schatz, M. and Salzberg, S. (2010) Quake: quality-aware detection and
correction of sequencing errors. Genome Biology, 11, R116.

Kingsford, C., Schatz, M. and Pop, M. (2010) Assembly complexity of prokaryotic genomes
using short reads. BMC Bioinformatics, 11, 21.

Kong, Y. (2011) Btrim: a fast, lightweight adapter and quality trimming program for
next-generation sequencing technologies. Genomics, 98, 152–153.

Koren, S., Schatz, M.C., Walenz, B.P. et al. (2012) Hybrid error correction and de novo
assembly of single-molecule sequencing reads. Nature Biotechnology, 30, 693–700.

Kuhring, M., Dabrowski, P.W., Piro, V.C. et al. (2015) SuRankCo: supervised ranking of
contigs in de novo assemblies. BMC Bioinformatics, 16, 240.

Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. (2009) Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biology, 10, R25.

Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows–Wheeler
transform. Bioinformatics, 25, 1754–1760.

Li, H. and Durbin, R. (2010) Fast and accurate long-read alignment with Burrows–Wheeler
transform. Bioinformatics, 26, 589–595.

Li, R., Zhu, H., Ruan, J. et al. (2010) De novo assembly of human genomes with massively
parallel short read sequencing. Genome Research, 20, 265–272.

Lindgreen, S. (2012) AdapterRemoval: easy cleaning of next-generation sequencing reads.
BMC Research Notes, 5, 337.

Loman, N.J. and Watson, M. (2015) Successful test launch for nanopore sequencing. Nature
Methods, 12, 303–304.

Lunter, G. and Goodson, M. (2011) Stampy: a statistical algorithm for sensitive and fast
mapping of Illumina sequence reads. Genome Research, 21, 936–939.

Luo, R., Liu, B., Xie, Y. et al. (2012) SOAPdenovo2: an empirically improved
memory-efficient short-read de novo assembler. GigaScience, 1, 18.

Maccallum, I., Przybylski, D., Gnerre, S. et al. (2009) ALLPATHS 2: small genomes
assembled accurately and with high continuity from short paired reads. Genome Biology,
10, R103.

Macevicz, S. (1998) DNA sequencing by parallel oligonucleotide extensions. U.S. patent
No. 5,750,341. Washington, DC: U.S. Patent and Trademark Office.

Mardis, E.R. (2011) A decade’s perspective on DNA sequencing technology. Nature, 470,
198–203.

Mardis, E.R. (2013) Next-generation sequencing platforms. Annual Review of Analytical
Chemistry, 6, 287–303.

Margulies, M., Egholm, M., Altman, W.E. et al. (2005) Genome sequencing in
microfabricated high-density picolitre reactors. Nature, 437, 376–380.

Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing
reads. EMBnet Journal, 17, 10–12.

McKernan, K., Blanchard, A., Kotler, L. and Costa, G. (2012) Reagents, methods, and
libraries for bead-based sequencing. U.S. Patent No. 8,329,404. Washington, DC: U.S.
Patent and Trademark Office.

�

� �

�

72 I Bioinformatics Analysis of Genomic Sequences

Metzker, M.L. (2010) Sequencing technologies – the next generation. Nature Reviews
Genetics, 11, 31–46.

Miller, J.R., Delcher, A.L., Koren, S. et al. (2008) Aggressive assembly of pyrosequencing
reads with mates. Bioinformatics, 24, 2818–2824.

Miller, J.R., Koren, S. and Sutton, G. (2010) Assembly algorithms for next-generation
sequencing data. Genomics, 95, 315–327.

Myers, E.W., Sutton, G.G., Delcher, A.L. et al. (2000) A whole-genome assembly of
Drosophila. Science, 287, 2196–2204.

Nagarajan, N. and Pop, M. (2013) Sequence assembly demystified. Nature Reviews Genetics,
14, 157–167.

Nagarajan, N., Read, T.D. and Pop, M. (2008) Scaffolding and validation of bacterial
genome assemblies using optical restriction maps. Bioinformatics, 24, 1229–1235.

Paszkiewicz, K. and Studholme, D.J. (2010) De novo assembly of short sequence reads.
Briefings in Bioinformatics, 11, 457–472.

Patel, R.K. and Jain, M. (2012). NGS QC Toolkit: a toolkit for quality control of next
generation sequencing data. PloS one, 7, e30619.

Pevzner, P.A., Tang, H. and Waterman, M.S. (2001) An Eulerian path approach to
DNA fragment assembly. Proceedings of the National Academy of Sciences,
98, 9748–9753.

Phillippy, A.M., Schatz, M.C. and Pop, M. (2008) Genome assembly forensics: finding the
elusive mis-assembly. Genome Biology, 9, R55.

Piro, V., Faoro, H., Weiss, V. et al. (2014) FGAP: an automated gap closing tool. BMC
Research Notes, 7, 371.

Pop, M. (2009) Genome assembly reborn: recent computational challenges. Briefings in
Bioinformatics, 10, 354–366.

Rahman, A. and Pachter, L. (2013) CGAL: computing genome assembly likelihoods.
Genome Biology, 14, R8.

Rodríguez-Ezpeleta, N., Hackenberg, M. and Aransay, A.M. (2012) Bioinformatics for high
throughput sequencing, Springer, New York.

Ribeiro, F.J., Przybylski, D., Yin, S. et al. (2012) Finished bacterial genomes from shotgun
sequence data. Genome Research, 22, 2270–2277.

Ronaghi, M., Karamohamed, S., Pettersson, B. et al. (1996) Real-time DNA sequencing
using detection of pyrophosphate release. Analytical Biochemistry, 242, 84–89.

Rothberg, J.M., Hinz, W., Rearick, T.M. et al. (2011) An integrated semiconductor device
enabling non-optical genome sequencing. Nature, 475, 348–352.

Salzberg, S.L., Phillippy, A.M., Zimin, A. et al. (2012) GAGE: a critical evaluation of
genome assemblies and assembly algorithms. Genome Research, 22, 557–567.

Sanger, F., Air, G.M., Barrell, B.G. et al. (1977) Nucleotide sequence of bacteriophage
[phi]X174 DNA. Nature, 265, 687–695.

Schmieder, R. and Edwards, R. (2011) Quality control and preprocessing of metagenomic
datasets. Bioinformatics, 27, 863–864.

Shendure, J. and Ji, H. (2008) Next-generation DNA sequencing. Nature Biotechnology, 26,
1135–1145.

Shendure, J., Mitra, R.D., Varma, C. and Church, G.M. (2004) Advanced sequencing
technologies: methods and goals. Nature Reviews Genetics, 5, 335–344.

Shendure, J., Porreca, G.J., Reppas, N.B. et al. (2005) Accurate multiplex polony sequencing
of an evolved bacterial genome. Science, 309, 1728–1732.

�

� �

�

3 NGS Technologies and the Assembly of Short Reads into Reference Genome Sequences 73

Simpson, J.T. and Durbin, R. (2012) Efficient de novo assembly of large genomes using
compressed data structures. Genome Research, 22, 549–556.

Simpson, J.T., Wong, K., Jackman, S.D. et al. (2009) ABySS: a parallel assembler for short
read sequence data. Genome Research, 19, 1117–1123.

Song, L., Florea, L. and Langmead, B. (2014) Lighter: fast and memory-efficient sequencing
error correction without counting. Genome Biology, 15, 509.

Sutton, G.G., White, O., Adams, M.D. et al. (1995) TIGR assembler: a new tool for
assembling large shotgun sequencing projects. Genome Science & Technology, 1, 9–19.

Trivedi, U.H., Cézard, T., Bridgett, S. et al. (2014) Quality control of next-generation
sequencing data without a reference. Frontiers in genetics, 5, 111.

Tsai, I.J., Otto, T.D. and Berriman, M. (2010) Improving draft assemblies by iterative
mapping and assembly of short reads to eliminate gaps. Genome Biology, 11, R41.

Turcatti, G., Romieu, A., Fedurco, M. and Tairi, A.P. (2008) A new class of cleavable
fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA
sequencing by synthesis. Nucleic Acids Research, 36, e25.

Warren, R.L., Sutton, G.G., Jones, S.J.M. and Holt, R.A. (2007) Assembling millions of short
DNA sequences using SSAKE. Bioinformatics, 23, 500–501.

Yang, X., Chockalingam, S.P. and Aluru, S. (2013) A survey of error-correction methods for
next-generation sequencing. Briefings in Bioinformatics, 14, 56–66.

Zerbino, D.R. and Birney, E. (2008) Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Research, 18, 821–829.

Zimin, A.V., Delcher, A.L., Florea, L. et al. (2009) A whole-genome assembly of the
domestic cow. Bos taurus. Genome Biology, 10, R42.

