nature ecology & evolution

Article

https://doi.org/10.1038/s41559-023-02264-w

Stronger increases but greater variability in
global mangrove productivity compared to
that of adjacent terrestrial forests

Received: 15 November 2022

& YangfanLi®'
Accepted: 31 October 2023

Zhen Zhang ®"?, Xiangzhong Luo ®%3

, Daniel A. Friess®, Songhan Wang?®, Yi Li'

Published online: 3 January 2024

™ Check for updates

Mangrove forests are a highly productive ecosystem with important
potential to offset anthropogenic greenhouse gas emissions. Mangroves

are expected to respond differently to climate change compared to
terrestrial forests owing to their location in the tidal environment and
unique ecophysiological characteristics, but the magnitude of difference
remains uncertain at the global scale. Here we use satellite observations
to examine mean trends and interannual variability in the productivity

of global mangrove forests and nearby terrestrial evergreen broadleaf

forests from 2001 to 2020. Although both types of ecosystem experienced
significant recent increases in productivity, mangroves exhibited a stronger
increasing trend and greater interannual variability in productivity than
evergreen broadleaf forests on three-quarters of their co-occurring coasts.
The difference in productivity trends is attributed to the stronger CO,
fertilization effect on mangrove photosynthesis, while the discrepancy in
interannual variability is attributed to the higher sensitivities to variations
in precipitation and sealevel. Our results indicate that mangroves will have
afaster increase in productivity than terrestrial forests in a CO,-rich future

but may suffer more from deficits in water availability, highlighting a key
difference between terrestrial and tidal ecosystems in their responses to

climate change.

Mangrove forests are an important intertidal ecosystem along the
coasts of 121 countries in tropical, subtropical and warm temperate
zones'. As blue carbon ecosystems, they are capable of storing and
sequestering large volumes of carbon?, providing valuable ecosystem
services’ to mitigate climate change impacts. Mangroves sequester
carbonatahighaveragerate* of 168 + 36 gC m2yr'and are able tostore
it at high densities®, with an average of 1,023 + 88 MgC per hectare in
the Indo-Pacific, almost four times more than the carbon sequestration

rates and storage densities of terrestrial tropical forests. However, man-
groves are substantially influenced by climatic changes*®’. Forexample,
mangrove forests along the northern coast of Australia experienced
apronounced dieback in 2015 due to water scarcity induced by an El
Nifio-driven drought and extremely low sea levels in conjunction with
changing lunar cycles®’. Climate change impacts on mangroves are
expectedtoincrease furtherinthe futureif current emissions trajecto-
ries are maintained®. Therefore, understanding how climate influences
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the growth and stability of mangroves is an essential prerequisite for
conservation and restoration efforts aimed at preserving this critical
coastal ecosystem for the future.

Studies using satellite observations and in situ monitoring gener-
ally agree that terrestrial vegetation globally is experiencing an overall
increasing trend in gross primary productivity (GPP)'™°, largely due to
elevated atmospheric CO, concentration (eCO,)" and extended grow-
ing seasons induced by warming'>. However, coastal ecosystems may
respond differently due to their unique ecophysiology and environ-
mental settings. In comparison to terrestrial forests, mangroves are
generally more efficientin water use™'"* and have lower light compensa-
tion points and higher maximum photosynthesis rates”. Additionally,
mangroves are adapted to intertidal environments characterized by
fluctuating inundation, salinity and water availability, all of which are
tightly regulated by water inputs from tides and precipitation versus
water loss from transpiration. These environmental fluctuations have
resulted in specific physiological responses and adaptations in man-
grove vegetation'®” and thus different responses in carbon uptake
to climatic changes in mangroves compared to terrestrial forests.
Although a few studies have noted differences in climatic responses
between the two>'*", they were conducted at limited sites over short
periods and are inadequate to inform our examination of mangrove
response to climate over large scales. Current global vegetation models
also assume that mangroves share similar productivity sensitivities to
those of terrestrial evergreen broadleaf forests?*? and are therefore
inadequate to accurately predict the responses of mangrove ecosys-
tems to environmental changes.

To improve our understanding of how mangroves respond dif-
ferently to climate and environmental changes and the underlying
mechanisms, we quantify the long-term trends and interannual vari-
ability (IAV) in carbon uptake from 2001 to 2020 for mangroves and
their nearby terrestrial counterparts, evergreen broadleaf forests
(EBFs; note that mangroves are also evergreen broadleaf woody plants).
Todoso, we used the near-infrared reflectance of vegetation (NIRv)*,
aremotely sensed proxy for GPP*** retrieved from 250 m Moderate
Resolution Imaging Spectroradiometer (MODIS) surface reflectance
data. To avoid the confounding effects of direct anthropogenic dis-
turbance and spectral mixture, we limit our analysis to undisturbed
mangrove and EBF areas with high forest coverage (>80%) and no
detected land cover changes over the past two decades (Methods).
Furthermore, we quantify the contribution of various environmental
factorsto GPP, includingair temperature, precipitation, vapour pres-
sure deficit (VPD, an indicator of atmospheric dryness), wind speed
(serving as a proxy for the intensity of tropical cyclones), sea surface
height (SSH, to quantify changes in sea level) and atmospheric CO,
concentration, using a factorial simulation method (see Methods for
details), and provide mechanistic explanations to the observed differ-
encesinproductivity changes between tidal mangroves and terrestrial
forests at aglobal scale.

Results

Greater productivity trend and IAV in mangroves

NIRv has been tested theoretically and empirically as a robust proxy
for GPP over global ecosystems, including EBFs”. To further assessiits
applicability to mangroves, we compared GPP estimates from three
mangrove flux tower sites (Supplementary Table 1) with MODIS-based
NIRv and observed statistically significant positive correlations across
allsites (Extended DataFig.1), suggesting that NIRvis a valid proxy for
canopy photosynthesis for mangroves.

We examined the trends in photosynthesis for mangroves and
neighbouring EBFs by estimating the slope of NIRv over time (Meth-
ods). Globally, both mangroves and EBFs displayed an overallincreas-
ing trend (that is, increasing annual NIRv) over the investigated years
(Extended Data Fig. 2a). The global average NIRv increased by 0.21%
(0.14-0.28%; 95% confidence intervals (CI)) and 0.11% (0.03-0.16%) per

year for mangroves and EBFs, respectively. Overall NIRv trends were
significantly positive in tropical/subtropical America (P < 0.001) and
Asia (mangroves: P < 0.001; EBFs: P=0.013), and slightly significantin
Oceaniaforboth mangroves (P=0.098) and EBFs (P=0.028) (Extended
DataFig.2b,d,e). Mangroves and EBFs in Australia experienced a sub-
stantialincreasein NIRv prior to 2010 (Extended DataFig. 2e), followed
by a plateau that corresponded to changes in precipitation and SSH
(Extended DataFig.20).In Africa, there was no significant overall trend
(P=0.422) for either mangroves or EBFs, but a substantial increase
was observed after 2015 (Extended Data Fig. 2¢), coinciding with an
increase in precipitation since 2015 (Extended Data Fig. 2m). Grid-scale
trend detection showed significant increasing signals (P < 0.1) over
38.08% and 26.97% of mangroves and EBFs, respectively (34.03% and
19.43% if the significance level ais set to 0.05), mainly concentrated in
Southeast Asia, Western Australia and the Caribbean coasts (Fig. 1a).
Moreover, the latitudinal patterns of trend ratesindicated anincrease
inproductivity enhancement with latitude in the Northern Hemisphere
(Fig. 1a), aligning with previous studies® that have observed growth
enhancement in mangroves at latitudinal range limits.

We also observed significant negative trendsin NIRv for 10.50% of
mangroves and 4.23% of EBFs (or 7.76% and 2.88% respectively, with a
set to 0.05), primarily occurring in Southeast Africa, Amazon regions
and northern Australia (for mangroves solely) (Fig.1a). For example, a
7,400 haloss of mangroves alonga1,000 kmstretch of coastlinein the
Gulf of Carpentaria® of Australia caused a substantial negative anomaly
in NIRv in 2015 (Fig. 1a). These local-scale reductions in NIRv resulted
inarelatively small overall trend at the continental scale in Africaand
Oceania (Extended Data Fig. 2c,e).

To determine whether mangroves respond differently to climate
compared to EBFs, we conducted a paired comparison by analysing
grid cells where mangroves and EBFs coexist (Methods). Our analysis
revealed that, although both mangroves and EBFs experienced an
increasing trend in productivity over time, mangroves exhibited a
significantly stronger trend (P < 0.001, Wilcoxon signed-rank test).
On average, the rate of increase in mangrove productivity was nearly
double that of EBFs (0.59% per year versus 0.31% per year; Fig. 2a). This
resultheld true whether we considered only significant paired grid cells
(Fig. 2a) or all paired grid cells (including those with nonsignificant
observations; Fig. 2b). Additionally, we observed asignificant stronger
negative trend in mangroves than EBFs (P = 0.044 for significant paired
gridsand P< 0.001for all paired grids), although the difference was less
pronounced than the positive trend (Fig. 2a,b). Even for those paired
grids withopposite trend direction between mangroves and EBFs, the
stronger trends inmangroves persisted (Fig.2a,b). These differencesin
trends between mangroves and EBFs remained consistent across vari-
ous comparison methods (paired versusindependent) (Supplementary
Fig.1), sample selections (considering all grids or only significant grids)
(Fig. 2a,b) and mangrove extent definitions (including pure pixels or
mixed pixels) (Supplementary Fig. 2).

We further assessed the IAV in GPP for both mangroves and EBFs
by using the coefficient of variation of detrended NIRv (Methods).
Both mangroves and EBFs exhibited apparentinterannual variations
in their global average detrended NIRv, with the largest negative
departure from normal occurring in 2015, coinciding with the most
extreme EINifio event within our study period (Fig. 3a). Notably, NIRv
IAV was most pronounced in the Gulf of Carpentaria of Australia, the
Middle East and the Caribbean coasts for mangroves, as well as along
the eastern coast of Australia for EBFs (Fig. 1b). Continental analysis
revealed that high IAV was particularly evident in Australia and Asia
(Extended Data Fig. 2i,j). We also observed that mangroves and EBFs
located at higher latitudes exhibited stronger IAV than those in lower
latitudes (Fig. 2b).

The IAV in productivity for mangroves (3.74%, 95% Cl: 3.64-
3.86%) was significantly higher than that for EBFs (2.65%, 95% CI:
2.59-2.72%), regardless of using paired or independent comparisons
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Fig.1| Changes in NIRv during 2001-2020 for mangroves and EBFs at
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illustrate exemplary regional trends in NIRv with 250 m resolution. The pie plots
indicate the area-weighted proportion of grid cells with increasing productivity,
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Pvalues were determined through two-sided Mann-Kendall trend test. The
inset plotsin billustrate the probability density curves of IAV with the average
indicated by the dashed blue lines and the numbers in blue indicating the global
average IAV value. The right-hand panels depict the latitudinal pattern of trends
and IAV averaged per1° latitude band.

(Fig.2c,d). Takentogether, 90.31% of grid cells showed either astronger
trend, a greater IAV, or both, in mangroves than EBFs over the past
20 years (Fig. 2e).

Greater IAV driven by the higher sensitivity to hydroclimate
To gain insight into the relative role of environmental drivers in the
IAV in GPP of mangroves and EBFs, we quantified the contribution of
five environmental factors (air temperature, VPD, precipitation, wind
speed and SSH; Supplementary Table 2) to the NIRv IAV using amodel
experiment simulation approach (Methods; Supplementary Table 3).
Fluctuation in SSH was the primary driver for IAV in NIRv of man-
groves, contributing to 31.67% of satellite-observed IAV in NIRv for
mangroves (contributing 1.27% in the total IAV of 4.01%; Fig. 3b). The
Gulf of Carpentaria in Australia, where a pronounced negative trend

in NIRv for mangroves was observed (Fig. 1), was found to be domi-
nated by sea level with a co-occurring sea level drop and mangrove
dieback event in 2015 (Extended Data Fig. 3). Since the IAV in NIRv for
EBFs was not influenced by tide variation (Methods), the observed
AIAV between mangroves and EBFs was mainly attributed to sealevel
fluctuation (Fig. 3b).

Meanwhile, our analysis identified precipitation as the dominant
climatic factor driving the IAV in NIRv for both mangroves and EBFs.
Examination of the global average NIRv and climatic factors (Fig. 3a)
revealed astrong positive correlationbetween NIRv and precipitation
(r=0.84forEBFsandr=0.60 formangroves), whereas therelationships
with temperature, VPD and wind speed were weak or nonsignificant.
This finding was further substantiated through factorial simulation,
indicating precipitation as the primary climatic factor driving NIRv
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Fig.2| Comparisonsin NIRv trends and IAV between mangroves and EBFs.
a,b, Differences in NIRv trends between mangroves and EBFs by comparing
paired grids with significance (a) or all paired grids including nonsignificant
grids (b), grouped by trend direction. The term ‘differ’ refers to those paired
grids with opposite trend direction in mangroves and EBFs. For visualization, we
show the absolute value of trend here. Pvalues were determined by two-sided

paired t-test controlling for geographical locations and macroclimatic factors.
c,d, Differences in IAV between mangroves and EBFs using two-sided paired ¢-test
(c) orindependent ¢-test analysis (d). Error bars in a-d show 95% Cl estimated

by bootstrapping (n=1,000) and the points represent average values. e,
Relationship between trend and IAV differences. The difference (A) is defined as
mangroves minus EBFs. Points in the scatterplot refer to the 0.5° x 0.5° grid cells.

IAV (Fig.3b). Moreover, theimpact of precipitation on mangrove NIRv
IAV exceeded that on their neighbouring EBFs (Fig. 3b), suggesting a
higher sensitivity of mangroves to precipitation changes than EBFs.

Wind speed also played a discernible role in driving greater NIRv
IAV for mangroves (Fig. 3b), suggesting that mangrove productivity is
more sensitive to tropical cyclones thanterrestrial forests. Onaglobal
scale, both air temperature and VPD had relatively minor contribu-
tions to NIRv IAV for both mangroves and EBFs (Fig. 3b). The use of
different climate-forcing datasets did not alter our results regarding
the attribution of NIRv IAV (Supplementary Fig. 3). Despite previous
reports highlighting the sensitivity of mangroves to cold events”, our
global-scale analysis indicated that annual minimum temperature had
alesserinfluence on NIRvIAV compared to SSH, precipitation and wind
speed (Supplementary Fig. 4).

To provide a mechanistic explanation for why mangrove NIRv
had higher sensitivity to precipitation, we used a partial differen-
tial approach to decompose this sensitivity into two ecohydrologi-
cal properties: the marginal biological water use fraction (07./0P,
which quantifies the change in plant transpiration in response to a
unit change in precipitation)? and the marginal water use efficiency
(MWUE, oNIRv/0T,, which quantifies the change in GPP in response
to a unit change in transpiration) (Methods). We found considerable
differences between mangroves and EBFs in these two properties.
Specifically, while mangroves generally displayed lower d7./0P than
EBFs (Extended Data Fig. 4a), their MWUE (0.53% mm™°°,95% CI: 0.16-
0.88% mm™°°) was nearly double that of EBFs (0.24% mm™°, 95% CI:
-0.15 to 0.61%mm™%°; Extended Data Fig. 4b), suggesting that the
higher sensitivity of mangroves to variations in precipitation is due
to their higher efficiency in water use.

Stronger trend caused by greater CO, fertilization effect

We further quantified the contributions of temperature, precipita-
tion, VPD, wind speed, SSH and atmospheric CO, concentration to
the NIRv trend in mangroves and EBFs by using a multivariable linear
model during the warming hiatus (2001-2012 in our study period®).
Weremoved the one-year-lagged autocorrelationin NIRv to eliminate
theinfluence of natural vegetation growth, which captures the effects
of antecedent vegetation conditions on current ecological processes™.
During the warming hiatus, temperature and VPD were stable with no

trendsin mostregions, yetincreasing productivity was still widespread
inmangroves and EBFs (Supplementary Fig. 5). This time window pro-
vides a unique opportunity® to disentangle the compound effects of
warming and eCO, on vegetation productivity.

The increasing productivity trends in both mangroves and EBFs
were primarily driven by the CO, fertilization effect during 2001-2020
(Fig. 4). We estimated the CO, fertilization effect to be 0.10% ppm™
(0.09-0.12% ppm™) and 0.05% ppm™ (0.03-0.06% ppm™) for man-
groves and EBFs, respectively. During the period of 2001-2020, atmos-
pheric CO, concentration increased by 2.20 ppm yr based on the
NOAA CarbonTracker CT2022 modelling®, resulting in productivity
gains of 0.23% yr™ (0.19-0.27% yr™) and 0.10% yr™ (0.07-0.13% yr™)
for mangroves and EBFs, respectively (Extended Data Fig. 5). Conse-
quently, the difference in trends observed between mangroves and
EBFs during the 2001-2020 period mainly came from the CO, fertili-
zation effect.

Warming was diagnosed as the second-largest contributor to
global productivity increasesin mangroves and EBFs (Fig. 4). However,
the contribution of warming to increasing productivity was greater in
EBFs than in mangroves, partially offsetting the greater productivity
increases in mangroves due to CO, fertilization (Fig. 4). The observed
minor warming-related global trend in mangroves was due to the offset
of positive and negative effects of warming on mangrove productivity
over highand low latitudes (Extended Data Fig. 6a), which suggests that
warming may suppress mangrove productivity in certain areas, mainly
in low-latitude tropical regions (Extended Data Fig. 6a). Increasing
VPD had awidespread negative effect on productivity (Extended Data
Fig. 6b), offsetting the productivity benefits from warming (Fig. 4).
The effects of VPD on productivity were similar for mangroves and
EBFs, and therefore VPD contributed little to the satellite-observed
trend differences (Fig. 4).

Although precipitation played adominantroleininfluencing NIRv
IAV, itsimpacton NIRv trends was limited (Fig. 4). This was primarily due
tothelack of asignificant long-termtrendin precipitation® across most
of the study areas (Supplementary Fig. 6). In contrast, we identified a
significant decline (a« = 0.1) in annual maximumwind speed in 27.3% of
thestudy area (Supplementary Fig. 6), with a global average decline of
0.014 m s per year, which contributed to aslightly positive NIRv trend
in mangroves (Fig. 4). Moreover, we detected a modest but positive
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variability. a, Time series of detrended global mean NIRv and climatic factors
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numbers refer to the Pearson correlation. Pvalues were determined through two-
sided Pearson correlation significance test. Considering the interaction between
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environmental factor, which was estimated by the product of sensitivity of NIRv
to the factor ands.d. of the factor. The bars show the global mean contribution
of each factor and the error bars show 95% Cl estimated by bootstrapping
(n=1,000). All grid cells were used for mangroves and EBFs (n =2,177 and
n=1,699, respectively), and for the ‘difference’ group, paired grid cells (n =1,475)
were used, with the difference defined as mangroves minus EBFs. Supplementary
Fig.3 shows ananalogous plot using an alternative set of climate data.

effect of sealevel rise on non-submerged mangroves (Fig. 4). This effect
could potentially be linked to sea level rise alleviating water stress for
specific mangrove species situated at relatively high elevations™.

Discussion

Our study reveals asignificantly strongerincrease and greater interan-
nual variability in GPP for mangroves compared to nearby inland forests
over the past 20 years (2001-2020). The greater IAV in mangroves was
mainly attributed to their higher sensitivities to fluctuations in sea
level and precipitation than EBFs, while the stronger positive trend
was attributed to their stronger responses to eCO, concentration.
Our results highlight the difference between mangroves and EBFs in
responding to climate change, emphasizing the need for special char-
acterization of coastal ecosystems such as mangrove forests in global
carbon cycle studies.

Over 30% of mangroves and EBFs in this study showed a positive
trend in NIRv. Considering that around one-third of global terrestrial
vegetation hasbeenobservedtobe greening usingleafareaindexsince
2000" and around 23.6% for global mangroves using the normalized
difference vegetation index (NDVI) time series®, we suggest that the
increase in NIRv (GPP?) could be partly interpreted as the increase in
leaf area. Meanwhile, the slightly higher percentage reported in this
study (34.03% when a was set to 0.05) also means anincrease in per-leaf
area photosynthesis for mangroves. Previous studies have found NIRv
is a stronger indicator of GPP than NDVI for global ecosystems that
have C; photosynthesis pathways?, suggesting NIRv serves as areliable
proxy for the GPP of mangroves that also follow the C; pathway. We
indeed note statistically significant correlations between NIRv and GPP

atthree mangrovesites (Extended DataFig.1). However, there was one
flux site (Everglades) where we found the NIRv-GPP relationship was
not strong (although still statistically significant) (Extended DataFig.1),
probably because the MODIS pixel covering that flux site has a higher
percentage of water cover than other sites (Supplementary Fig.7).Ina
more homogeneous mangrove pixel, such as the pixel covering Mai Po
flux site (Supplementary Fig. 7), NIRv shows a strong correlation with
mangrove GPP (Extended DataFig.1). Another advantage of NIRv over
NDVl lies in its higher signal-to-noise ratio, minimizing signals from
non-vegetated backgrounds such as soil and water surfaces under man-
grove canopies, which is more suitable for application to mangroves®.

Mangroves exhibited stronger productivity increases in
high-latitude subtropical and warm temperate regions than in
low-latitude tropical regions. Our simulation on temperature-induced
NIRv trend captured a similar latitudinal pattern (Extended Data
Fig. 6a), suggesting that the stronger productivity enhancement in
the subtropical and warm temperate regions was caused by warm-
ing. This finding is consistent with in situ warming experiments**®
and remote sensing studies®*® reporting increased canopy cover and
growthin mangroves due to warming, especially near their latitudinal
range limits. However, at low latitudes in the Northern Hemisphere,
the latitudinal pattern of NIRv trend was better explained by the CO,
fertilization effect (Extended DataFig. 5), suggesting thateCO, plays a
moreimportant role than warming within species thermal limits*. The
fertilization effect of eCO, on vegetation productivity, especially for C,
plants, has been well-established in existing research*®*, encompass-
ing experimental studies®, field observations** and global models".
Our estimates of CO, fertilization effect for mangroves (0.10% ppm™)
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and EBFs (0.05% ppm™) are consistent in magnitude with global aver-
age estimates of previous process-based ecosystem models (0.05-
0.20% ppm™)*. We found spatial variationin the CO, fertilization effect,
becauseincreases in photosynthesis witheCO, may be constrained by
regional limitations in water and nutrient availability** and can vary
among different tree species***.

The higher MWUE of mangroves (Extended DataFig.4b) provides a
potential explanation for their greater CO, fertilization effect compared
to that of EBFs. As atmospheric CO, concentrationrises, plants reduce
their stomatal conductance to maintain a constantratio of intercellular
and atmospheric CO, concentration, which decreases transpiration*!
and increases soil water content*®. The higher MWUE in mangroves
amplifies this water-saving effect under elevated CO,, resulting in larger
increasesin productivity*. The water saved further alleviates the salinity
stress for mangroves to support their growth*°, Previous theoretical
and experimental evidence has demonstrated that water-limited ecosys-
tems generally benefit moreingrowth and photosynthesis fromelevated
CO, concentrations than non-water-limited ecosystems**¢, Our results
are consistent with these findings, as mangroves are more water-limited
than the adjacent terrestrial EBFs due to the highly saline tidal environ-
ment**. We acknowledge that the absolute values of MWUE calculated
inthis study are subject to uncertainty because we have only three years
(2019-2021) of thermal ECOSTRESS observation to quantify transpira-
tion. However, this is plausible for our study because our focus is on a
relative comparison between mangroves and EBFs, rather than their
absolute values. Ideally, a long-term, high-resolution thermal remote
sensing evapotranspiration product would be suitable for this purpose,
but it is currently unavailable. The ECOSTRESS evapotranspiration
product is estimated based on the energy budget and land surface
temperature®, whichavoids any presumptions on stomatal behaviour
and CO,impacts.Itisalsoavailable at arelatively high resolution (70 m),
whichis compatible with the size of most mangrove forest patches.

While the global average NIRv trend in mangroves was positive,
our analysis showed that negative productivity trends in mangroves
occurred sporadically across the study area. In particular, we found a
larger proportion (10.50%) of areas with negative productivity trends
in mangroves than in EBFs, mainly in Madagascar and the northern
coast of Australia. These declines in NIRv could be attributed to dis-
turbances from tropical cyclones®, El Nifio-induced droughts and
lunar nodal cycle-related sealevel anomalies™. A specific examplein
the Gulf of Carpentaria, Australia, showed that negative NIRv trends

observed in mangroves was probably due to dieback events resulting
from the compounded effects of extreme low sea level events and
precipitation deficits (Extended Data Fig. 3). In addition, increased
aquaculture activities can discharge pollutants into the habitats of
mangroves, reducing the leaf area of mangroves® and further leading
toanegative NIRv trend. These unique stresses in mangroves, such as
sealevelfluctuation, aquaculture pollution and stronger disturbance
fromcyclones, provide an explanation for the observed divergencein
the direction of NIRv trends between mangroves and EBFs (Fig. 2a,b).

Mangroves showed stronger IAV in productivity than EBFs,
mainly due to their greater sensitivity to precipitation, according
to our analysis. There are three possible mechanisms for the higher
precipitation sensitivity of mangroves: high-salinity intertidal environ-
ments, estuarine hydrology and low diversity of tree species within
mangrove ecosystems. First, the high salinity of the tidal seawater
reduces the water potential around mangrove roots’**, imposing
greater water limitations on mangroves than on adjacent terrestrial
forests*. The pseudo-drought (highly saline) tidal environment means
that mangroves could be likened to semi-arid ecosystems®, which are
well-known for their high sensitivity to water availability® and strong
IAVin productivity”®. In contrast, moist EBFs display high resistance
to drought®, resulting in more stable productivity over time. As an
adaptation to high-salinity intertidal environments, mangroves have
evolved a water use efficiency higher than that of most terrestrial C,
plants™*, and our investigation provides large-scale evidence for
that: mangroves not only have higher water use efficiency (the ratio
of GPP to transpiration) but also higher MWUE (changes in GPP with
incremental changes in transpiration), which explains the greater
benefits fromincreased precipitationin mangroves over terrestrial for-
ests. Additionally, the lower xylem pressure in mangroves (<-2.5 MPa)
thanterrestrial forests (-1.6 to —0.5 MPa) due to tidal seawater poses a
higher risk of embolism during water deficits'®. Decreased (increased)
precipitation would increase (reduce) sediment porewater salinity
through concentrations (dilution) of salts during low tides®®, reducing
(increasing) water uptake by mangrove roots** and further increasing
(reducing) the risk of hydraulic failure®. Furthermore, some mangrove
species cope with high salinity through foliar salt secretion and leaf
shedding®, leading to a decrease in leaf area and NIRv observed by
satellites. Second, precipitation variability also regulates estuarine
hydrology differently than for EBFs. For example, fluvial discharge
brings sediments and nutrients, such as phosphorus and nitrogen,
which caninfluence mangrove growth, particularly in nutrient-limited
settings®. Third, mangrove ecosystems are far less diverse than other
tropical and subtropical tree communities®. Previous research®*® has
indicated that ecosystems with limited tree species diversity tend to be
more sensitive to water deficits, primarily due to the weaker comple-
mentary interactions among species in resisting drought.

Other than precipitation, mangroves also exhibited higher sen-
sitivity towind speed (Fig. 3b). As mangroves are often distributed at
the forefront of tropical cyclone paths and act as a buffer to protect
adjacent inland trees®, they reduced wind impacts on nearby EBFs.
We also observed that sea level fluctuation contributed the most to
the stronger IAV of mangrove productivity, consistent with previous
studies’. Extremely low sea levels can increase soil salinization by
20-30% (ref. 67) and induce physiological water deficitin mangroves.
Meanwhile, shifting from anaerobic to aerobic conditions during
low tidal levels can lead to phosphorus limitation in mangroves and
thus decreased photosynthesis”. Considering that we have masked
out mangrove observations submerged by tides using a NDVI thresh-
old (Methods), the detected impact of sea level fluctuation mainly
reflects the actual adjustments of mangrove productivity to water
level changes, rather than an artefact in satellite signal resulting from
water inundation. We acknowledge that the water surface under the
mangrove canopies might affect the satellite signals on tidal vegeta-
tion activity; however, this issue should be minimized by using NIRv, a

Nature Ecology & Evolution | Volume 8 | February 2024 | 239-250

244


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-023-02264-w

vegetation index insensitive to underlying water surfaces and proven
tobesuitable for monitoring wetland ecosystems such as mangroves™.
In summary, our study examined the dynamics in mangrove pro-
ductivity over the past 20 years and their response to climate change
by comparing with nearby inland forests (that is, EBFs) using satellite
observations. We discovered that mangroves exhibit more increases
andinterannual variability in productivity than EBFs due to greater CO,
fertilization effects and higher sensitivity to precipitation, sealevel fluc-
tuationand wind. These disparities emphasize the need for an explicit
inclusion of coastal ecosystems in large-scale vegetation models such
as dynamic global vegetation models, which currently ignore such
unique coastal processes and characteristics’>*, to improve future
projections of climate change impacts across the land-sea interface.
Conservation efforts for mangroves may yield a greater carbon gain
compared toinland forests due to their higher CO, fertilization effects
but require special attention to damages caused by extremely low
precipitation and low sea level events. Overall, our study highlights
the key ecophysiological difference between terrestrial and coastal
ecosystems on the global scale and offers anew perspective on coastal
forest conservation and restoration under future climate change.

Methods

Generating annual NIRv time series

MODIS instruments onboard the Terraand Aqua platforms record the
land surface reflectance (SR) at daily revisit frequency for the whole
globe and provide 250 m resolution measurements for near-infrared
(NIR) and red bands. This presents a better opportunity for monitor-
ing cloud-prone coastal vegetation ecosystems such as mangroves
compared to finer but temporally less frequent satellite datasets (for
example, Landsat and Sentinel-2 products), which have numerous data
gapsinlow-latitude areas and are therefore not suitable for our study.
We used the Collection 6 Terraand Aqua MODIS 16-day composite SR
products (MOD13Q1and MYD13Q1) ata 250 mresolution from2001to
2020 toretrieve the annual NIRv. We excluded observations that were
identified as clouds, cloud shadows, snow or aerosols, or that had a high
view zenith angle (>30°), by checking the quality flag band to ensure
that only high-quality observations were analysed. Considering that
tidal inundation could cover mangrove canopies and result in abnor-
mally low NIRv, we removed MODIS observations with NDVI less than
0.2 foreachmangrove pixel to eliminate the satellite artefact caused by
water inundation on low-lying mangroves®. This step filtered out 1.60%
(62,674) of 250 m mangrove pixels. To test the feasibility of the NDVI
threshold, we examined the NDVI distribution in a region dominated
by dwarf mangroves—the Red Sea coasts. Even in this extremely arid
region, 96.4% of mangroves have anNDVI greater than 0.2 (Supplemen-
tary Fig. 8c), indicating that this threshold is appropriate for capturing
dwarfmangroves. Additionally, we tested the trend result from differ-
ent NDVI thresholds and found that the NIRv trends were consistent
with different NDVI thresholds in the tidal filtering step (Supplemen-
tary Fig. 8a,b). This suggests that differences in NDVI threshold were
unlikely to affect our results. The two SR products (Terra and Aqua)
were then merged into a monthly composite by taking the temporal
average of all valid observations within the corresponding month.
For those months without valid MODIS observations, we gap-filled in
their monthly climatology (that is, long-term average) of SR during
2001-2020. Years with no valid observations for more than six months
werereplaced by the yearly climatology of SR. Finally, we calculated the
annual SRby averaging all the derived monthly values withinayear and
used this annual time-series datain the following analysis.

NIRv, the product of NDVIand NIR reflectance, is ameasure of the
fraction of the NIR reflected from vegetation and has a stronger correla-
tion with GPP across various vegetation biomes, including terrestrial
evergreen forests, compared to other conventional vegetation indi-
ces”***7%, As NIRv minimizes signals from non-vegetated backgrounds,
such as water surface under the mangrove canopies®, its variation

mainly reflects the actual variations in mangrove productivity rather
than sub-pixel water dynamics. We examined the NIRv-GPP relation-
ship for mangrove forests by comparing MODIS-derived NIRv with GPP
measured from mangrove flux sites. Specifically, we systematically
reviewed the peer-reviewed publications between 2002 and 2023
reporting mangrove flux data using a Web of Science keyword search
with the following terms: TOPIC: (mangrove AND Flux AND (GPP OR
NEE)). This returned 24 related studies, of which three mangrove flux
data are publicly available, located in the Everglades National Park in
the United States”, Yunxiao in Mainland China®"’?>and Mai Po in Hong
Kong” (Supplementary Table 1). These sites provide half-hour GPP or
net ecosystem exchange, and the latter was partitioned into GPP and
ecosystem respiration following ref. 74. Both the half-hour GPP from
flux measurements around the MODIS overpass time (that s, 10:30 for
Terra and 13:30 for Aqua) and valid 16-day interval MODIS NIRv were
aggregated into monthly averages for comparison. We believe that the
NIRv-GPP relationship tested in these sites can be considered robust,
given their large geographical span and the fact that the relationship
hasalready beenvalidated in other evergreenbroadleaf vegetations®
(asnoted, mangroves are also evergreen broadleaf plants).

Gridded climate datasets

We obtained annual mean air temperature (°C), annual mean VPD (kPa)
and annual maximum wind speed (m s™) data from the Modern-Era
Retrospective analysis for Research and Applications v.2 (MERRA-2)
products” for climate analysis. MERRA-2 provides monthly climate
reanalysis dataata0.5° x 0.625° resolution since 1980 (Supplementary
Table 2) with full coverage of both terrestrial and marine areas. VPD is
defined as the difference between saturation vapour pressure and actual
vapour pressure, and was calculated using the mean air temperature
and dew point temperature from MERRA-2 following the equation”:

17.27xT; 17.27xT4

VPD = 0.611xez+7n — 0.611xe>" s o)

where T, represents the average daily temperature (°C) and Ty is the
dew point temperature.

Annual precipitation datawere obtained from Global Precipitation
Climatology Project (GPCP)”” v.3.2 monthly products with 0.5° x 0.5°
resolution, defined as the annual sum of monthly precipitation. It
isimportant to note that in our study the term ‘precipitation’ spe-
cifically refers to rainfall, as mangroves are not present in regions
with large amounts of snowfall’®. For sea level fluctuation and rise, we
used time-series SSH data from the Copernicus Marine Environment
Monitoring Service satellite altimetry measurements with 0.25° x 0.25°
resolution (Supplementary Table 2). This data provides SSH as sea level
anomaly (m), which is defined as the water level over the long-term
meanseasurface from1993t02012. Tofillindatagapsinthe nearshore
area where SSH pixels are missing, we used a 3 x 3 window with the
bilinear approach to extrapolate the data from ocean to land”. For
our analysis of atmospheric CO, concentration, we used the gridded
data provided by the NOAA CarbonTracker®? CT2022 surface fluxes
simulation with a3° x 2°resolution.

Asarobustness check, we conducted a sensitivity analysis using an
alternative set of climate data, including ERA5 monthly mean air tem-
perature at 2 m height and VPD with 0.25° resolution®’, CHIRPS v.2.0
annual precipitation data with 0.05° resolution® and TerraClimate®
annual maximum wind speed data with 4 km resolution. In addition,
wereplaced the gridded atmospheric CO, concentration datawith CO,
observation data from Mauna Loa Observatory®’. Using the ERAS daily
mean air temperature data, we also calculated the length of the growing
season for each year, defined as the number of days with a daily average
temperature exceedingorequal to10 °C (ref. 84). However, we observed
that almost all of the study areas had a year-long growing season and
exhibited minimal interannual variability (Supplementary Fig. 9).
We thus excluded the length of the growing season in the subsequent
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attribution analysis. All datasets analysed in this study were resampled
to acommon 0.5° grid using the bilinear method to ensure the same
spatial extent of all factors.

Identifying undisturbed areas in mangroves and EBFs

To ensure that NIRv variations arose from dynamics in vegetation
productivity rather than in mangrove distribution due to land cover
change or sea level rise, we restricted our study area to undisturbed
mangrove or EBF pixels. Undisturbed pixels were defined as those that
did not exhibit any detectable land cover changes during 2001-2020
and contained at least 80% coverage of the corresponding forest type,
following established protocols in related studies’®. This approach
enabled us to exclude any noise signals arising from mixed pixels. Spe-
cifically, we first determined an initial undisturbed mangrove extent
by extracting consistent mangrove area throughout the study period
using the latest mangrove layer, Global Mangrove Watch (GMW) v.3.0
(ref. 1). This consistent part is viewed as the areas with no land cover
change during the study period. The mangrove coverage was then
calculated as the percentage of the 30 m undisturbed mangrove area
within each 250 m MODIS pixel. To determine the initial geographic
distribution of undisturbed EBFs, we extracted stable EBF pixels (that
is, those with no land cover change) from the MODIS Collection 6
MCD12Ql International Geosphere-Biosphere Programme (IGBP)
yearly land cover product from 2001 to 2020%¢. We then further calcu-
lated the percentage of the 30 m global forest change map fromref. 87
within each 250 m EBF pixel to determine the EBF coverage. Note that
the EBF layer in the MCD12Q1IGBP classification maps does not contain
mangrove forests, which areinstead classified as ‘permanent wetlands’.
Incases of geographic overlap, the mangrove layer has priority because
of its higher original spatial resolution.

Theabove stepsyielded 3,863,151 mangrove (after tidal filtering)
and 11,997,074 EBF pixels at 250 m resolution, respectively. Among
these, 1,388,324 (35.94%) and 11,744,704 (97.90%) of mangrove and EBF
pixels were identified as pure pixels (coverage >80%) for subsequent
analysis. Given a large proportion of mangroves are mixed pixels and
were excluded from our main analysis, we also examined the NIRv trend
using all 250 m mangroves pixels (with no tidal filtering and includ-
ing mixed pixels). Including all mangrove pixels resulted in a greater
positive trend than using only pure mangrove pixels (Supplementary
Fig.2), which further supports our conclusion that mangroves exhib-
ited stronger productivity enhancement than EBFs. Given the uncer-
tainty associated with the trend derived from mixed pixels, we focus
on pure pixels in our main analysis.

Our study areawas restricted to 0.5° x 0.5° climate grid cells con-
taining the 250 m undisturbed mangrove pixels; EBFs contained in
thesegrid cells were considered to be the nearby terrestrial counterpart
of mangrove forests, as they share the same macroclimatic conditions.
The 250 m MODIS NIRv data were then masked by the undisturbed
mangrove and EBF layers to obtain their NIRv, which were further
aggregated into the 0.5° coastal grid cells by the spatial average to
match the gridded climate data.

ECOSTRESS transpiration data

We obtained ECOSTRESS Level 3 Evapotranspiration scenes
(ECO3ETPTJPL v.1)°° between January 2019 and December 2021 for
our study area. This data product has a 70 m spatial resolution and
a one-to-five-day temporal interval. It provides daily information on
evapotranspiration and the fraction of canopy evaporation. We used
this product to get the canopy transpiration (7.) and aggregated all
available scenes within a year into average daily 7.. The annual total T,
was then obtained by multiplying the average daily 7. by 365 days. We
resampled the T.datato 250 mresolution using the bilinear interpola-
tion method and removed pixels that were not detected as mangroves
or EBFs. The T, of mangroves and EBFs were further aggregated to the
0.5° coastal grid cells by their spatial average.

Estimating trends and IAV
We assessed the temporal trends in annual mean NIRv of EBFs and
mangroves separately for each coastal grid cell using the Theil-Sen
slope estimators and Mann-Kendall trend test method for the period
2001-2020. For better comparisons between mangroves and EBFs,
we normalized the trend (that is, grid-level Theil-Sen slope) by the
20-year mean NIRv for each grid cell, expressed as % yr™'. Normalization
helped toremove the spatial variationsin average NIRv and ensure that
observed differences across space were primarily caused by varying
responses to environmental changes over time®, The significance level
awassetas 0.1, consistent with prior studies on vegetation trends®® ",
toindicate statistically significant increasing (positive Theil-Senslope)
or decreasing (negative Theil-Sen slope) productivity.

The IAV was expressed by the coefficient of variation (CV) of
time-series annual NIRv for EBFs and mangroves separately at grid
level, calculated as:

CV= 2)

®IQ

where orepresentsthes.d. of linearly detrended time-series NIRv dur-
ing 2001-2020 and y is the mean value of time-series NIRv. The
detrended s.d. could make us isolate the effect of the annual trend on
IAV calculation.

To investigate whether mangroves and EBFs differ in their NIRv
trends, we conducted a paired ¢-test analysis on grid cells with sig-
nificant NIRv trends for both mangroves and EBFs. The Wilcoxon
signed-rank test method, the nonparametric version of the paired
t-test, was used if data did not meet the assumptions of normality. With
this paired comparison, we eliminate the differences between EBFs
and mangroves due to geographic mismatch and focus on the climate
impacts. Ourresults, therefore, can be interpreted as how productivity
changesin mangrove and terrestrial EBFs differ under the same climate
change conditions. We also performed arobustness check by compar-
ingallgrid cells, including those that were not statistically significant,
andrepeated the same analyses using independent t-test comparison
onsignificant and all grid cells, respectively.

Attribution of interannual variability in productivity through
factorial simulation

Foreachgrid cell, we investigated the contributions of climate-system
parameters (air temperature, VPD, precipitation and wind speed) and
SSH to the IAV of NIRv in mangroves and EBFs. We did not include the
interannual variability of atmospheric CO, concentration in our IAV
attribution as the atmospheric CO, concentration exhibited minimal
interannual variability (the s.d. of detrended CO, concentrationis only
0.708-0.854 ppm; Supplementary Fig.10). In the attribution analysis,
we used afactorial simulation approach to construct multivariablelin-
ear models, with the detrended NIRv serving as the response variable®.
Specifically, we first established anormal model (S,,,,,) incorporating
all observed independent variables for each grid cell:

NIRV = yo + Y1 X T+ Yypp X VPD + yp X Prec 3
3
+Yws X Wind + Vssu X SSH + €

where y, is the intercept, yr, Yvep, Vp» Yws and yssy; represent the slope
of each corresponding independent variable and ¢ is the model resid-
ual; T, VPD, Prec, Wind and SSH correspond to the detrended time-series
values of the annual mean air temperature, annual mean VPD, annual
total precipitation, annual maximum wind speed and annual mean
SSH obtained fromgridded climate datasets. Although some terrestrial
forests, such as low-lying coastal freshwater forests, can be influenced
by saltwater intrusion®, we found that the EBFs we examined
were almost free from the impacts of sea level variability, as only 0.05%
ofthe EBFs are within2 m of sealevel (Supplementary Fig.11), whichis
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acriterion for determining whether coastal vegetation is influenced
by sea level changes®. As a result, we set ysg; to O when performing
model simulation for EBFs. The partial regression slope of each inde-
pendent variable normalized by the mean annual NIRv was referred to
asclimatic sensitivities. The units of climatic sensitivity are, therefore,
the proportion of change in annual NIRv per unit of change in each
climatic factor. However, since VPD is derived from temperature
according to equation (1), the y; and pypp in S, oma Cannot be directly
interpreted asisolated temperature or VPD sensitivity. We thus ran two
additional models (S;and Sy;,) holding Tand VPD constant (in the first
year—that is, 2001), respectively, and the other four variables to vary
with time. The temperature and VPD sensitivities were then estimated
from the following equations:

ANIRV(s,y-51) = Yo + V1 X AT(s 51 + € @
ANIRV(Snormal—SVPD) = Yo + Vvep X AVPD(SnormaI_SVPD) +€ S
where ANIRV(Snormal—SVPD)’ AT(Snormal_ST) and AVPD(SnormaI_SVPD) represent the

differences in simulated NIRv, observed mean temperature and
VPD between models; y,istheinterceptand sis the residual term; and
yr and yypp are isolated sensitivities of NIRv to temperature and VPD
variation. The contribution of each factor on NIRvIAV was then quanti-
fied as the product of s.d. of each factor and the magnitude of NIRv
sensitivity to that factor determined from equations (3-5). Note
that the CV is a positive value for vegetation, so we used the absolute
value of the sensitivity in quantifying the contribution of each
factor to NIRv IAV. The simulated AIAV (mangroves minus EBFs)
accounted forasubstantial portion of satellite-observed differencein
IAV (R*=0.55 and 0.61 for two environmental forcing datasets;
Extended Data Fig. 7a,c).

Attribution of trend in productivity

Weincluded long-termatmospheric CO, concentrationin trend attri-
bution to account for CO, fertilization on vegetation. To disentangle
the compound effects of air temperature and CO, concentration on
observed NIRv trends, we performed amultivariable linear regression
analysis during the warming hiatus (before 2013 in our study period)®*,
where atmospheric CO, concentration continued to rise butglobal tem-
peratureremained stable. To remove the contribution of the anteced-
ent vegetation conditions to the increase in current NIRv*’, we used a
first-order autoregression model to estimate the slope of the lag-1NIRv
term against the time series of NIRv and then subtracted the product
of the slope and lag—-1NIRv term from raw NIRv time series™. The NIRv
trend was then attributed to each factor in the following equation with
temperature, VPD, precipitation and SSH as control variables:

NIRv = ﬂo +ﬁ'|' X T+ﬁva x VPD +ﬁp X Prec
+ﬁSSH x SSH + ﬁcoz X C02 + €

(6)

where T, VPD, Prec, SSH and CO, represent the raw time series of air
temperature, VPD, precipitation, SSH and atmospheric CO, concentra-
tion during warming hiatus; B, is the intercept; Br, Bvrp, Br and Bssy
represent the slope of each corresponding control variable; Bcq,isthe
CO, fertilization effect; and e is the model residual term. S, was still
setto O for EBFs. Theisolated effects of temperature and VPD on NIRv
trend were quantified using the same approach asin attributing NIRv
IAV. The contribution of each factor on NIRv trend was then quantified
by multiplying the trend of each factor during 2001-2020 and the
corresponding sensitivity of NIRv to that factor. Wind speed was not
included in this trend attribution model to increase the degree of
freedominthe model, considering that wind disturbance often poses
short-termimpacts on mangroves and EBFs. However, we still quanti-
fied their potential impacts on NIRv trend by multiplying yys from
equation (3) and the trend of annual maximum wind speed. We also

tested the contribution of wind speed to NIRv trend by incorporating
itintoequation (6) and found a similar result (Supplementary Fig.12).

Estimating MWUE

The responses of vegetation to variations in precipitation and
CO, concentration are both related to their strategy in water use.
Therefore, to understand the reason behind the different values of y,
and Bco, for mangroves, we calculated the MWUE, the ratio of the
marginalincrease in carbongain to the marginal increase in water loss,
using a partial derivative approach’. Due to the strong correlation
between vegetation transpiration and precipitation, y, can be
expressed as>®:

_ONIRv _ ONIRv _ 0T @
Ye="op T Tor, * 9P
where 2% s the proportional change in NIRv with transpiration vari-

T,
ation,and %‘is the proportional change intranspiration with precipita-

tion, called the marginal biological water use fraction by ref. 28. ONIRY 5

aT,
roughly equal to a;;TP (thatis, MWUE) due to the strong positive correla-

tion between NIRv and GPP. Since the transpiration data provided by
ECOSTRESS is only available from July 2018, we estimate the aaip‘ using

the slope of linear regression model with T, as response variable and
precipitation as independent variable from 2019 to 2021. The MWUE
then could be calculated by substituting from equation (7) as
follows:

S

dGPP _ ONIRv
aT, ~ 0T,

aT.

MWUE = -—
oP

®

=yp/

Weretrieved all these terms for mangroves and EBFs, respectively,
foreach 0.5° coastal grid cell, and compared them between mangroves
and EBFsto gainamechanistic explanation on observed differencesin
precipitation sensitivity.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data used in this study are publicly available. The MODIS 250 m
spectral reflectance data (MOD13Q1 and MYD13Q1) are available
at https://developers.google.com/earth-engine/datasets/cata-
log/MODIS_006_MOD13Q1 and https://developers.google.com/
earth-engine/datasets/catalog/MODIS_006_MYD13Ql. Gridded cli-
mate data used in this study are available in Supplementary Table
2. Forest cover data can be found at the following websites: Global
Mangrove Watch v.3.0 (https://zenodo.org/record/6894273),
MCD12Ql land cover product (https://developers.google.com/
earth-engine/datasets/catalog/MODIS_006_MCD12Q1) and global
forest change map (https://developers.google.com/earth-engine/
datasets/catalog/UMD_hansen_global_forest_change_2021_v1_9).
ECOSTRESS evapotranspiration data canbe accessed at https://www.
jpl.nasa.gov/missions/ecosystem-spaceborne-thermal-
radiometer-experiment-on-space-station-ecostress. Atmospheric
CO, concentration recorded by the Mauna Loa Observatory can be
accessed at https://gml.noaa.gov/ccgg/trends/data.html. The GPP
measurements in the three mangrove sites are available in Supple-
mentary Tablel.

Code availability

The codeusedtoanalyse these dataand generate the results presented
in this study can be obtained from https://github.com/GIS-ZhangZhen/
MangroveGreenness.
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Extended DataFig. 1| The correlation between NIRv and GPP at three mangrove flux sites. The red lines give the fitted mean linear relationship between NIRv
and GPP. Shading indicates the 95% confidence intervals estimated by bootstrapping (n =1000). P values were determined through two-sided Pearson’s correlation
significance test.
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Extended Data Fig. 2| Temporal variations in NIRv of mangroves and EBFs by bootstrapping (n =1000). f-j, Interannual fluctuances in annual detrended
and environmental factors in coastal grids. a-e, Time variations in annual NIRv for mangroves and EBFs over the globe, America, Africa, Asia, and Oceania,
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the overall linear trend. The trend rates in the legend were computed from the inannual temperature, precipitation and sea-level anomaly for the coastal grids
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Kendall trend test. Shading indicates the 95% confidence intervals estimated
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Extended Data Fig. 4| The comparisons between mangroves and EBFs in
their ecohydrological properties. Differences in marginal biological water
use fraction (0T,/0P) (a) and marginal water use efficiency (MWUE) (b). All
comparisons were performed under controlled geographical conditions using
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datalrepresents factors from MERRA2, GPCP,and NOAA CarbonTracker
CT2022 datasets. Climate forcing data 2 represents factors from ERAS, CHIRPS,
TerraClimate and Mauna Loa observatory. Scatter refers to each paired coastal
grid cell (n =1475). The red shaded areas show 95% confidence intervals for the
regression fits. Pvalues were determined through one-sided F-test.
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Data collection  ECOSTRESS transpiration data was downloaded from the original source. MODIS NIRv data and land-cover data used in this study were
preprocessed and exported from Google Earth Engine.

Data analysis The code to estimate NIRv trends and IAV and the climatic sensitivities of mangroves and their adjacent terrestrial forests is available at
https://github.com/GIS-ZhangZhen/MangroveGreenness.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
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All data used in this study are publicly available. The MODIS 250-m spectral reflectance data (MOD13Q1 and MYD13Q1) are available at https://
developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13Q1 and https://developers.google.com/earth-engine/datasets/catalog/




MODIS_006_MYD13Q1. Gridded climate data used in this study are available in the Supplementary Table 2. Forest cover data can be found at the following
websites: Global Mangrove Watch v3.0 (https://zenodo.org/record/6894273), MCD12Q1 land-cover product (https://developers.google.com/earth-engine/
datasets/catalog/MODIS_006_MCD12Q1), and global forest change map (https://developers.google.com/earth-engine/datasets/catalog/
UMD_hansen_global_forest_change_2021_v1_9). ECOSTRESS ET data could be accessed at https://www.jpl.nasa.gov/missions/ecosystem-spaceborne-thermal-
radiometer-experiment-on-space-station-ecostress. Atmospheric CO2 concentration recorded by the Mauna Loa observatory can be accessed at https://
gml.noaa.gov/ccgg/trends/data.html. The GPP measurements in the three mangrove sites are available in the Supplementary Table 1.
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Study description we examined the trend and inter-annual variability in productivity of global mangroves by using 20-years MODIS vegetation index
measurements and further quantified their sensitivities to temperature, precipitation, sea level, wind, vapor pressure deficit, and
CO2 concentration and their unique characteristics compared to the adjacent terrestrial forests.

Research sample We used 30-m resolution mangrove map from Global Mangrove Watch. All pixels mainly occupied by mangroves were used. We did
not perform any post collection sampling.

Sampling strategy No sampling strategy was used.
Data collection The data used in this study are available in public repositories. Links to these repositories are provided in the manuscript.
Timing and spatial scale  We used global MODIS NIRv data and climatic datasets within mangrove areas from 2001 to 2020.

Data exclusions Pixels having land-cover change between 2001 and 2020 were excluded to excluding impacts from direct interfere of human
activities and sea-level rise and to separating the responses to climate change.

Reproducibility Statistical analysis was fully reproduced when all data is analysed, as in this study.




Randomization MODIS 250-m pixels were allocated as mangroves or terrestrial evergreen broadleaf forest according to the corresponding
proportion. For instance, a MODIS 250-m pixel was classified as mangroves if its mangrove proportion is greater than 80%.

Blinding Blinding is not relevant to this study as we do not compare control and treatment groups.
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