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Abstract Riverine nitrogen input into the coastal zone has increased remarkably in recent decades. Yet its
transformation and recycling within hydrodynamically active regions remains unclear. Using observations of
nitrate concentration and dual isotopic composition across the Changjiang River plume within a three
end-member mixing model, we found deviations between the observed and expected values for mixing
alone, revealing the nonconservative behavior of nitrate. Using cross correlations between concentrations
and dual isotope deviations, we identified three nitrogen transformation zones, which correspond to
separate portions of the plume. Nitrification and sedimentary denitrification occurred near the river mouth,
nitrification prevailed further offshore under the plume, and finally, phytoplankton assimilation occurred in
the outer surface plume (>100 km offshore), where it was fueled by nitrate that had already been strongly
modified by microbial processes. Information was assembled into a conceptual model offering an overview
of nitrogen transformations in a large river plume.

1. Introduction

Estuaries and coastal oceans receive riverine nutrient inputs, which have significantly increased in recent
decades (Gruber and Galloway, 2008; Sharples et al., 2017). Anthropogenic inputs have led to a host of
environmental problems, such as harmful algal blooms, eutrophication, and seasonal hypoxia in estuaries
and adjacent coastal areas (Anderson et al., 2002; Billen et al., 1999; Diaz & Rosenberg, 2008), interfering
with the original functions of coastal ecosystems and biogeochemical cycles. Nitrogen (N) is also a pivotal
element in regulating marine primary productivity (Moore et al.,, 2013), and consequently, its availability
affects the sequestration of anthropogenic carbon dioxide in coastal and marginal seas. Thus, improving
our ability to trace N sources, its recycling processes, and dispersal behavior in hydrodynamic plumes offers
broad benefits.

The Changjiang river (CJ) provides the largest freshwater input into the East China Sea (ECS), with an aver-
age flow of 0.03 Sverdrup (1 Sverdrup = 10° m/s, reaching 0.05 Sverdrup during summer flood) placing it
in the top five rivers globally. Its highly turbid plume extends >100 km offshore (Tseng et al.,, 2014), and it
delivers increasingly large N inputs (Dai et al., 2011), which are detectable throughout the ECS (Umezawa
et al, 2014). These N inputs contribute to seasonal hypoxia (in summer when the river flood peaks; Zhu
et al, 2011) and harmful algal blooms (Li et al., 2014). The interaction of the CJ plume with coastal waters
is complex, with strong gradients in turbidity/sedimentation and N biogeochemistry that are also modu-
lated by regional currents (Figure 1a). In particular, the Nearshore Kuroshio Branch Current (NKBC) trans-
ports similar amounts of NO3™ as CJ river to the CJ plume since it has a flow ~10-fold higher (0.4-1.0
Sverdrup) but NO3~ levels ~10-fold lower than that of CJ (Chen, 1996; Tseng et al., 2014; Yang et al.,
2012). Using the stable carbon isotope (5'3C) combined with a three end-member model, Wang et al.
(2016) demonstrated that the summer hypoxia in bottom waters of CJ plume could be attributed to decom-
position of biomass produced by overlying phytoplankton. On the one hand, the intensive remineralization
beneath the plume can be another NOs;™ source to the CJ plume. On the other hand, denitrification in the
sediments may lead to N loss (Song et al., 2013), particularly in summer when DO (dissolved oxygen) levels
are lowest. Thus, under such complex hydrodynamic conditions and intensive biological activities, what are
the dynamics of and biogeochemical controls on the NO5 ™ distribution across the CJ plume? Can we assess
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Figure 1. Maps of the East China Sea (ECS) and the Changjiang offshore: (a) Water circulation pattern in summer, modified from Yang et al. (2012). (b) Sampling
stations with topography (as shown in color contours). In Figure 1a, the pink arrow indicates the main channel, the blue arrow represents the ECS Surface Water
(ECSSW), the gray arrow is the Taiwan Warm Current (TWC), the black arrows are Kuroshio Current (KC) and Kuroshio Branch Current (KBC), the black dashed arrow is
Offshore KBC (OKBC), and the white dashed arrow is the Nearshore KBC (NKBC) underlying the TWC. In Figure 1b, blow-up of the dashed square in Figure 1a, the
transect (blue line) comprises stations (blue dots) from YOA through Y5. Other stations were shown in black circles.

the relative importance of these NOs ™ sources from the CJ, the NKBC, and the remineralization beneath the
plume?

To answer these questions and explore the N transformations in the CJ plume, we conducted a field program
of depth-resolved sampling from the main channel of the river offshore across the shelf (Figure 1b). We mea-
sured the dual isotopic composition of NO3 ™~ (8"°Nnos and 8'80y03), which provides powerful insights into N
transformation processes in complex estuarine and coastal systems (Mobius & Ddahnke, 2015; Umezawa et al.,
2014). In particular, it helps to identify the relative importance of NOs™~ removal (by phytoplankton assimila-
tion in the euphotic zone or denitrification in the subsurface oxygen-deficient zone) versus NO3 ™ supply by
nitrification. This is because the removal processes occur with parallel enrichments in 8"°Nyos and 5'%Onos3
(Deutsch et al., 2009; Korth et al., 2013; Sigman et al, 2003), whereas greater enrichment of 5180,\,03
(5"80N03:0"°Nnos = 1.2-1.6) accompanies nitrification (Dahnke et al., 2010; Ye et al., 2015).

We interpret the NO3™ concentration and its dual isotope variations using a three end-member mixing model
that allows us to distinguish biogeochemical transformations from circulation influences. Within the mixing
model framework, we are able to assess the relative importance of these sources and processes. Accordingly,
we constructed an overall conceptual framework for NO; ™ dynamics during the summer hypoxia period for
the CJ plume, which is likely to have broader applicability and utility to coastal zones influenced by turbid
N-rich river flows.

2. Materials and Methods
2.1. Study Area

The CJ plume is characterized by complex hydrodynamics during summer. The water in the plume is
composed of multiple water sources (Figure 1a) including the CJ freshwater, ECS Surface Water (ECSSW),
and NKBC water (Chen, 1996; Yang et al., 2012).

Our work builds on sparse previous efforts using the single 8'>Nyo3 in the CJ plume. The first work by Liu et al.
(2009) focused on surface waters and thus did not address identification of NO3 ™~ subsurface sources. Similar
work by Yu et al. (2015), again lacking measurements of 5"80n03, Was limited in its assessment of the influ-
ence of nitrification, a common process in coastal waters (Dahnke et al,, 2010; Ye et al.,, 2015). The only dual
isotope work in the CJ plume was conducted by Chen et al. (2013) in spring, a period during which active
NO3™ assimilation by phytoplankton is a dominant control. Our work represents the first attempt to unravel
the multiple N sources and cycling processes within/below the CJ plume in summer.

2.2. Sampling

A cruise was conducted during 15-24 August 2011. A total of 19 stations were sampled to examine the spatial
distributions of NO3™ and its isotopic composition within the CJ plume (Figure 1b; stations Y3, Y9, Y11, and
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Figure 2. Transectional distributions of (a) temperature, (b) salinity, (c) TSM, (d) DO, (e) fluorescence, (f) NO3 , (g9) 5! 5NNO3,
and (h) 5180No3. Note that partial data of temperature, salinity, DO, TSM, and NO3 ™~ presented in Figures 2a, 2b, 2¢, 2d, and
2f were reported elsewhere (Hsiao et al.,, 2014; Tseng et al., 2014).

Y18 were revisited). Water samples were collected using a rosette sampler fitted with 12 L Niskin bottles and a
conductivity temperature depth (CTD) unit (SBE 911, Sea-Bird Co.). Vertical profiles of temperature, salinity,
DO, and chlorophyll fluorescence were sampled at 3 Hz with the CTD lowered at 1 m/s. The CTD data were
averaged at 1 m intervals for presentation. The water depth varied between 6 m in the river mouth to
63 m offshore.

2.3. Isotopic Analyses

Water samples for the isotopic composition of NO, (NO3~ + NO, ) were filtered through cellulose acetate
membranes (0.45 um pore size) and kept at —20°C until determination. Since NO, ™ contributed a small frac-
tion of NO, (2.5 £ 2.2%, n = 64, Table S1 in the supporting information), NO, is referred to as NO3 ™ hereafter.
The isotopic composition of NO;~ was measured using the denitrifier method (Casciott et al., 2002; Sigman
et al, 2001). The analytical precisions for §'°Nyo3 and §'80os of field samples were better than +0.2%o and
+0.5%o (replicate measurements), respectively. Details of the isotopic analyses are in the supporting informa-
tion (Text S1).

3. Results and Discussions
3.1. Spatial Distributions of Water Masses and Isotopic Composition

Water temperature along the transect ranged from 19.5 to 29.5°C with a strong thermal stratification and a
low temperature core (<19.9°C) in the offshore bottom water (Figure 2a). A salt-wedge intrusion pattern
was observed for salinity (Figure 2b). The low-temperature high-salinity core at the bottom at station
Y4/Y4a (T < 19.9°C, S > 34.3) had T-S properties close to those of NKBC (T = 18°C, S = 34.4-34.6; Yang et al.,
2012). High-temperature and high-salinity water was found near the fringe of the surface plume at station Y5,
as influenced by the ECSSW (Wang et al., 2016).

Total suspended material (TSM) decreased from a high of >2,000 mg/L (YOA) to 20 mg/L (2Y3) >100 km
offshore. TSM was <5 mg/L in the whole outer plume, except for the bottom layers near shore (Figure 2c).
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DO exhibited strong vertical variations, with the highest values at the surface in the outer plume and the
lowest values at the bottom (Figure 2d). Note that the zone with the lowest DO (<3.5 mg/L) was well inshore
from the center core of the NKBC. Chlorophyll fluorescence was highest in the offshore surface waters
(Figure 2e), where stratification was strongest and turbidity lowest.

Concentrations of NO3~ showed a seaward decreasing pattern (Figure 2f), with the highest value
(150.5 umol/L) in the river mouth and the lowest (4.2 umol/L) in the surface layer at offshore station Y5.
Moderate concentrations of NOs ™~ appeared in the middle part of the transect (stations Y3a/Y4) with less ver-
tical variations. The spatial distributions of T, S, and NO3™~ suggested that CJ and NKBC were two important
NOs™~ source waters, diluted into the oligotrophic waters of the ECSSW.

Along the transect, distinctively high values of 8'°Nyo3 (>7%o) and §'80y0s (>5%0) were found in the off-
shore surface water (Figures 2g and 2h). The highest values (8" Nnos of 15.9%o0, §'80Nos of 14.0%0) appeared
in the very surface waters of station Y4a/Y5, where NO3~ concentrations were lowest. These were accompa-
nied by high chlorophyll fluorescence, implying active NOs™ assimilation by phytoplankton. In comparison to
the high isotope values in the surface layer, the §'>Nyos (4.9-6.0%0) and &'80no3 (1.7-3.9%o) values of deeper
waters and at the river mouth were both lower and less variable.

3.2. Identification of N Transformations in the CJ Plume

To examine the biological influences on NO; ~, we applied a three end-member model (Alvarez-Salgado et al.,
1997) to calculate water mixing ratios and thus the NO3™ concentrations expected from the physical mixing
alone (C,,). Any deviations between observed and expected values (Cyps — Cex, denoted as “NOs-offset” here-
after; see vertical red lines in Figure S1b) represent biological alteration (i.e., in situ consumption or produc-
tion). Following the same procedure, the isotope-offsets (5'°Nyos-offset and §'80yos-offset) can be obtained
and used to identify the processes involved. Details of the end-member selection and the mixing calculations
are provided in the SI (Text S2 and S3, Figure S1, and Table S2). This approach has been successfully applied to
evaluate biological influences of macronutrients and carbonate system (Cao et al., 2011; Han et al,, 2012).

To reveal NOs™ sources and dynamics, we plotted the isotope-offsets versus the NOs-concentration-offsets
(Figures 3a and 3b). According to the distributions of data points in these plots, we classified the samples into
three zones, representing specific N transformation processes. The three zones were Zone 1: the water-
column nitrification and sedimentary denitrification; Zone 2: the remineralization-nitrification; and Zone 3:
the assimilation. The information on the N transformation processes is presented spatially (Figures 3d-3f)
and separated into three regions. We now discuss offsets in these zones, in terms of both identifying the main
processes involved and semiquantifying them.

The Zone 1 compositions appeared mainly near the river mouth (Figures 3c-3f). In Zone 1, we can see
obvious NO;™ deficits (—0.2 to —12.5 umol/L) accompanied by slightly negative §'°Nyos-offsets (—0.1 to
—0.6%o) and significantly positive 580y 03-0ffsets (+3.0%o). As noted in the introduction, both assimilation
and denitrification could explain NOs;™ loss. However, NO3 ™ assimilation by phytoplankton should be limited
by the high turbidity in Zone 1 (Figure 2c) although we cannot completely exclude this possibility since fluor-
escence was detectable. Yet from the investigation in the same cruise, both chlorophyll and APA were
reported to be allochthonous (Tseng et al, 2014). Moreover, the DO concentrations (2.9-6.2 mg/L,
Figure 2d) were sufficient to inhibit denitrification in the water column (Codispoti et al., 2001), supported
by the undetectable denitrification rates within 24 h incubation (Text S4). Thus, the best explanation is loss
of NO3;~ by sedimentary denitrification, which is consistent with the high denitrification rates previously
observed in river mouth sediments (10-20 nmol/cm>/h; Song et al., 2013). Sedimentary denitrification gen-
erally occurs with no isotope effect if all NO3™ is consumed (Brandes & Devol, 1997; Lehmann et al., 2004);
thus, it does not leave any signature in water-column 8"°Nno3 and 5'80yos. However, partial denitrification
(i.e., with some release of NO3 ™ to the water column due to the strong tidal mixing) could also occur in water—
sediment interface, provided the associated increase of both 8"°Nno3 and 8"80n03 (Prokopenko et al., 2011).
Nevertheless, the above increase of §'°>Nyos was overwhelmed by the impact of water-column nitrification
since it lowers 8'°N in regenerated NO3 ™~ (Sugimoto et al.,, 2009; Wankel et al., 2009). Active nitrification rates
were observed in the water column near the turbid river mouth during the same voyage (Hsiao et al., 2014).
Moreover, positive correlations were also observed among nitrification rate, TSM, and particle associated
amoA-type nitrifying microorganisms (Zhang et al., 2014).
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Figure 3. (left) The scatter plots for (a) 515NN03—0ffset and (b) 8! 8ON03—offset versus NOs-offset. (right) The distributions of
(c) three zones, (d) NOs-offset, (e) 515NN03—offset, and (f) 6180No3—0ffset. The blue crosses, red crosses, and pink circles
are for Zone 1, Zone 2, and Zone 3, respectively. In Figure 3¢, isopleths of fluorescence (pink, arbitrary unit) and DO

(red, mg/L) were marked.

In summary, all observations categorize Zone 1 as dominated by water-column nitrification and sedimentary
denitrification. The difference in the integrated effect of these processes is obviously given by the net
decrease in NO3 ™. Using isotope mass balance, it is possible to go further and make an estimate of the
nitrification/denitrification ratio. The required equations and details of assumptions, calculations, and error
minimization are provided in the SI (Text S5). The result leads to an error minimization estimate of 0.60 for
the nitrification/denitrification ratio. Thus, the 3.4 + 3.2 umol/L (n = 26) of NO3 ™~ deficit results from the com-
bination of 8.4 + 8.1 umol/L denitrification loss and 5.0 + 4.9 umol/L nitrification gain, so that roughly in total
~35% of the NOs™ present (38.8 + 37.5 umol/L) has been microbially transformed in Zone 1. Most impor-
tantly, the isotopic results make it unassailably clear that nitrification and denitrification strongly modulate
the riverine NOs™ source before it is dispersed offshore to fuel phytoplankton assimilation.

In Zone 2, the most distinctive feature was a patch of highly elevated NO; ™ near the bottom (Figure 3d). This
distribution overlaid the low DO region (<3.5 mg/L, Figure 3c). In these waters, the 8'°Nyos-offsets ranged
narrowly from —0.7 to —0.1%eo (Figure 3e), while the 5'80p03-0ffsets were significantly higher ranging from
+0.1 to +2.8%o (Figure 3f). The most plausible cause to support this excess NO;~ and lower §'°Nyo3 was the
remineralization and nitrification of particulates organic matter deposited from the upper layers. This notion
is also supported by the 5'3C budget (Wang et al., 2016), demonstrating that the DO decrease in this zone
was induced by the remineralization of autochthonous organics produced in the surface layer. Both the
relatively long residence time of the bottom waters (~11days; Rabouille et al, 2008) and low DO levels
(<3.5 mg/L) provide further evidence of organic matter remineralization.

In Zone 2, similarly to Zone 1, water-column denitrification could not be detected (Text S4), although DO
values in Zone 2 were lower than those of Zone 1. Apparently, the lower DO values did not reach the
threshold for water-column denitrification (<5 pmol/kg; Codispoti et al., 2001). Judging from the low TSM
concentrations, the proposed mechanism for partial denitrification due to strong tidal mixing is unlikely in
Zone 2. There may have been an influence from complete denitrification within the sediments, since it does
not leave a signature in the water column of NO3 ™ isotopic composition. Nevertheless, the same semiquan-
titative analysis for Zone 2 as conducted in Zone 1 suggests that the influence of complete denitrification
from sediments was limited (nitrification/denitrification ratio > 2.2; Text S5 and Figure S3b).
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In Zone 3, the surface outer plume, significant NO;™~ deficits occurred (—4.5 to —25.5 pmol/L; Figure 3d)
accompanied by positive §'°Nyos-offsets (+0.5 to +9.6%o; Figure 3e) and §'80yos-offsets (+2.2 to +14.1%o;
Figure 3f). This suggests the dominance of the NO3™ assimilation by phytoplankton, consistent with the high
fluorescence (>3.6, arbitrary unit; Figure 3c). The relative enrichment of §'®0no3 and 8'>Nyos displayed a lin-
ear trend of 1:1 (Figure 4a), also as expected for assimilation by phytoplankton (Granger et al., 2004, 2010;
Karsh et al., 2014). However, several data points (Y4, Y4a, 2Y10, and 2Y18) deviated from the 1:1 line, which
can be attributed to nitrification as producing a positive shift in 8'80p03 relative to §'°Nyos in recycled
NOs~ (Wankel et al.,, 2009). Similar phenomena were found in several field studies, such as the German
Bight (Dahnke et al., 2010) and the Pearl River estuary (Ye et al., 2015). Alternatively, NOs ™ uptake by hetero-
trophic a-proteobacteria can also result in such deviation since it fractionates §'80yo3 and 8'°Nyos unevenly
with a slope of 2 (Granger et al., 2010).

The overall 1:1 correlation of dual isotope in Zone 3 suggests that the data may be used to deduce the iso-
tope effect of phytoplankton assimilation, as done in previous studies (Mbius & Dahnke, 2015; Sigman et al.,
1999). In doing this, it is important to note that the 1:1 linear trend (Figure 4b) did not originate from the CJ
end-member or the mixing line of CJ and NKBC. It derives from a NO5 ™~ source with a narrow range of 3'°Nyos
and 5'®0y03 (as shown in blue and red shade), representative of the microbially altered conditions in Zone 1
and Zone 2. This confirms that the NO3 ™ utilized by phytoplankton growth may have been altered by micro-
bial processes prior to assimilation. It counters the conventional thought that in surface river plumes,
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phytoplanktons use NOs™ directly discharged from the major NO3™ supplier, which in this case is the CJ.
Although the mixing model suggests that the CJ dominates the NO3™ inventory in the surface 15 m
(>55%; Figure S2b), the NOs3~ for phytoplankton assimilation is actually a mixture of microbially
transformed NO3~ from Zone 1 and Zone 2. To further evaluate the relative contribution from the NKBC is
difficult since the NKBC end-member fell close to the fields of Zone 1 and Zone 2.

After recognizing the importance of recycled NO3™ as the source to fuel phytoplankton growth, we tried to
estimate the isotope effects (¢) during assimilation (Sigman et al., 1999; Sugimoto et al., 2009). As shown in
Figures 4c and 4d, the Zone 3 data are compatible with ¢ values ranging from 5%o to 10%o, for either
Rayleigh model or steady-state model, with the former more readily fitting the highest isotope values.
These ¢ values fit well with results for diatom cultures (5-18%o; Granger et al., 2004; Needoba et al., 2003),
and based on previous studies (Furuya et al., 2003; Liu et al., 2016), diatoms are indeed the dominant species
in the CJ plume during summer. Overall, the data are too scattered to make precise estimate of ¢ values.
Importantly, incorrectly low ¢ values would be inferred by connecting the Zone 3 assimilation process with
the NO3 ™ source composition from CJ.

3.3. Conceptual View of N Transformations in the CJ Plume

We summarize the multiple zones and overall N processing in the CJ plume in a conceptual diagram
(Figure 5), showing the coupling of water-column nitrification and sedimentary denitrification near the river
mouth, intensive remineralization and nitrification in the low-DO bottom water, and NOs;™ assimilation in the
surface outer plume. This sequence of processing and zones is likely to occur in many river-impacted coastal
systems, although their relative intensities may vary seasonally and yearly. The combination of mixing model
and NO3™ dual isotope to identify biogeochemical transformations, and their spatial localization relative to
physical characteristics (such as riverine flows, bathymetry, and resuspension/turbidity), offers a powerful
approach to broadening our understanding of the changing coastal zones. Use of this formalism is likely to
allow an emerging picture to be resolved more rapidly, including both similarities and contrasts among
different systems.
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