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1  |  INTRODUC TION

A long-standing dogma in biology is that the ability to withstand 
stress is associated with longer life (Kirkwood & Austad, 2000). This 
is supported by overlap in the genetic bases for these two traits, 
including the roles of molecular chaperones, antioxidants, and genes 
involved in repair of oxidative damage (Landis et al., 2004; Vermeulen 
& Loeschcke, 2007). More direct evidence comes from artificial se-
lection experiments, in which selection for longer life span increases 
resistance to stressors such as starvation, desiccation, ethanol, and 
high temperature (Scannapieco et al., 2009; Service et al., 1985), and 

selection for increased stress resistance (desiccation, starvation, and 
high temperature) also increases longevity (Lind et al., 2017; Pijpe 
et al., 2008; Rose et al., 1992).

The copepod Tigriopus californicus provides a counter example to 
the expected positive relationship between stress tolerance and life 
span. Females are more tolerant than males to a range of stressors 
(Foley et al., 2019; Kelly et al., 2012; Willett, 2010) and also exhibit 
a substantially muted transcriptomic response to oxidative stress (Li 
et al., 2019, 2020). While females might be expected to also have 
longer lives, the first large-scale study of longevity in this species 
(Flanagan et al., 2021) showed that life span under benign conditions 
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Abstract
Long life is standardly assumed to be associated with high stress tolerance. Previous 
work shows that the copepod Tigriopus californicus breaks this rule, with longer life 
span under benign conditions found in males, the sex with lower stress tolerance. 
Here, we extended this previous work, raising animals from the same families in food-
replete conditions until adulthood and then transferring them to food-limited condi-
tions until all animals perished. As in previous work, survivorship under food-replete 
conditions favored males. However, under food deprivation life span strongly favored 
females in all crosses. Compared to benign conditions, average life span under nutri-
tional stress was reduced by 47% in males but only 32% in females. Further, the sex-
specific mitonuclear effects previously found under benign conditions were erased 
under food limited conditions. Results thus demonstrate that sex-specific life span, 
including mitonuclear interactions, are highly dependent on nutritional environment.
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is either equivalent between sexes or longer in males. Further, 
comparisons of two parental lines and their reciprocal F1  hybrids 
revealed sex-specific mitonuclear effects on longevity. Such mito-
nuclear interactions are perhaps unsurprising, given that the two pa-
rental lines have widely divergent mitochondrial haplotypes (20.6%; 
Barreto et al., 2018) and that mitochondrial function is known to in-
volve interactions with over 1000 proteins encoded by the nuclear 
genome (Bar-Yaacov et al., 2012). Because T.  californicus does not 
have sex chromosomes (Alexander et al., 2015; Voordouw & Anholt, 
2002), it offers a simpler system for testing sexually dimorphic mito-
chondrial effects, as asymmetric inheritance of mitochondria is not 
confounded with asymmetric inheritance of sex chromosomes.

Here, we extend previous work (Flanagan et al., 2021) to assess 
sex-specific effects of nutritional stress. By using the same paren-
tal and reciprocal crosses, we test how mitochondrial effects are 
altered by environment. Given that mitochondria are the location 
where dietary nutrients are converted to ATP, mitochondrial effects 
might be expected to highly dependent on nutritional environment. 
In this study, we use an additional clutch of offspring from the same 
families assayed in Flanagan et al. (2021), raising animals under be-
nign conditions until adulthood, and then transferring them to cul-
ture medium without food. In this way, we test how nutritional stress 
impacts sex differences in longevity, including the role of mitochon-
drial effects.

2  |  MATERIAL S AND METHODS

Populations were collected from San Diego, CA (S: 32.75°N, 
117.25°W), and Friday Harbor Laboratories, WA (F: 48.55°N, 
123.01°W). They were kept in a 20°C incubator with a 12h:12h 
light:dark cycle. Isofemale lines from each population were estab-
lished from single ovigerous females and inbred for a minimum of 
ten generations before experiments began. Lines were maintained 
in petri dishes (diameter  ×  height  =  100  mm  ×  15  mm) in natural 
filtered seawater (37 µm) supplemented with a mixture of powdered 
Spirulina (Nutrex Hawaii) and ground Tetramin flakes (Tetra) at a 
concentration of 0.1 g of each food per L.

Tigriopus californicus mature males clasp virgin females using their 
antennae and remain clasped until the females become reproduc-
tively mature (Burton, 1985; Egloff, 1966; Vittor, 1971). Therefore, 
virgin females can be obtained by teasing apart the clasped pair on 
a moist filter paper under a dissecting microscope using fine probes. 
This technique has been tested to be satisfactory with few individ-
uals injured and no impaired brood production during the handling 
procedure (Burton, 1985; Vittor, 1971). As described in Figure 1, 
within-population crosses (FF cross: F female mated with F male, 
and SS cross: S female mated with S male) and reciprocal, between-
population crosses (FS cross: F female mated with S male, and SF 
cross: S female mated with F male) were set up by combining vir-
gin females with mature males from the designated populations. 
Only one female and one male were allowed in one petri dish, and 
they usually form a pair within one day. The culture medium was 

the same as the original population cultures. This experiment used 
the fourth clutch of the crosses generated in Flanagan et al., 2021 
for direct comparisons with the survival and longevity under benign 
conditions. Briefly, males were removed to avoid further harassment 
after the females were released from the pair. New crosses were 
set up to replace the ones whose individuals died or whose females 
were not successfully fertilized. Petri dishes were checked every 
day until the fertilized egg sacs hatched. The offspring from the first 
three egg clutches were collected and assayed under benign con-
ditions (Flanagan et al., 2021), while the offspring from the fourth 
clutch were then counted and transferred to a new petri dish for 
this study. The estimated effect of clutch number on survival was 
minimal during the previous experiment for the first three clutches 
under benign conditions (coxph, z = −1.94, p = .052) (Flanagan et al., 
2021). Further, prior work in T. californicus failed to detect an effect 
of clutch number on the proportion of surviving individuals fourteen 
days after hatching, although later clutches had fewer offspring and 
smaller body size (Powers et al., 2020).

The larvae were fed and rehydrated once every week until 
28 days post-hatching, at which time the females and males could 
be distinguished from the structure of antennae (Egloff, 1966). The 
two sexes were counted and if animals had formed pairs, they were 
separated using fine probes as described above. At day 28 post-
hatching, the food limitation treatment was initiated by transferring 
males and females into separate petri dishes with filtered seawater 
only. We characterize this as a food limitation treatment rather than 
a starvation treatment since the coarsely filtered seawater (37 µm) 
is expected to contain microbes and also support some algal growth. 
To measure survivorship and maximum life span under food limita-
tion, animals were counted every day beginning on day 28 and dead 
individuals were removed until all individuals died.

In total, 15 FF families, 8 FS families, 12 SF families, and 13 SS 
families were used for this study. Survival analysis was conducted 

F I G U R E  1 Crossing design using inbred lines from San Diego, 
CA (SD/S), and Friday Harbor Laboratories, WA (FHL/F). SD nuclear 
and mitochondrial (mt) genomes are indicated in black, and FHL 
nuclear and mitochondrial genomes are indicated in gray. Solid bars 
indicate nuclear alleles contributed by the mother, and dotted bars 
indicate nuclear alleles contributed by the father. F1 generation 
cohorts were named as dam × sire
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by Kaplan–Meier analysis using the survival package v3.1-12 in R 
version 3.5.1. Survivorship was also fit to a cox-proportional hazard 
model with mixed effects (Therneau, 2020) using the coxme pack-
age v2.2-16 in R version 3.5.1. Within crosses and for all crosses 
combined, sex was modelled as the fixed effect and family as the 
random effect to estimate the hazard ratio, indicating the ratio of 
male death hazard relative to females.

3  |  RESULTS AND DISCUSSION

In this study, we used an additional clutch of offspring from the 
same families used in Flanagan et al. (2021), raising them in the same 
benign conditions until day 28 posthatching. At this time point, sex 

ratios in Flanagan et al. (2021) and the current study were similar 
(Figure 2). In both cases, ratios in the four crosses were either equiv-
alent or male-biased.

After day 28, copepods were sexed and either maintained in 
benign conditions (Flanagan et al., 2021) or transferred to food-
limited conditions (current study) until all animals perished. Here, 
results of the two studies were dramatically different. Under benign 
conditions (Table 1), combined results show increased male lon-
gevity, with males having longer average life span, longer average 
maximum life span, and higher overall survival (coxme, χ2 = 14.23, 
p = 1.62 e-4). Sex-specific life span differs between the four crosses, 
including higher overall survival for males in one F1 cross (FS) and 
sex-equivalent survival in the other F1 cross (SF). Because these 
reciprocal F1  have different mitochondrial haplotypes on a 50:50 

F I G U R E  2 Sex ratio for each cross 
independently represented as the number 
of each sex per family (female—red; 
male—blue) under limited food conditions. 
Asterisks indicate significance level by 
paired samples Wilcoxon test (*p < .05)

TA B L E  1 Life span comparisons between benign conditions and limited food conditions in each sex within each cross

Cross Sex

Benign conditionsa Limited food conditions

Average life span Maximum life spanb Overall survivalc Average life span Maximum life spanb Overall survivalc

FF Female 52.7 ± 0.6 80.5 ± 6.4 No difference 41.8 ± 0.4 48.6 ± 2.1 Female > Male*

Male 56.9 ± 0.7 90.7 ± 7.7 40.4 ± 0.3 44.3 ± 2.0

FS Female 78.0 ± 2.5 107.8 ± 9.6 Male > Female* 60.8 ± 2.3 73.0 ± 4.3 Female > Male*

Male 89.6 ± 0.8 135.2 ± 8.3 45.7 ± 0.6 60.9 ± 4.9

SF Female 91.2 ± 1.3 131.0 ± 9.2 No difference 52.0 ± 0.8 62.4 ± 3.4 Female > Male*

Male 88.3 ± 1.2 113.4 ± 7.4 47.5 ± 0.7 57.6 ± 4.1

SS Female 85.2 ± 2.2 111.4 ± 10.6 Male > Female* 51.7 ± 0.7 53.6 ± 2.8 Female > Male*

Male 104.7 ± 1.9 140.9 ± 11.4 44.2 ± 0.7 51.1 ± 3.1

Total Female 71.5 ± 0.8 107.5 ± 5.0 Male > Female* 48.9 ± 0.5 57.8 ± 2.0 Female > Male*

Male 84.0 ± 0.6 120.6 ± 4.8 44.3 ± 0.3 52.2 ± 1.9

Note: Results are coded in red if higher in females and blue if higher in males. Data are shown as mean ± SEM. *p-value <.01.
Abbreviations: FF, F female mated with F male; FS, F female mated with S male; SF, S female mated with F male; SS, S female mated with S male.
aData for benign conditions are from Flanagan et al., 2021.
bMaximum life span is a family-based calculation and estimated from all families within each cross.
cOverall survival is based on analyses from a cox-proportional hazard model with mixed effects.
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nuclear background, with nuclear contributions from different pa-
rental crosses, this suggests sex-specific mitochondrial effects. 
Results under limited food conditions (Table 1 and Figure 3) are 
strikingly different, revealing increased female longevity for nearly 
all metrics. Combined results showed females having longer aver-
age life span, longer average maximum life span and higher overall 
survival (coxme, χ2  =  287.60, p  <  2.20 e-16). Overall survival also 
favored females in each of the four crosses, suggesting that higher 
female tolerance to nutritional stress overrides the sex-specific mi-
tonuclear interactions inferred under benign conditions.

Importantly, the food deprivation treatment (no added food be-
ginning at adulthood) was detrimental to both sexes, reducing av-
erage life span by 31.6% in females and 47.3% in males. In contrast, 
other studies found that less drastic food limitation commonly ex-
tends life span. Moderate diet restriction, typically 10%–60%, has 
been found to increase longevity across a remarkably diverse range 
of organisms including yeast (Gouspillou & Hepple, 2013), nema-
todes (Gouspillou & Hepple, 2013), fruitflies (Krittika & Yadav, 2019), 
rodents (Kane et al., 2018), fish (Terzibasi et al., 2009), non-human 
primates (Colman et al., 2009), Daphnia (Hearn et al., 2019), and 

copepods (Saiz et al., 2015), suggesting common underlying mech-
anisms. Such studies typically find that moderate diet restriction is 
more beneficial in females than males (Aw et al., 2017; Freire et al., 
2020; Ingram & de Cabo, 2017; Magwere et al., 2004), paralleling 
our finding that food deprivation is less detrimental in females.

Higher female tolerance of food deprivation is a common pattern 
in arthropods in general (Gerofotis et al., 2019; Knapp, 2016; Matzkin 
et al., 2009) and copepods in particular (Finiguerra et al., 2013; Holm 
et al., 2018). A frequent explanation for the pattern is higher body 
size in females, a pattern found in many arthropods (e.g., Holm et al., 
2018; Gerofotis et al., 2019) including T.  californicus (Edmands & 
Harrison, 2003). Another contributing factor may be higher lipid re-
serves found in some females (e.g., Holm et al., 2018; Gerofotis et al., 
2019), although sex differences in lipid content are not known for 
Tigriopus. A third contributing factor commonly cited for copepods 
is that males typically expend more energy on searching for mates 
(Finiguerra et al., 2013; Holm et al., 2018). This is likely the case in 
T. californicus, where males mate repeatedly while females mate only 
once (Burton, 1985). Higher female tolerance of food deprivation 
is so common in copepods that female-skewed ratios can be used 

F I G U R E  3 Kaplan–Meier curve with 95% confidence bands displaying the estimated survival probability for crosses FF (a), FS (b), SF (c), 
and SS (d) under limited food conditions. The number of female and male individuals used in this study was listed in each panel. Asterisks 
indicate significance level (**p-value <.01; *** p-value <.001) between sexes by a cox-proportional hazard model with mixed effects (coxme)
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as an indicator of food scarcity in the wild (Finiguerra et al., 2013). 
Female bias is less detrimental to population viability than male-bias 
(Edmands, 2021; Wedekind, 2002), but the extreme female bias 
found in some natural copepod populations can cause sperm limita-
tion (Kiørboe, 2007).

In summary, under benign conditions T.  californicus defies the 
expected positive relationship between stress tolerance and life 
span, with stress-sensitive males generally living longer than fe-
males. Exposure to food limitation beginning at adulthood restores 
the expected longer life of females. This is true for all crosses, thus 
overriding the sex-specific mitochondrial effects found under be-
nign conditions. Importantly, food limitation may be the more com-
mon state for copepods in natural conditions. Results are consistent 
with work on Drosophila (Camus et al., 2012; Nagarajan-Radha et al., 
2019) in which sex-specific life span, including effects of mitochon-
drial haplotype, are dependent on nutritional environment.
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