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Abstract  Color changes and pattern formations can 
represent strategies of the utmost importance for the 
survival of individuals or of species. Previous stud-
ies have associated capture with the formation of 
blotches (areas with light color) of coral trout, but 
the regulatory mechanisms link the two are lacking. 
Here, we report that capture induced blotches forma-
tion within 4–5  seconds. The blotches disappeared 
after anesthesia dispersed the pigment cells and reap-
peared after electrical stimulation. Subsequently, 
combining immunofluorescence, transmission elec-
tron microscopy and chemical sympathectomy, we 
found blotches formation results from activation of 

catecholaminergic neurons below the pigment layer. 
Finally, the in  vitro incubation and intraperitoneal 
injection of norepinephrine (NE) induced aggrega-
tion of chromatosomes and lightening of body color, 
respectively, suggesting that NE, a neurotransmit-
ter released by catecholaminergic nerves, mediates 
blotches formation. Our results demonstrate that 
acute stress response-induced neuronal activity can 
drive rapid changes in body color, which enriches our 
knowledge of physiological adaptations in coral reef 
fish.

Keywords  Blotches · Coral trout · Chromatosomes 
aggregation · Catecholaminergic neurons · 
Norepinephrine

Introduction

The spectacular variations in animal’s beautiful col-
oration and conspicuous patterns have attracted a 
great deal of attention (Goda and Kuriyama 2021; 
Swierk 2022). For the animals themselves, these color 
changes and pattern formations can represent strate-
gies that are critical to the survival of an individual 
or species (Bandaranayake 2006; Goda and Kuriyama 
2021). Color change is the ability of an organism to 
modify its coloration in response to specific stimuli 
(Figon and Casas 2018). Several biological functions 
have been proposed to explain it, including ther-
moregulation, ultraviolet (UV) protection, crypsis, 
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inter- and intraspecific communication (Figon and 
Casas 2018; Rudh and Qvarnström 2013). Also, some 
cryptic coloration and patterns is useful for avoid-
ing attacks by predatory animals (Fujii and Oshima 
1994). To date, many studies have been devoted to 
shedding light on these color characteristics. It is 
known that, when excited, some animals become 
lighter in color while others darken. These conditions 
are called "excitement pallor" and "excitement dark-
ening", respectively (Fujii and Oshima 1994). Plec-
tropomus leopardus (Lacépède, 1802), commonly 
known as the coral trout (Qu et  al. 2012), usually 
exhibits red (dark-, normal- and light-red) or brown 
(dark-, normal-and light-brown) color patterns (Shi-
mose and Kanaiwa 2022). Studies have reported that 
when under disturbances, such as water flow stimu-
lation and light change, blotches (areas with light 
color) appeared on the fishes. Besides, when they 
are captured, coral trout developed an acute stress 
response and blotches formed on their skin. Further 
observations of the location of pigment granules 
within chromatophores under capture-induced stress 
and non-stress conditions attributed the formation of 
blotches to the aggregation of chromatosomes (Zhou 
et  al. 2021). How to link capture to chromatosomes 
aggregation remains a key question in studies of the 
mechanisms underlying the diversity of body color 
variation in grouper species. Specifically, the pathway 
by which capture cause chromatosomes to aggregate 
in coral trout are yet to be explored.

In fish, changes in color pattern caused by the 
motile activities of chromatosomes, aggregation or 
dispersion, are called “physiological color changes” 
(Fujii 2000; Ligon and McCartney 2016). The motile 
activities are regulated by the endocrine and/or nerv-
ous system, and the changes are rather rapid and 
involved in faster chromatic adaptations (Goda and 
Kuriyama 2021). The coordinating systems for the 
motile activities of chromatosomes found in fish show 
rich diversity (Goda and Kuriyama 2021). Primi-
tive fishes are most susceptible to the influence of 
the hormones, α-melanophore-stimulating hormone 
(α-MSH) (Yamaguchi et  al. 2022), melanophore-
concentrating hormone (MCH) (Enami 1955; Nagai 
et al. 1986), and melatonin (MT) because their physi-
ological color change is mostly controlled by the 
endocrine system (Fujii 2000). In teleosts, a neural 
mechanism is also involved. The peripheral chromatic 
nerves regulating chromatosomes motility belong to 

the sympathetic division of the autonomic nervous 
system (Fujii and Oshima 1986). Previous researcher 
have observed dense networks of nerve fibers around 
the chromatophores (Ballowitz 1893; Yamada, et  al. 
1984). Employing radiolabeling method, Kumazawa 
and Fujii actually showed that norepinephrine (NE) is 
released from nervous elements in response to nerv-
ous stimuli (Kumazawa and Ryozo 1984). Exam-
ples of in vitro incubations with NE can be collected 
from numerous species, e.g., incubation of zebrafish 
Danio rerio melanophores with 5  μM NE resulted 
in complete aggregation of melanosomes within 
5 min (Nguyen et  al. 2006); 3 min after application 
of 5 × 10–6  μM NE, the melanophores and xantho-
phores on isolated dorsal-fins piece of scalycheek 
damselfish Pomacentrus lepidogenys were completely 
aggregated (Kasukawa and Oshima 1987). Although 
the response of pigment cell to NE injection has been 
observed in winter flounder Pseudopleuronectes 
americanus (Burton 1985), the in  vivo effects of 
NE have not been as well studied. Also, whether 
NE is released from neuron close to chromatophores 
remains unclear in coral trout.

The variable and easy-to-observe body color pat-
terns of the coral trout provides a good model for 
studying the physiological changes of body color. In 
the present study, using anesthesia followed by elec-
trical stimulation, we determined that the formation 
of the blotches is regulated by the nervous system. 
Further immunofluorescence labeling with tyros-
ine hydroxylase (TH, the catecholaminergic neurons 
marker (Jones and Beaudet 1987)), transmission 
electron microscopy and chemical sympathectomy 
revealed that the catecholaminergic neurons control 
the formation of blotches. Finally, in  vitro incuba-
tion and in  vivo injection experiments elucidated 
that the catecholamine neurotransmitters NE medi-
ated the  chromatosomes aggregation and body color 
lightening.

Material and methods

Experimental fish

The coral trout were purchased from Xiao Deng Fish-
eries Technology Co., LTD and Xia Shang Aquatic 
Market (Xiamen, Fujian province, China), with body 
lengths of 30—35  cm and weights of 400—450  g. 
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After transfer to our laboratory, the coral trout were 
housed in indoor plastic tanks (upper diameter 
50.5  cm, height 54.5  cm, lower diameter 35.5  cm) 
with seawater at salinity 28 and temperature 25  °C 
for about one week before use. During this temporary 
culture period, fish were hand-fed twice daily with a 
commercial feed (grouper compound feed; TianMa 
Technology Group Co., Ltd., Fujian).

Capture, anesthesia and electrical stimulation 
treatments

We pre-installed a video camera (SONY DSC-
HX300, Japan) outside the tank to record the changes 
in body coloration of coral trout. After recording 
the body color in the unstressed state, the coral trout 
were captured with a fishing net and transferred to 
another transparent tank (30  cm × 16.5  cm × 20  cm, 
length × width × height). Recordings stopped immedi-
ately after the blotches appeared on the fish’s body. 
We selected photographs of the unstressed condi-
tion and the capture-induced blotches. After the fish 
were captured, visible blotches appeared on the dor-
sal, flank, and ventral skin, so we extracted the Red, 
Green, and Blue (RGB) values and color code of the 
3 skin regions using the online tool Color Picker. 
Three randomly selected locations in each region 
with intervals greater than 1 cm were measured, and 
the results are shown as their average values. We then 
transformed the RGB model to an HSL model that 
is closer to the human-eye perception (Sonka et  al. 
2013), where colors are defined by three parameters: 
hue, saturation, and brightness (Urban et  al. 2013). 
Hue values range from 0° to 360°, each representing 
a distinct color. Saturation is measured as a percent-
age from 0% (white) to 100% (fully saturated color). 
Brightness is measured as percentage from 0% (black) 
to 100% (fully bright color) (Cubukcu and Kahraman 
2008). The experiments were repeated three times on 
three different fish (n = 3 fish).

Then, anesthetic MS222 (CAS: 886–86-2; E10521, 
Sigma-Aldrich, USA) was dissolved in seawater of the 
tank with a final concentration of 100 mg/L. Images 
were taken before and after the anesthesia. A JL-A 
electronic stimulator (Shanghai, China) was used to 
perform the electrical stimulation (Figure  S1A). A 
unidirectional square pulse of constant pulse width 
(0.6  ms) with no interphase gap, 40  Hz in stimula-
tion frequencies and 50 V in strength were applied for 

0.25 s. The front end of the electrode was placed on 
the skin of the anaesthetized fish (Figure S1B). The 
stimulation ranges from the position of the electrode 
to the surrounding radiation of about 2.5 cm, similar 
to a circle (Figure S1C-D). Images were taken using a 
camera (SONY DSC-HX300, Japan) before and after 
the electrical stimulation. Meanwhile, HSL values 
were acquired (n = 3) during this process using the 
online tools Color Picker. The video recording was 
shot in the studio in the same shooting mode. The 
experiments were repeated three times on three dif-
ferent fish.

Immunofluorescence

Skin with blotches (1 cm * 1 cm) were dissected care-
fully from the dorsal side with a sterilized scalpel and 
washed three times in phosphate buffer saline (PBS, 
Solarbio, Beijing, China). After that, they were fixed 
in 4% paraformaldehyde (PFA, CAS: 30525–89-4; 
Sigma-Aldrich, USA) for 12  h at 4℃, immersed in 
30% sucrose overnight at 4℃, and then embedded in 
OCT (Sakura Finetek, Torrance, CA, USA). 40-μm 
sections were prepared by a cryostat (Leica CM 1950, 
Leica Biosystems) and used for immunofluorescent 
staining. First, slides were blocked (10% goat serum 
and 0.2% Triton X-100 in PBS) for 1 h at room tem-
perature, incubated with primary antibody (TH, 
mouse, Millipore Cat# MAB318, LOT: 3782107, 
dilution: 1:100) or blocking solution (control) over-
night at 4℃, then incubated with secondary anti-
body (Goat anti-mouse IgG H&L, Abcam ab150113, 
1:250) for 2  h at room temperature. Images were 
acquired using a Leica DM2500 LED optical micro-
scope (Leica, Wetzlar, Germany) equipped with a 
Leica DFC7000 T camera (Leica Application Suite 
X, Leica Microsystems GmbH; Wetzlar, Germany). 
The experiment was repeated three times on three dif-
ferent fish. In each immunofluorescence experiment, 
we dissected 3 locations of skin from a fish, sectioned 
them separately, and finally showed the fluorescence 
results of one of the pieces that could represent the 
whole.

Transmission electron microscopy (TEM)

Skin with blotches was isolated from one coral trout, 
which was later sacrificed. Skin samples were washed 
three times in PBS and then fixed in 2.5% glutaric 
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dialdehyde in 0.2  M phosphate buffer at 4  °C over-
night. After being post-fixed in 2% osmium tetraoxide 
in 0.2  M phosphate buffer for 2  h at 4  °C, the skin 
samples were washed three times in distilled water, 
dehydrated in a graded series of acetone solutions 
(50, 70, 90, and 100%) for 15 min at 4 °C and twice 
each step, soaked in acetone: resin mixture (3:1) twice 
for 30  min, and immediately embedded in a Spurr 
resin (SPI, West Chester, USA). Ultrathin (65  nm) 
sections were cut vertically to the plane of the skin 
using an ultramicrotome with a diamond knife, and 
then mounted on coated copper grids. At last, the sec-
tions were stained with uranyl acetate and lead citrate, 
and observed under an electron microscope (Philips 
CM100, Eindhoven, Netherlands).

Intraperitoneal injection of 6‑OHDA

For chemical sympathetic nerve ablation, 6-hydroxy-
dopamine (6-OHDA), the catecholaminergic neu-
rotoxin (Glinka et  al. 1997; Kostrzewa and Jaco-
bowitz 1974), was applied. 6-OHDA can ablate the 
sympathetic nerve efficiently but spared the sensory 
nerves and other cell types (Shwartz et al. 2020) and 
is known to promote a specific and reversible degen-
eration of the nerve terminals (Junqueira and Salles 
1978). In reasonable amounts, 6-OHDA will destroy 
catecholaminergic neurons with a high degree of 
selectivity (Kostrzewa and Jacobowitz 1974). In this 
study, 6-OHDA solution was prepared freshly by dis-
solving oxidopamine hydrobromide powder (CAS: 
636–00-0; T12352L, TargetMol, USA) in 0.1% 
ascorbic acid in 0.9% sterile NaCl. 120 mg/kg (body 
weight) of 6-OHDA was injected intraperitoneally 
for two consecutive days with an interval of 24  h. 
Control fish were injected with equivalent volume of 
vehicle (0.1% ascorbic acid in 0.9% sterile NaCl). For 
intraperitoneal injections, a sterile disposable injec-
tion needle was carefully inserted into the midline 
between the pelvic fins. The needles were pointed 
towards the head and closer to the pelvic girdle than 
to the anus. The appropriate amount of 6-OHDA or 
vehicle was injected when the needle was felt to pen-
etrate deep into the body wall, after which the nee-
dle was removed. The fish was gently returned to the 
tank after the injection. The injection experiment was 
repeated three times with six fish. The color patterns 

of the skin in two groups were photographed before 
injection and 48 h after the first injection.

Effects of NE on scales chromatophores in vitro and 
body color pattern in vivo

Norepinephrine (NE) (CAS: 51–41-2; N814761, 
Macklin, Shanghai, China) was dissolved into 
10  mL PBS to obtain a solution at a concentration 
of 10 mM and part of the solution was diluted with 
PBS to a concentration of 10 μM. Then, 10 μM NE 
were applied to the excised scales and skin, and the 
PBS was used as control. The morphology changes 
of chromatophores on scales were observed and pho-
tographed using Leica DM2500 LED optical micro-
scope (Leica, Wetzlar, Germany) equipped with a 
Leica DFC7000 T camera (Leica Application Suite 
X, Leica Microsystems GmbH; Wetzlar, Germany). 
The body color pattern change on skin were photo-
graphed using a camera (SONY DSC-HX300, Japan) 
and HSL values were recorded. 1  mL NE (10  mM) 
and PBS (Control) were intrathoracic injected into 
the body of coral trout, respectively. For intratho-
racic injections, a sterile disposable injection needle 
was inserted into the scaly depression at the base of 
the fish’s pectoral fins and pierced towards the front 
of the fish at an angle of 45–60 degrees to the body 
axis to a depth of approximately 1 cm. The fish was 
gently returned to the tank after the injection. The 
changes of body color patterns of coral trout were 
observed and photographed using a camera (SONY 
DSC-HX300, Japan). HSL changes during this pro-
cess were also analyzed. Both in vitro incubation and 
in vivo injections were carried out three times. Each 
experiment was carried out with one fish each time. 
For each fish we randomly chose 3 locations to meas-
ure and averaged them to make n = 1.

Data analysis

The Software SPSS 19.0 (SPSS Incorporation) was 
used for the statistical evaluation. SL values under 
different situations (non-stress vs. capture; before 
vs. after electrical stimulation; before vs. after add-
ing NE) were compared by two-tailed Student’s t-test 
(p < 0.05). The results are displayed as changes in the 
latter situations relative to the former situations. The 
NE injection data were checked for homogeneity of 
variances using a Levene’s test and then analyzed by 
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one-way analysis of variance (ANOVA) followed by 
a Tukey’s test (p < 0.05). The results are displayed as 
changes after NE injection relative to pre-injection.

Results

The formation of blotches is controlled by the 
nervous system

To identify the factors that regulate the formation 
of blotches, we first photographed and recorded the 
process of this body color change. When being cap-
tured, blotches formed rapidly on the skin of coral 
trout, especially dorsal, flank and caudal skin, within 
4–5 seconds (Fig. 1A, B). The hue of the correspond-
ing skin changed from near red to orange (dorsal: 
1°-3° to 12°-13°; flank: 0°-5° to 7°-13°; ventral: 
0°-3° to 9°-12°). Brightness has relatively increased, 
accompanied by a slight decrease in saturation 
(Fig.  1C). Anesthesia then effectively dispersed the 

chromatosomes, causing existing blotches to disap-
pear and the skin to become redder or darker (Fig. 2A, 
B). We therefore hypothesized that the formation 
of blotches might be regulated by neural mecha-
nisms. Subsequent electrical stimulation caused the 
re-formation of the blotches-like pattern on the skin 
(Fig. 2C, D, dotted box areas) and corresponded to a 
change in hue (2–3° to 15–19°) as well as relatively 
higher skin lightness and lower saturation (Fig. 2E), 
which indicated that the blotches are indeed under the 
control of the nervous system.

The catecholaminergic neurons beneath the pigment 
layer control the formation of blotches

The sympathetic nervous system was previously 
reported to be responsible for the flight-or-fight 
response to stressful stimuli (Kindermann et al. 2014), 
which is brought about by the release of catechola-
mines (Maeno and Iga 1992). To determine whether 
the appearance of blotches are under the control of 

A B

C

Fig. 1   Body color pattern of the coral trout Plectropomus 
leopardus under different physiological states. A In the non-
stress condition, the coral trout showed a uniform body color 
pattern. B Blotches formed on the skin 4–5 seconds after being 
captured. C The normalized saturation and lightness values of 

three skin regions under two conditions. Dorsal (white box in 
A &B); Flank (black box in A &B); Caudal (yellow box in A 
&B). n = 3 biological replicates for each condition, two-tailed 
independent samples t-test. All bar graphs are mean ± S.D. *: 
p < 0.05; **: p < 0.01; ***: p < 0.001; n.s.: not significant
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catecholaminergic neurons, we performed immuno-
fluorescence. We observed that TH-positive ( +) neu-
rons (Fig. 3A) were located under the pigment layer 
(Fig. 3B), indicating that these neurons are catecho-
laminergic. In addition, underneath the pigment cells 
in the dermis (Fig. 4A), TEM results showed neurons 
containing multiple myelinated axons with compact 
structure (Fig. 4B).

To further test if activation of catecholaminergic 
neurons is responsible for the appearance of blotches, 
we ablated them with 6-hydroxydopamine (6-OHDA) 
(Fig.  5A). Chemical sympathectomy by 6-OHDA 
promoted an evident and almost immediate paling 
of the coral trout and six hours later, they gradu-
ally became much darker than the controls (data not 
shown). Two days after the first injection, 6-OHDA 

Fig. 2   Changes in blotches 
of coral trout under differ-
ent treatments. A Blotches 
formed on the skin after 
being captured. B After 
MS222 anesthesia, blotches 
disappeared. C, D After 
stimulated with electric cur-
rent (white dotted box area), 
blotches-like pattern formed 
on the skin (black dotted 
box area). E The normal-
ized saturation and lightness 
values of skin before and 
after electrical stimulation 
(ES). n = 3 biological rep-
licates for each condition, 
two-tailed independent sam-
ples t-test. All bar graphs 
are mean ± S.D. *: p < 0.05; 
**: p < 0.01; ***: p < 0.001; 
n.s.: not significant

A

B

C

D

E

A

B

C

D

E

Fig. 3   Immunofluores-
cence showed catechola-
minergic neurons located 
below the pigment layer. A 
Immunofluorescence with 
anti-tyrosine hydroxylase 
(TH) antibody labeling 
catecholaminergic neurons 
in skin of the blotches 
region. B Merge image of 
(A) and bright field show 
the location of TH and 
pigment layer. Scale bars, 
50 μm (A, B)

A B

epidermal

dermal

anterior posterior

TH
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blocked their capacity to show blotches when they are 
captured (Fig. 5B, D), and blotches still formed in the 
control group (Fig.  5C, E). This suggested that cat-
echolaminergic nerves indeed control the appearance 
of capture-induced blotches.

The catecholaminergic neurotransmitter NE mediated 
the pigment aggregation and body color lightening

NE is an important catecholaminergic neurotransmit-
ter that has been reviewed in several articles and is 

A B

Ep

De

Iri

Me

Ma

Ma

Ma

ER

Ma

Fig. 4   TEM showed the structure of neuron. A The neuron in the dermis. Ep, epidermis; De, dermis; Me, melanophores; Iri, irido-
phores; Ne, neuron. B close-up of (A). Ma, myelinated axons; ER, endoplasmic reticulum. Scale bars, 10 μm (A); 1 μm (B)

Fig. 5   The effect of 
6-OHDA on color pattern 
change of coral trout. A 
Schematic of experimental 
design for 6-OHDA injec-
tion and observation. Fish 
in 6-OHDA (B) and control 
(C) groups formed blotches 
after being captured. The 
coral trout injected with 
6-OHDA no longer produce 
blotches (D), while those 
in control group were unaf-
fected (E)

Control 0.1% AC in 0.9% saline

6-OHDA 120mg/kg 6-OHDA

in 0.1% AC in 0.9% saline

1st injection 2nd injection

Chemical
sympathectomy

photograph photograph

0h                              24h 48hA

B

D

C

E
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responsible for signal transmission and leads to pig-
ment aggregation in most fish (Fujii 2000; Fujii and 
Oshima 1994). We therefore assessed the effect of NE 
on the location of pigment granules within chroma-
tophores in vitro and color pattern in vivo. After NE 

treatment, the pigment granules inside the chromato-
phores on the scales (Fig. 6A, B) become aggregated, 
taking on a compact circular shape (Fig. 6C, D). Skin 
treated with NE showed a blotches-like color pattern 
(Fig.  6E, F), along with a change in degrees of hue 

E

F

A C

B D

G

Fig. 6   The effects of NE on chromatosomes in scales and 
skin. A Before NE treatment, the chromasomes were dispersed. 
B close-up of boxed region in (A). C After NE treatment, the 
chromasomes were aggregated. D close-up of boxed region 
in (C). Black arrow and arrowhead, melanophores; red arrow 
and arrowhead, xanthophores; Orange arrow and arrowhead, 
erythrophores. Scale bars, 200  μm (A, C); 50  μm (B, D). E 

The uniform color pattern before adding NE. F The blotches-
like color pattern after adding NE. G The normalized satura-
tion and lightness values of skin tissue before and after adding 
NE. n = 3 biological replicates for each condition, two-tailed 
independent samples t-test. All bar graphs are mean ± S.D. *: 
p < 0.05; **: p < 0.01; ***: p < 0.001; n.s.: not significant



Fish Physiol Biochem	

1 3
Vol.: (0123456789)

(4°-6° to 9°-11°), and a relative increase and decrease 
in lightness and saturation, respectively (Fig.  6G), 
which is consistent with changes during blotches for-
mation. Next, we injected NE intraperitoneally into 
the coral trout (Fig. 7A). Three minutes later, the skin 
around the pectoral fin first turned white (Fig.  7B), 
followed by a gradual whitening of the posterior 
skin (Fig.  7C), with only a small portion remaining 

red after 10  min (Fig.  7D). During this process, the 
degrees of skin hue is gradually increased (9–11° → 
13–14° → 15–16° → 20–22°). Saturation gradually 
decreases and brightness increases (Fig. 7E). Collec-
tively, these data suggest that the coral trout are sen-
sitive to catecholamine neurotransmitter NE, which 
mediated the chromatosomes aggregation and body 
color lightening.

A

C D

B

before 3min 5min 10min

E

before 3min 5min 10min

Fig. 7   The effects of NE on body color patterns of coral 
trout. A Before injection, the blotches formed in the skin. B 
3  min after injection of 10  mM NE. C 5  min after injection 
of 10 mM NE. D 10 min after injection of 10 mM NE. E The 
normalized saturation and lightness values of skin before and 

after NE injection. n = 3 biological replicates for each condi-
tion, one-way ANOVA with Tukey’s multiple comparisons. 
All bar graphs are mean ± S.D. *: p < 0.05; **: p < 0.01; ***: 
p < 0.001; n.s.: not significant
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Discussion

Phenotypic plasticity allows species to survive under 
a wider range of conditions and to respond more 
quickly to environmental changes (Agrawal 2001). A 
notable example of phenotypic plasticity in animals 
is the capacity for color change (Sköld et  al. 2016). 
Studies on color variations in groupers can be found 
scattered in the literatures (Choi, et  al. 2020; CL 
1961; Colin 1992; Deloach 1993; Heemstra and Ran-
dall 1993; Longley 1917; Sadovy and Eklund 1999; 
Townsend 1909; 1929; Watson et al. 2014). As previ-
ously observed in the coral trout, after being captured, 
body color lightened rapidly and blotches formed on 
their skin (Zhou et al. 2021). In this study, we further 
reveal the mechanism of this chromatic change. We 
demonstrate that capture leads to the activation of cat-
echolaminergic neurons, where the neurotransmitter 
NE induces chromatosomes aggregation and blotches 
formation.

Lightening of skin coloration are usually achieved 
through rapid chromatosomes aggregation (Aspen-
gren, et al. 2003b; Kindermann and Hero 2016; Ryan 
et al. 2002), as is the case with coral trout (Zhou et al. 
2021). Measurements of chromaticity parameters, 
the HSL values, provide an objective way to quan-
tify coloration (Yasir and Qin 2009). In this article, 
we therefore further quantify the skin changes during 
blotches formation as a change in hue (from near-red 
toward orange), a relative increase in brightness and 
a decrease in saturation. Then, the disappearance of 
blotches and the reddening and darkening of body 
color after the application of MS222 mean that it 
promoted the dispersion of chromatosomes. This has 
been demonstrated in black striped pipefish Syngna-
thus abaste (Cunha et al. 2017) and leech Placobdella 
parasitic (Smith 1942), where anesthetics performed 
the same function. Second, this result implies that the 
formation or disappearance of blotches is regulated 
by the nervous system, since MS222 has been shown 
to have the ability to block sensory and motor nerves 
(Ramlochansingh et al. 2014). Following this reason-
ing, further electrical stimulation allowed chromato-
somes aggregation, blotches-like pattern reformation 
and consistent HSL values changes that clearly sup-
ported this idea. As described in previous reviews: 
the motor response of chromatosomes due to electri-
cal stimulation is a manifestation of the sympathetic 
control of pigment cells (Fujii 2000).

Acute stress is known to cause transient and 
beneficial “fight-or-flight” responses essential 
for survival (Zhang 2020). Here, we demonstrate 
that acute stress can also cause body color pattern 
changes. The changes may be achieved through acti-
vation of the catecholaminergic nervous system, an 
idea supported first by the observation of TH + cells 
below the pigment layer of the dermis. And then, 
the chemical sympathectomy experiment showed 
that fish injected with 6-OHDA suffered disrup-
tion or perhaps degeneration of catecholaminergic 
nervous connections to chromatophores, as coral 
trout lost the ability to produce blotches after being 
captured. The result of this experiment lend strong 
support to the notion that capture-induced blotches 
formation is indeed controlled by catecholamin-
ergic neurons. Previous study have also reported 
that after injection of 6-OHDA, several other fish 
species lost the capacity to change color accord-
ing to background (Junqueira and Salles 1978a; 
Ryan et  al. 2002). However, additional assays to 
the ultrastructure of catecholaminergic neuron after 
6-OHDA application is necessary to explore deeper 
structural mechanisms.

Having established that blotches formation is 
stimulated by sympathetic nerves, the phenom-
enon following chemical sympathectomy guided 
us to further localize to catecholaminergic neu-
rons. Thus, the role of catecholaminergic neu-
rotransmitters has undoubtedly become the next 
focus of inquiry. Evidence accumulated over the 
past 30  years suggests that NE is the major neu-
rotransmitter of the sympathetic nervous system 
(Nardocci et al. 2014). It has been widely demon-
strated to play a role in inducing pigment granules 
aggregation in melanophores from many species 
of fish, including cuckoo wrasse Labrus ossifagus 
(Andersson et al. 1984; Mårtensson and Andersson 
2000), tilapia Sarotherodon niloticus (Kumazawa 
and Ryozo 1984a), flatfish Pleuronectes ameri-
canus (Burton and Mayo 1995), blue damself-
ish Chyrsiptera cyanea (Kasukawa et  al. 1985), 
blue-green damselfish Chromis viridis (Oshima 
et  al. 1989), medaka Oryzias latipes (Masazumi 
et al. 1985; Uchida-oka and Sugimoto 2001), bal-
lan wrasse Labrus Bergylta (Svensson et al. 1989), 
Atlantic Cod Gadus morhua (Aspengren et  al. 
2003a; Nilsson et  al. 1996; Sköld et  al. 2002), 
two-spotted gobies Gobiusculus flavescens (Sköld 
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et al. 2008), Siamese fighting fish Betta splendens 
(Amiri and Shaheen 2012), peppered catfish Cory-
doras paleatus (Oshima et  al. 2001), Nile tilapia 
Oreochromis niloticus (Oshima et al. 2001), bitter-
ling Acheilognathus lanceolatus (Fujishige et  al. 
2000), winter flounder Pleuronectes americanus 
(Burton and Vokey 2000), White-Spotted Rab-
bitfish Siganus canaliculatus (Amiri 2009), sand 
goby Pomatoschistus minutes (Sköld et  al. 2015), 
spotted snakehead Channa punctata (Biswas et al. 
2014), koi Taisho-Sanshoku (Shinohara et  al. 
2022) and zebrafish Danio rerio (Nguyen et  al. 
2006). As research progressed, evidence on other 
pigment cell types has also been reported. For 
example, in male three-spined stickleback Gas-
terosteus aculeatus, NE had aggregating effects 
on both melanophore and erythrophore pigments 
resulting in blue eyes and a pale jaw. In Scaly-
cheek Damsel fish, Pomacentrus lepidogenys, 
xanthophores responded to NE by pigment aggre-
gation. Under the light microscope, we observed 
three kinds of light-absorbing pigmentary chroma-
tophores in the skin of coral trout, namely melano-
phores, xanthophores and erythrophores (Fig.  6). 
After NE incubation of isolated scales, chroma-
tosomes within three kinds of chromatophores all 
aggregated, suggesting that the treatment with NE 
showed a general pattern for all pigmentary chro-
matophore types in coral trout. And as expected, 
intraperitoneal injection of NE lightens the skin 
from the injection site to the posterior skin and 
ultimately the whole body. Altogether, these 
results strongly indicate that NE is a regulator of 
the blotches formation in coral trout. Although 
additional hormones or neurotransmitters may also 
participate in blotches formation regulation, our 
both in  vitro and in  vivo results suggest that NE 
plays an important role in this process.

One of the extended questions is: after being cap-
tured, why do some parts of the skin become lighter 
while others remain darker? Based on previous 
reports, we hypothesize that this is due to differen-
tial activation of specific areas in the brain regions, 
most likely the mesencephalon. Previous studies 
have given us some hints: in the study of bluegill 
Lepomis tnacrochirus, vertical banding was evoked 
by electrical stimulation in the diencephalon (Dem-
ski 1973). Combined electrical stimulation and seri-
ally section of brains, Bauer further confirmed the 

involvement of the teleostean diencephalon in color 
change and implicates the preoptic area and tha-
lamic-hypothalamic transition zone as the specific 
diencephalic areas involved in the banding response 
of green sunfish Lepomis cyanellus and bluegill 
(Bauer and Demski 1980). It is unfortunate that the 
brain of coral trout is too hard to allow us to make a 
breakthrough in dissection and localization of elec-
trical stimulation. But anyway this provides a direc-
tion for our future work.

The ability to change the color, conformation 
and brightness of body patterns can have signifi-
cant ecological and evolutionary implications. It 
act as a deception mechanism to impair recogni-
tion in cases of mimicry or disruptive coloration, 
or can be used to blend in with background habi-
tats to prevent detection by potential predators or 
prey (Hanlon et  al. 2009; Sköld et  al. 2016 Ste-
vens and Merilaita 2011). In the latter scenario, 
the tropical flounder Bothus ocellatus is almost 
cephalopod-like in its ability to match the sub-
stratum on which it settles (Ramachandran et al. 
1996). In fact, many coral reef-fish species pos-
sess this ability to an extent. For example, spe-
cies that settle for sleep in coral and reef struc-
tures at night also change color, almost invariably 
becoming pale and blotchy. This color change 
presumably aid in camouflage through disruption 
(Marshall et  al. 2019). Although animal camou-
flage is a widespread tactic, dynamic camouflage 
is relatively uncommon and has been rarely stud-
ied in marine teleosts under natural conditions 
(Watson et  al. 2014). There is a small amount 
of evidence from Nassau groupers Epinephelus 
striatus that they are capable of extreme color 
changes from uniform to "banded" or "barred" 
patterns in seconds (rather than minutes), which 
may depend on the fish’s "mood", surroundings 
and activity (Archer et  al. 2012; Heemstra and 
Randall 1993; Nemtzov et  al. 1993). The etho-
logical significance of the rapid blotches forma-
tion in coral trout remains obscure. We speculate 
that capture may have put the coral trout into a 
stressful "mood" of being pursued by preda-
tors, and that the rapid formation of blotches 
may have been an attempt to escape predators by 
matching the background of the coral reefs they 
inhabited. Further behavioral investigations will 
clarify these issues.
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Conclusion

In summary, we demonstrate that the formation of 
blotches in coral trout in response to capture is con-
trolled by catecholaminergic neurons, a process that 
can be mediated by the neurotransmitter NE. These 
results provide valuable evidence for elucidating the 
regulatory mechanism of color change and pattern 
formation in coral trout.
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