Enhanced phosphate consumption stimulated by nitrogen fixation within a cyclonic eddy in the Northwest Pacific

Zhongwei Yuan¹,², Thomas J. Browning², Chuanjun Du³, Hui Shen¹, Lei Wang⁴, Yifan Ma¹, Zong-Pei Jiang⁵, Zhiyu Liu¹, Kuanbo Zhou¹, Shuh-Ji Kao¹, Minhan Dai¹*

¹State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
²Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
³State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
⁴Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
⁵Ocean College, Zhejiang University, Zhoushan, Zhejiang, China

Corresponding author: Minhan Dai (mdai@xmu.edu.cn)

Key Points:

- Lower phosphate concentrations were observed above the nutricline within the eddy core in comparison to the edge
- Enhanced N₂ fixation within the eddy core is proposed to have driven increased phosphate consumption
- No substantial total phytoplankton biomass increase was found within the eddy core
Abstract

Mesoscale eddies are common in the subtropical Northwest Pacific, however, relatively little is known about their spatial variability and temporal evolution, and how these impact upper ocean biogeochemistry. Here we investigate these using observations of a cyclonic eddy carried out along four sequential transects. Consistent with previous observations of cyclonic eddies, the eddy core had doming isopycnals, bringing elevated nutrient waters nearer to the surface. However, we also found that the upper layer of the eddy above the nutricline had significantly lower phosphate concentrations within its core relative to its edge. We attributed this to elevated N$_2$ fixation within the eddy core, which was likely driven by enhanced subsurface iron supply, ultimately resulting in increased phosphate consumption. Eddy-enhanced N$_2$ fixation was additionally supported by the elevation of nitrate + nitrite to phosphate ratios below the euphotic zone. Moreover, we observed that while the upward displacement of isopycnals within the eddy core led to an increase in phytoplankton biomass in the lower euphotic zone, there was no significant increase in total phytoplankton biomass across the entire euphotic zone. Cyclonic eddies in the subtropical North Pacific are projected to be becoming more frequent, implying that such dynamics could become increasingly important for regulating nutrient biogeochemistry and ultimately productivity of the region.

Plain Language Summary

Cyclonic eddies are oceanographic features leading to upward transfer of deep-water nutrients that support phytoplankton growth in the sunlit surface ocean. In the low-nutrient Northwest Pacific, cyclonic eddies are considered to be an extremely important nutrient source in alleviating nutrient limitation; however, their biogeochemical effects are not well-examined, in particular in the upper layers where nutrients are below the detection limit of conventional techniques. By examining a cyclonic eddy with four sequential transect observations, our results showed that the eddy core had higher nutrient concentrations in the lower euphotic zone compared to the eddy edge, consistent with previous studies; in contrast, concentrations of phosphate in the upper surface layer had significantly lower values within the core relative to those at the edge. Surface rate measurements suggested that this lower phosphate was potentially driven by elevated N$_2$ fixation, likely due to enhanced iron supply from depth, thereby resulting
in additional consumption of excess surface phosphate. However, this increased nutrient supply did not lead to the enhancement of total phytoplankton biomass across the entire euphotic zone.

1 Introduction

The biological pump, which sequesters carbon into the deeper ocean via sinking particles, concomitantly removes nutrients from the surface ocean (Ducklow et al., 2001). This can draw down nutrients to levels limiting phytoplankton growth (Moore et al., 2013). Processes of vertical diapycnal mixing, vertical and lateral advection, N2 fixation and atmospheric nutrient deposition collectively resupply nutrients to the surface ocean (Duce et al., 2008; Karl et al., 1997; Letscher et al., 2016; Lewis et al., 1986). Episode features, such as those regulated by mesoscale cyclonic eddies, may form a vital constituent of the annual nutrient supply, probably contributing to >20% of the nitrogen (N) requirement to support observed global new production—the fraction of primary production fueled by newly supplied N (Garçon et al., 2001; Johnson et al., 2010; McGillicuddy et al., 1998, 2007; McGillicuddy & Robinson, 1997; Oschlies & Garçon, 1998).

Mesoscale cyclonic eddies with radius scales on the order of 100 km are ubiquitous features of the open ocean (Chaigneau et al., 2009; Chelton, Schlax, et al., 2011). These features shoal the thermocline, thereby influencing nutrient availability and subsequent phytoplankton community responses in the upper ocean (e.g., Barone et al., 2022; Benitez-Nelson et al., 2007; Falkowski et al., 1991; Hawco et al., 2021; McGillicuddy et al., 1998, 2007; Zhou et al., 2023). Previous studies of the biogeochemical impacts of cyclonic eddies tended to focus on either comparing the difference within (where the maximum vertical isopycnal displacement occurred) and outside one specific eddy (Allen et al., 1996; Benitez-Nelson et al., 2007; Brown et al., 2008; Browning et al., 2021; Q. P. Li & Hansell, 2008; Vaillancourt et al., 2003), or contrasting between different eddies (Barone et al., 2022; Dufois et al., 2016; Dugenne et al., 2023; Guidi et al., 2012; McGillicuddy et al., 2007; Rii et al., 2008; Seki et al., 2001; Yun et al., 2020; Zhou et al., 2020, 2023). It has been proposed that submesoscale structures (i.e., oceanic motions with spatial scales of 0.2–20 km) within eddies, such as spiral bands, could supply more nutrients compared with when only larger-scale processes are considered (Klein & Lapeyre, 2009; Z. Zhang & Qiu, 2020). Additionally, cyclonic eddies at different developmental phases, such as...
intensification (that is, nutrient injection into the euphotic zone stimulates a biological response),
mature (that is, a cyclone attains its maximum tangential velocity, production rate, and highest
biomass), and decay (that is, the doming of the isopycnals relaxes and tangential velocity
decreases), would also shape variable intensity in nutrient injection and subsequent differences in
biological community composition (Rii et al., 2008; Sweeney et al., 2003). To date, however, the
effects of spatial variability along with eddy evolution on upper ocean biogeochemistry within
cyclonic eddies remain poorly understood, due partly to their ephemeral nature and
undersampling.

The subtropical Northwest Pacific, characterized by low nutrients and low phytoplankton
biomass (Dai et al., 2023; Martiny et al., 2019), is increasingly impacted by eddies (Chelton,
Schlax, et al., 2011; Y. Liu et al., 2012; Qiu & Chen, 2010). Accordingly, upwelling of deep
waters in this region via cyclonic eddies could facilitate an enhanced nutrient supply into the
euphotic zone, potentially temporarily alleviating limitations on bulk phytoplankton growth
imposed by N, phosphorus (P), and/or iron (Fe) availability (Browning et al., 2022; Q. Li et al.,
2015; Moore et al., 2013; Yuan et al., 2023). This process may additionally impact the growth of
N$_2$-fixing microorganisms (diazotrophs) owing to the altered supply rate of N relative to that of
Fe (Ward et al., 2013; Wen et al., 2022). In this context, we performed a comprehensive
investigation of a cyclonic eddy in the subtropical Northwest Pacific, with four sequential
transect observations to determine the spatio-temporal variabilities of the upper ocean
biogeochemistry.
the upper 200 m, followed by 300, 400, and 500 m, using 12-L Niskin sampling bottles alongside a conductivity-temperature-depth (CTD) profiler. The mixed layer depth (MLD) was calculated using the threshold method of de Boyer Montégut et al. (2004). Here, the MLD is determined as the depth where a density difference of 0.125 kg m\(^{-3}\) from that at a 10 m reference depth is reached. The photosynthetically active radiation (PAR) sensor attached to the CTD was used to identify the euphotic zone (here defined as the 0.1% surface PAR, \(Z_{eu}\); Table 1). A significant correlation between the depth of \(Z_{eu}\) (those collected during daytime) and the depth of deep chlorophyll maximum (DCM) was observed (\(Z_{eu} = 0.47 \times \text{DCM} + 99.95, R^2 = 0.55, n = 19, p < 0.001\)). The depths of \(Z_{eu}\), where PAR was not measured, were then estimated using this relationship (Table 1). The altimetric Mesoscale Eddy Trajectory Atlas products were extracted from the AVISO+ website (https://data.aviso.altimetry.fr/aviso-gateway/data/META3.1exp_DT/META3.1exp_DT_allsat/). Daily sea level anomaly (SLA) at 0.25° resolution based on satellite altimetry measurements was obtained from the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/). The satellite-derived chlorophyll \(a\) for April 2019 at 9 km resolution was downloaded from the NASA Ocean Color website (standard MODIS-Aqua L3 product, https://oceancolor.gsfc.nasa.gov).

2.2 Nutrients and dissolved oxygen

Nutrient samples (nitrate plus nitrite, \(N + N\); phosphate; silicate) were collected in acid-washed Nalgene HDPE bottles and immediately measured colourimetrically onboard using a Four-channel Continuous Flow Technicon AA3 Auto-Analyzer (Bran-Lube GmbH) (Han et al., 2012). The concentration of nitrate was then determined by subtraction ([NO\(_3\)] = [N + N] – [nitrite]). The detection limits for nitrate (NO\(_3\)\(^{-}\)), nitrite (NO\(_2\)\(^{-}\)), phosphate (PO\(_4\)\(^{3-}\)), and silicate (Si(OH)\(_4\)) were 0.03 \(\mu\text{mol L}^{-1}\), 0.02 \(\mu\text{mol L}^{-1}\), 0.03 \(\mu\text{mol L}^{-1}\), and 0.05 \(\mu\text{mol L}^{-1}\), respectively, and the analytical precisions (repeat measurements of aged deep seawater) were 0.9\% for NO\(_3\)\(^{-}\) (38.28 ± 0.35 \(\mu\text{mol L}^{-1}\), mean ± s.d., \(n = 56\)), 52.3\% for NO\(_2\)\(^{-}\) (0.065 ± 0.034 \(\mu\text{mol L}^{-1}\), \(n = 56\)), 1.7\% for PO\(_4\)\(^{3-}\) (2.749 ± 0.047 \(\mu\text{mol L}^{-1}\), \(n = 56\)), and 0.5\% for Si(OH)\(_4\) (148.4 ± 0.8 \(\mu\text{mol L}^{-1}\), \(n = 56\)). Certified reference materials Lot. BZ and Lot. CB (RMNS; KANSO CO., LTD.) were routinely analyzed alongside nutrient samples (Table S1). Nanomolar techniques were then employed for those samples whose concentrations were initially identified as being below 0.1 \(\mu\text{mol L}^{-1}\) for \(N + N\) and 0.08 \(\mu\text{mol L}^{-1}\) for PO\(_4\)\(^{3-}\) via analysis by the AA3 Auto-Analyzer.
Nanomolar phosphate samples (typically above 200 m) were collected and immediately determined onboard by using a sequential injection system combined with a HLB solid-phase extraction cartridge (Ma et al., 2008). The standard calibration was performed in the range of 0 to 80 nmol L\(^{-1}\). The detection limit was 2.1 nmol L\(^{-1}\) and the analytical precision was 7.4% (repeat measurements of aged deep seawater with 1000-fold dilution, 27.5 ± 2.0 nmol L\(^{-1}\), n = 56). Nanomolar N + N samples (typically above 200 m) were collected and frozen at –20°C until analysis on land. Measurements were conducted using a continuous flow analysis system (without gas-segmented constitute) combined with a liquid waveguide capillary flow cell (J. Z. Zhang, 2000). The standard calibration was performed in the range of 0 to 200 nmol L\(^{-1}\). The detection limit was 3.7 nmol L\(^{-1}\) (10 × the standard deviation of the blanks) and the analytical precision was 6.4% (repeat measurements of aged deep seawater with 1000-fold dilution, 39.5 ± 2.5 nmol L\(^{-1}\), n = 56).

Dissolved oxygen (DO) samples were collected in 60 mL biological oxygen demand bottles and measured onboard within ~12 h using the spectrophotometric Winkler method (Labasque et al., 2004). Before measurement, the samples were placed in a thermostatic bath at 25.00 ± 0.01°C for ~ 1 h. Subsequently, spectrophotometric analysis was performed at 466 nm using the SHIMADZU UV-1800 Spectrophotometer (Shimadzu Suzhou Instruments Manufacturing CO., LTD.). The repeatability of 12 samples taken from the same Niskin sampling bottle was 0.18% at the 200 μmol L\(^{-1}\) level. The relative standard deviation of the slopes of standard curves was 0.25% (n = 11). The differences between the duplicate samples were < 1 μmol L\(^{-1}\) (n = 968).

2.3 \(\text{N}_2\) fixation and particulate organic carbon/nitrogen (POC/PON)

Rates of \(\text{N}_2\) fixation were determined using the enriched water method (Mohr et al., 2010; Wilson et al., 2012). The \(^{15}\text{N}_2\)-enriched seawater was made with \(^{15}\text{N}_2\) gas (98.9 atom %, Cambridge Isotope Laboratories) according to Shiozaki et al. (2015). In order to determine whether \(^{15}\text{N}_2\) gas stock contained \(^{15}\text{N}\)-labeled ammonium, nitrate and/or nitrite, and nitrous oxide contaminants (see Dabundo et al. 2014), a blank check for \(^{15}\text{N}_2\) gas was performed (Lu et al., 2018). The δ\(^{15}\text{N}\) values of total dissolved nitrogen (including ammonium, nitrate and/or nitrite, and nitrous oxide) from natural seawater with and without \(^{15}\text{N}_2\) gas injection were 5.0‰ and 4.7‰, respectively, suggesting no potential contamination of the stock. Samples for \(\text{N}_2\) fixation analyses were collected in triplicate 1.2 L Nalgene polycarbonate bottles at six or seven depths.
from surface to 180 m (detailed depth profiles of N₂ fixation rates will be presented in another independent manuscript). Samples were spiked with 100 mL ¹⁵N₂-enriched filtered seawater prepared at the same site. The final ¹⁵N₂ enrichment in the incubation bottles was not measured directly during this research cruise. Instead, the dissolved ¹⁵N₂ atom % was measured in a shore-based laboratory by simulating the onboard incubation procedures (same approach, reagents, and equipment as for the field study described here). Measurements were conducted using membrane inlet mass spectrometry (MIMS), and the ¹⁵N₂ atom % in the incubation bottles ranged from 8.30 to 8.55 atom %, with a mean ± s.d. of 8.42 ± 0.09 atom % (n = 6). The average value of 8.42 atom % ¹⁵N₂ enrichment was used to calculate N₂ fixation rates in this study. Samples were placed in on-deck incubators cooled by flowing surface seawater. Incubators were screened with neutral density and blue filters (061 Mist blue; 172 Lagoon Blue), which maintained near in-situ irradiance. During the incubation period, the light intensity was monitored on deck with a flat 2π PAR sensor (PQS 1 PAR Quantum sensor) at one-minute intervals. After 24 hours of incubation, water samples were filtered onto pre-combusted (450°C, 4 hours) 25 mm glass fiber filters (GF/75, 0.3 μm pore size; Advantec), and the particle samples at the beginning were also collected to determine background δ¹⁵N values. All the filters were immediately frozen onboard at −20°C. The PON on the filters was oxidized to NO₃⁻ using the wet digestion method (Knapp et al., 2005; Wan et al., 2018). Briefly, each filter was placed into a 12 mL pre-combusted borosilicate glass tube with 0.3 mL of purified persulfate oxidizing reagent (POR) and 5 mL of deionized water (MilliQ, Millipore), tightly capped, and autoclaved for 1 hour under 120°C, after which sample pH was adjusted to neutral with 6 mol L⁻¹ HCl (ACS-grade, Merck). The NO₃⁻ concentration after digestion was measured by the chemiluminescence method (Braman & Hendrix, 1989). Before the use of POR, the residual NO₃⁻ concentration in the initial POR (referred to as POR blank) was measured and ensured to be less than 2 μmol L⁻¹ in the digested solution. In addition, the unused filters were randomly selected to estimate the filter blank (less than 6 nmol N). The POR blank and filter blank typically accounted for less than 1% and 3% of the total N content in our samples, respectively. The δ¹⁵N values of the PON-derived NO₃⁻ were determined using the denitrification bacterial method coupled to a GasBench isotope ratio mass spectrometer (Thermo Fisher Delta V) in a shore-based laboratory (Casciotti et al., 2002; Sigman et al., 2001). The δ¹⁵N values of NO₃⁻ were calibrated against NO₃⁻ isotope standards USGS 34, IAEA N3 and USGS 32, with analytical accuracies better than ± 0.3‰ according to analyses of
these standards at an injection level of 20 nmol N. The N\textsubscript{2} fixation rates were then calculated
according to Montoya et al. (1996). The detection limits were constrained by taking 4\% as the
minimum acceptable change in δ15N of PON, which corresponded to a range of 0.02–0.08 nmol
N L−1 d−1 for PON concentrations ranging from 0.12–0.20 μmol N L−1.

Samples for POC/PON analyses were filtered through pre-combusted 25 mm diameter
Whatman QM-A quartz microfiber filters (1.0 μm pore size). Filters were dried overnight
onboard at 50°C and stored in polycarbonate dishes for analysis on land. Filters were analyzed
after carbonate removal by acid fumigation using a PE-2400 SERIES II CHNS/O elemental
analyzer according to the JGOFS protocols (Knap et al., 1996). Acetanilide (Merck) standards
were routinely analyzed alongside every set of 8 samples. The average blank values for C and N in
the filters were 6.4 μg and 1.4 μg, respectively. The precision was better than 10% based on
replicate analyses of random samples.

2.4 Phytoplankton community structure

Samples for phytoplankton diagnostic pigment analyses were filtered onto 47 mm
diameter Whatman GF/F filters, frozen at −80°C, then later extracted with 2 mL of a N,N-
dimethylformamide solution and analyzed using an Agilent series 1100 HPLC system (Huang et
al., 2010). Total chlorophyll \textsubscript{a} (TChl\textsubscript{a}) was calculated as the summation of chlorophyll \textsubscript{a} and
divinyl chlorophyll \textsubscript{a}. The chemical taxonomy program CHEMTAX was adopted to estimate the
contribution of different phytoplankton groups to the TChl\textsubscript{a} concentration (Mackey et al., 1996;
Wang et al., 2018). Phytoplankton size groups were classified into picophytoplankton (< 2 μm;
Prochlorococcus + Synechococcus + prasinophytes), nanophytoplankton (2–20 μm; haptophyte-
6 + haptophyte-8 + chlorophytes + cryptophytes), and microphytoplankton (> 20 μm; diatoms +
dinoflagellates) (Sieburth et al., 1978; Wang et al., 2018).

2.5 Calculation of isopycnal anomalies and effective nutrient diapycnal fluxes

The isopycnal anomalies of nutrients and DO were calculated to constrain
biogeochemical changes triggered by prior physical-biological processes, assuming similar initial
concentrations for a given isopycnal surface (Barone et al., 2022). Here station E2L was selected
as a reference station as it was least disturbed by Eddy E2 or an adjacent anticyclonic eddy, and
the anomalies were derived by the concentrations difference between the stations of interest and station E2L along the same isopycnal, with the following formula:

$$ S_{\text{anomaly}} = C_t - C_{E2L} \quad (1) $$

where C_t and C_{E2L} are the substance (i.e., $N + N$, PO_4^{3-}, DO) concentration of targeted station and station E2L at a given density, respectively, and S_{anomaly} is the associated concentration anomaly. S_{anomaly} was then interpolated at a one-meter vertical resolution using linear interpolation.

Nutrient consumption is accompanied by concurrent DO accumulation (or vice versa). To assess if the isopycnal anomalies of nutrients and DO were consistent with the stoichiometric ratio of the production or remineralization of organic matter, the excess DO anomaly ($\text{Excess \, DO}_{\text{anomaly}}$) was calculated as follows:

$$ \text{Excess \, DO}_{\text{anomaly}} = -AOU_{\text{anomaly}} + RO_{2:P} \times PO_4^{3-}_{\text{anomaly}} \quad (2) $$

where AOU is the apparent oxygen utilization calculated as the difference between the DO concentration in equilibrium with the atmosphere at in situ temperature and salinity and the observed DO concentration, $RO_{2:P} = 150$ is the modified Redfield ratio of DO production to phosphate uptake (Anderson, 1995), and $PO_4^{3-}_{\text{anomaly}}$ is the phosphate anomaly. Here we use phosphate anomaly rather than regularly used $N + N$ anomaly (e.g., Abell et al., 2005; Johnson et al., 2010) because concentrations of $N + N$ are ubiquitously depleted to levels around or below the detection limit in the upper nutricline in this system ($\sim 10 \text{ nmol L}^{-1}$, the top of the nutricline depth was defined as the 0.1 $\mu\text{mol L}^{-1} \, N + N$ contour). Ideally, the excess DO anomaly is expected to be close to 0 provided that the water initially had the same isopycnal concentration as station E2L and was subsequently altered according to the modified Redfield ratio ($RO_{2:P} = 150$), and any deviation from this value suggests a decoupling between DO production (consumption) and nutrient consumption (production), with other potential processes being involved.

The effective diapycnal fluxes (F_{eff}) of $N + N$ and phosphate were calculated following Du et al. (2017) using the field turbulence and nutrient measurements. Briefly, vertical profiles of the turbulence microstructure were measured twice at each station by using a loosely tethered VMP500 profiler (Rockland Scientific International). The profiler was launched from the sea surface to approximately 500 m depth, free-falling at a speed of 0.5–0.7 m s$^{-1}$. The turbulent
kinetic energy dissipation rate (ε) was estimated by fitting the Nasmyth spectrum to the measured shear spectra (Z. Liu et al., 2017). The diapycnal diffusivity (K_V) and velocity (w) were then calculated from in situ estimates of ε and neutral density surface analysis, respectively. The effective diapycnal flux (F_{eff}) to the water column between depth z and the sea surface was calculated as the summation of diapycnal diffusive flux (F_{diff}) and advective flux (F_{adv}) across the isopycnal, and along isopycnal divergence or convergence flux (F_H):

$$F_{eff} = F_{diff} + F_{adv} + F_H = -K_V \frac{\partial c}{\partial z} + wc + \int_z^0 c \frac{\partial w}{\partial z} dz$$

where c is the nutrient concentration at depth z, $\frac{\partial c}{\partial z}$ is the vertical gradient of c, and $\frac{\partial w}{\partial z}$ is the vertical gradient of w. For this calculation, nutrient depth profiles were first interpolated at a one-meter vertical resolution and fluxes were subsequently calculated at each meter. It should be noted that the derived fluxes will be sensitive to both the numbers and the time of the microstructure profiles were made, with the potential for diurnal variability in these measurements.

3 Results

3.1 Dynamic structure of Eddy E2

Satellite altimetry measurements showed that Eddy E2 had depressed surface heights and counterclockwise surface current circulation, demonstrating a cyclonic eddy (Figures 1b–1f and Figure S1). The eddy first formed at 133.375°E, 18.375°N around the 10th February 2019, then persisted for four months, and ultimately disappeared around the 10th June 2019 in the western boundary of Northwest Pacific (at 123.625°E, 19.125°N; Figures 1a–1b). Based on a previously proposed age model (Rii et al., 2008; Sweeney et al., 2003), we split the whole lifespan of eddy E2 into three broad stages, with an intensification phase from around 10th February to 20th March, a mature phase from around 20th March to 18th May, and a decay phase from around 18th May to 10th June. Our four repeat-transect observations of Eddy E2 were made within the second month of its appearance (with the center drifting ~193 km in this time period; Figure 1b), we therefore attribute our four visits to a well-developed mature phase. The successive SLA images showed Eddy E2 propagated west during our occupation and our transects nearly intersected its center (Figures 1c–1f). In order to better elucidate spatial differentiation of properties within
Eddy E2, we categorized the study stations into eddy core, eddy edge, and outer, which were defined as the stations whose depths of potential density anomaly (σ_t) of 23.5 kg m$^{-3}$ (approaching the upper boundary of the DCM) were (i) shoaled to above 100 m, (ii) between 100–150 m, and (iii) below 150 m, respectively (Table 1). Acknowledging the somewhat arbitrary nature of this definition, it nonetheless allows for a valuable framework for discerning the spatial differences in upwelling intensity. During four visits, the SLA within the eddy core firstly deepened from -7 to -11 cm (E2-1 to E2-3) and then shoaled to -8 cm (E2-4; Table 1). It was noteworthy that station A35 in transects E2-2 and E2-3, which were classified as outer stations according to the aforementioned definition, were actually located within an anticyclonic eddy paired with our targeted cyclonic Eddy E2, with the SLA of 21 and 19 cm, respectively (Figure S1). In all cases, vertical depth profiles along the transects showed that shoaling of temperature and salinity isolines were more pronounced within the core of Eddy E2 relative to its edge and outer stations, with lower temperature and higher salinity at equivalent depths (Figures 2a–2h).
Table 1
Comparison of biogeochemical parameters within four transects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>E2-1</th>
<th>E2-2</th>
<th>E2-3</th>
<th>E2-4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core</td>
<td>Edge</td>
<td>Core</td>
<td>Edge</td>
</tr>
<tr>
<td>Station</td>
<td>E2MM</td>
<td>E2L*, E2R*</td>
<td>A32*</td>
<td>A31*, A34</td>
</tr>
<tr>
<td>SLA (cm)</td>
<td>–7</td>
<td>6 ± 1</td>
<td>–9</td>
<td>2 ± 5</td>
</tr>
<tr>
<td>MLD (m)</td>
<td>40</td>
<td>36 ± 10</td>
<td>52</td>
<td>34 ± 4</td>
</tr>
<tr>
<td>Nutricline (m)</td>
<td>91</td>
<td>124 ± 28</td>
<td>101</td>
<td>127 ± 14</td>
</tr>
<tr>
<td>DCM depth (m)</td>
<td>103</td>
<td>133 ± 32</td>
<td>125</td>
<td>131 ± 13</td>
</tr>
<tr>
<td>Euphotic zone depth (m)</td>
<td>148</td>
<td>162 ± 15</td>
<td>158</td>
<td>161 ± 6</td>
</tr>
<tr>
<td>N+N (nmol L⁻¹, mean in the MLD)</td>
<td>9.8 ± 0.4</td>
<td>8.7 ± 4.0</td>
<td>5.2 ± 0.9</td>
<td>5.7 ± 1.3</td>
</tr>
<tr>
<td>PO₄³⁻ (nmol L⁻¹, mean in the MLD)</td>
<td>20.8 ± 3.2</td>
<td>34.6 ± 4.3</td>
<td>16.3 ± 1.0</td>
<td>27.3 ± 3.9</td>
</tr>
<tr>
<td>Diapycnal N+N flux (μmol m⁻² d⁻¹)†</td>
<td>189.5</td>
<td>7.0 ± 4.3</td>
<td>7.8</td>
<td>3.4 ± 0.6</td>
</tr>
<tr>
<td>Diapycnal PO₄³⁻ flux (μmol m⁻² d⁻¹)†</td>
<td>12.3</td>
<td>0.1 ± 0</td>
<td>1.1</td>
<td>0.2 ± 0.1</td>
</tr>
<tr>
<td>Largest N/P ratio</td>
<td>15.5</td>
<td>15.2 ± 0.1</td>
<td>17.2</td>
<td>15.2 ± 0.1</td>
</tr>
<tr>
<td>Surface N₂ fixation (nmol N L⁻¹ d⁻¹)‡</td>
<td>0.85 ± 0.44</td>
<td>0.18 ± 0.19</td>
<td>2.39 ± 0</td>
<td>0.87 ± 0.12</td>
</tr>
<tr>
<td>POC (mmol C m⁻², 0–200 m)</td>
<td>209</td>
<td>256 ± 18</td>
<td>181</td>
<td>175 ± 18</td>
</tr>
<tr>
<td>PON (mmol N m⁻², 0–200 m)</td>
<td>22.6</td>
<td>28.3 ± 4.0</td>
<td>22.3</td>
<td>16.2 ± 1.7</td>
</tr>
<tr>
<td>POC : PON ratio</td>
<td>9.2</td>
<td>9.1 ± 0.7</td>
<td>8.1</td>
<td>10.8 ± 0.1</td>
</tr>
<tr>
<td>TChl a (mg m⁻², 0–200 m)</td>
<td>3.0</td>
<td>7.0 ± 3.0</td>
<td>23.7</td>
<td>18.4 ± 12.1</td>
</tr>
</tbody>
</table>

*Indicates the station whose euphotic zone depth was estimated from the equation Zeu = 0.47 × DCM + 99.95.
†Calculated as the effective diapycnal flux into the euphotic zone.
‡Mean ± standard deviations of triplicate measurements per station.
3.2 Nutrient and DO responses to Eddy E2

Amongst our four visits, the concentrations of \(N + N \) were consistently very low in the mixed layer both within the core and at the edge of Eddy E2 (on average \(7.9 \pm 4.2 \text{ nmol L}^{-1} \); Figure S2; Table 1). Larger differences were however observed below the nutricline, with higher concentrations within the core than at the edge (Figures 3a–3d). In contrast to \(N + N \), phosphate concentrations showed distinct spatial differences in the mixed layer, with coherently lower concentrations within the Eddy E2 core relative to the edge (Figures 3e–3h; Table 1). This spatial pattern was further extended to the waters above the nutricline (for example, on average \(18.2 \pm 3.9 \text{ nmol L}^{-1} \) at station A32 of the Eddy E2-2 core, \(n = 9 \); on average \(28.3 \pm 4.4 \text{ nmol L}^{-1} \) at station A31 of the Eddy E2-2 edge, \(n = 14 \); Figures 4a–4c). The lower phosphate concentrations at depths shallower than the nutricline were matched by corresponding higher signals in DO, with higher concentrations of DO occurring within the Eddy E2 core compared to those at the edge (Figures 3i–3l and 4d–4f). For example, the differences in DO concentration between the E2-3 core and edge above the nutricline were as large as \(7.7 \mu\text{mol L}^{-1} \) at the same depth (Figure 4e). Unlike \(N + N \) or phosphate, the uplift of silicate within the eddy core across all observations exhibited an outcropped, elevated silicate isosurface (Figures 3m–3p), consistent with the observed distribution of salinity (Figures 2e–2h). Further density plots confirmed exactly the same results; specifically, lower phosphate and higher DO in the Eddy E2 core than the edge along the same isopycnal above the nutricline contour (Figures S3 and S4). In line with the relatively narrow range of SLA within the core (–7 to –11 cm), the temporal evolution of Eddy E2 had comparable impacts on nutrient distribution. Specifically, the nutricline depths within the core, which could be equivalent to nutrient injection intensity, exhibited no significant differences across our four sequential observations (Table 1).

We also observed noticeable anomalies of both \(N + N \) and DO along the isopycnal surfaces situated at the depths surrounding the band of DCM layer, with the larger negative \(N + N \) anomalies corresponding to the larger positive DO anomalies within the core (Figures 5a–5d and 5i–5l). The patterns of phosphate anomalies were similar but less robust than that of \(N + N \), with negative signals occasionally penetrating all the way to the surface (Figures 5e–5h). Moreover, the excess DO anomalies were gradually elevated following the four sequential observations around the band of DCM layer, from the maximum of \(5.9 \mu\text{mol L}^{-1} \) to \(16.2 \mu\text{mol L}^{-1} \).
manuscript submitted to *JGR Oceans*

1, whereas these excess DO anomalies were consistently negative below the DCM layer, suggesting that the stoichiometry of nutrients and DO deviated from that predicted for production and consumption of phytoplankton biomass (Figures 5m–5p).

When compiling all four transects together, we noticed distinct variations across the stations (Figures 6a–6b). Specifically, the SLA exhibited a range of 13 to 21 cm, indicating significant spatiotemporal variability (Figure 6a). This variability in SLA was closely related to the vertical displacement of the nutricline depths, which ranged from 82 to 163 m (Figure 6b). Clearly, we found that the most negative SLA corresponded to the shallowest nutricline depth at the core stations, whereas the most positive SLA aligned with the deepest nutricline depth at the anticyclonic stations (station A35 in transects E2-2 and E2-3; Figures 6a–6b). By integrating nutrient concentration over the upper 60 m, a depth which was uniformly shallower than the observed nutricline depths at all stations (82 to 163 m), we found that the integrated N + N concentrations were generally low without any distinct trend between the core, edge, and anticyclonic stations (Figure 6b; Table 1; Figure S5); in contrast, the integrated phosphate concentrations were much clearer, with ~1.2–1.6-fold lower inventories at core stations compared to those present at edge and anticyclonic stations (Figure 6b; Table 1).

Upward displacement of the nutricline associated with the core of eddy E2 resulted in enhanced nutrient diapycnal fluxes into the euphotic zone, except for transect E2-4, where no significant differences could be observed (Table 1). For example, the vertical N + N and phosphate diapycnal fluxes into the euphotic zone were calculated to be 2.3-fold and 5.5-fold higher within the core of Eddy E2-2 relative to its edge, respectively (Table 1). The highest diapycnal fluxes of N + N and phosphate into the euphotic zone were observed at the core of Eddy E2-1, which was primarily attributed to the shallower nutricline depth, resulting in a more substantial vertical gradient at the depth of euphotic zone (Table 1).

3.3 Biological responses to Eddy E2

Spatial and temporal variability in the physical structure of Eddy E2 appeared to result in a biological response. The vertical position of DCM, confined within a narrow band of isopycnal surfaces with σ_t of 23.5 and 24 kg m$^{-3}$, also varied synchronously with the vertical displacement of water masses (Figures 2i–2l). For example, the DCM depth in Eddy E2-3 shoaled from 122 m at the edge to 97 m within the core (Table 1). Moreover, more intense chlorophyll fluorescence
was observed within the core rather than at the edge (Figures 2i–2l). This spatial pattern, however, was not reflected in the TChl \(a \) inventories above 200 m, with no clear trends across the stations (Figure 6d; Table 1). In terms of the phytoplankton community, picophytoplankton consistently dominated the phytoplankton assemblage, contributing to > 70% of TChl \(a \) inventories. In contrast, microphytoplankton accounted for less than 2% of TChl \(a \) inventories (Figure 6d). Despite their low proportions, microphytoplankton exhibited clear spatial variations, with generally higher microphytoplankton Chl \(a \) inventories observed at the core stations of transects E2-2, E2-3, and E2-4 (Figure 6d). The inventories of fucoxanthin, a biomarker pigment of diatoms (Uitz et al., 2006), also exhibited 1.6-fold, 1.6-fold, and 1.1-fold increases at the core stations of transects E2-2, E2-3, and E2-4, respectively (data not shown). The POC and PON inventories in the upper 200 m exhibited no discernible trends across the stations. However, the ratios of POC : PON varied, with lower values observed within the eddy core, although these differences were not always statistically significant, when compared to the eddy edge at transects E2-2, E2-3, and E2-4 (Figure 6c; Table 1).

Surface \(N_2 \) fixation rates measured on the first three transects were around 3-fold greater within the Eddy E2 core than at the edge (Figure 6a; Table 1). Although our number of \(N_2 \) fixation observations was limited, the inverse relationship between \(N_2 \) fixation and SLA was significant \((R^2 = 0.73, n = 7, p = 0.014; \) Figure 7a).
in the mixed layer with surface N\textsubscript{2} fixation rate suggested that N\textsubscript{2} fixation plays a significant role in regulating the residual standing phosphate concentration (\(R^2 = 0.61, n = 7, p = 0.039\); Figure 7c). We further found that mean phosphate and TChl \(a\) concentrations in the mixed layer showed a significant, but less strong relationship (\(R^2 = 0.20, n = 24, p = 0.030\); Figure 7d), indicating bulk phytoplankton uptake might have a minor effect in driving phosphate drawdown. More broadly, when extending to deeper depths above the nutricline, such as 30, 60 and 80 m, we observed a consistent relationship between depth-integrated phosphate and TChl \(a\) inventories, surface N\textsubscript{2} fixation rate, and SLA, although the relationship becomes less clear at the integration depth of 80 m compared to 30 and 60 m, which could be associated with its closer proximity to the nutricline allowing for more phosphate to penetrate into this layer from deeper nutrient-enriched depths (Figure S6).

A footprint of our eddy-enhanced N\textsubscript{2} fixation hypothesis is furthermore potentially reflected in the enhanced N + N to phosphate (N/P) ratios within the core of Eddy E2 relative to its edge, via the remineralization of newly-fixed N + N below the euphotic zone (Figure 8 and Figure S7). Specifically, our results showed that in the lower euphotic zone, the largest N/P ratios at the eddy core stations were higher than those at the edge stations (Table 1). Some of these higher N/P ratios at the core stations of transects E2-2, E2-3, and E2-4 approached, or even exceeded the Redfield N/P ratio of 16 (Redfield et al., 1963). These values were therefore far beyond the interior thermocline N/P ratio (14.1 ± 0.3, n = 24; derived from mean value at 500 m over all stations), suggesting that the observed N/P ratios of >16 at the core stations cannot be explained by the uplift of deeper thermocline waters. Moreover, denitrification in the below thermocline oxygen-deficient waters could lead to even lower N/P ratios due to the removal of N+N to N\textsubscript{2}. Instead, provided that atmospheric deposition, typically characterized by an N/P ratio of >500 (Baker et al., 2010; Martino et al., 2014), remained uniform over the short timescale of our study, we propose that the observed higher N/P ratios of >16 below the euphotic zone at the eddy core stations were likely a result of the intense remineralization of organic matter derived from N\textsubscript{2}-fixing diazotrophs from overlying waters, which have a higher N/P ratio of >16 (White et al., 2006; Zehr & Capone, 2020).

It has been found that mesoscale eddies induced by instabilities in large-scale currents can isolate water parcels for several months whilst transporting the trapped properties for hundreds of kilometers from their origin (Chelton, Gaube, et al., 2011; Early et al., 2011; Gaube...
et al., 2014; Lehahn et al., 2011). Across our four transects, the eventual transect E2-4 shows a relative relaxation in uplifted isopycnal surfaces; subduction of these waters would therefore transport this N-enriched organic matter downwards from surface layers, together with gravitational sinking of these particles, which would be efficiently mineralized below the euphotic zone and lead to a significant increase in ambient N/P ratios (i.e., > 16; Figure 8; Benitez-Nelson et al., 2007; noting that the horizontal advection of water masses from the core to the edge could partially contribute to affecting the spatial differences). Over longer timescales, entrainment of these thermocline waters with elevated N/P ratios into surface waters would contribute to broader scale P deficiency in the region (Browning et al., 2022; Hashihama et al., 2009, 2021; Kitajima et al., 2009; Martiny et al., 2019; Shiozaki et al., 2010; Wen et al., 2022; Yuan et al., 2023).

The observation of cyclonic eddy-induced enhanced N₂ fixation is unexpected with the general perception that increases in diazotrophy occur instead within anticyclonic eddies, where N supply is reduced (Böttjer et al., 2017; Cheung et al., 2020; Church et al., 2009; Davis & McGillicuddy, 2006; Dugenne et al., 2023; Fong et al., 2008; Holl et al., 2007; J. Liu et al., 2020; Löscher et al., 2016; Wilson et al., 2017). Indeed, reduced N supply rates might be expected to favor diazotrophs by increasing their competitiveness with non-diazotrophic phytoplankton that grow faster when N is available (Landolfi et al., 2015; Wu et al., 2000). However, with other factors remaining the same, diazotrophy is likely strongly dependent on the relative supply rates of both N and Fe, due to elevated Fe requirements for nitrogenase enzyme activity (Berman-Frank et al., 2001; Ward et al., 2013). Therefore, provided the uplift of deeper, nutrient-enriched waters in Eddy E2 supplied sufficient Fe relative to N, enhanced N₂ fixation might be expected. Wen et al. (2022) estimated that Fe : N supply rates to the euphotic zone in this region was 3.4×10⁻⁴ (surface Fe ~0.2 nmol L⁻¹), which was approximately one order of magnitude higher than the assumed-average, non-diazotrophic phytoplankton requirements of 4.7×10⁻⁵ (Moore, 2016). This high Fe : N supply rate is expected to cause available N to be fully depleted before Fe, by fueling non-diazotrophic phytoplankton growth in the DCM layer after upward transport through eddy injection (Figures 3a–3d; McGillicuddy and Robinson 1997). Consumption of P at 1/16 of N would lead to a relative excess of available phosphate, as N/P of waters below the euphotic zone of background waters is < 16 (Figure 8). Given Fe limitation of the growth of N₂-fixing
diazotrophs in this region (Wen et al., 2022), any residual Fe entrained into waters above the
DCM should thus favor the growth of N₂-fixing diazotrophs within upper waters of the cyclonic
eddy, in turn leading to the observed drawdown of excess phosphate. Apart from the proposed
Fe-stimulated N₂ fixation within the core of the cyclonic eddy, it appears unlikely that bottom-up
control factors, such as light and temperature, played a significant role. Surface light conditions
were expected to be similar between the core and the edge, indicating that light availability alone
cannot explain the observed increase in N₂ fixation. Furthermore, the relatively lower surface
temperature within the core may have even resulted in decreased N₂ fixation rates, which is
opposite to what was observed (Luo et al., 2014). Similarly, the expected increase in zooplankton
grazing of phytoplankton within the eddy core could potentially reduce, rather than increase, the
abundance of diazotrophs (Dugenne et al., 2023; Wilson et al., 2017). Additionally, it has been
suggested that the physical accumulation of diazotrophs primarily takes place in regions
classified by strong frontal downwelling, rather than within the core of a cyclonic eddy
where upwelling is prominent (Dugenne et al., 2023).

We thus conclude that cyclonic eddy-induced enhanced N₂ fixation within the eddy core
was primarily due to the excess surface phosphate, alongside the likely elevated iron supply from
depth. Indeed, the linkage between elevated iron supply–enhanced N₂ fixation–phosphate
drawdown has been well-established (Mahaffey et al., 2005; Sohm et al., 2011; Zehr & Capone,
2021). Numerous studies have explored the role of iron supply in promoting N₂ fixation in
different oceanic regions. For example, iron supply from atmospheric deposition has been
hypothesized to favor N₂ fixation in the North Atlantic (Moore et al., 2009; Wu et al., 2000) and
North Pacific (Browning et al., 2022; Hashihama et al., 2009; Kitajima et al., 2009; Wen et al.,
2022; Yuan et al., 2023). Additionally, the iron supply from the ocean interior has also been
identified as a potential driving mechanism for a hotspot for N₂ fixation in the nitrate-depleted
Angola Gyre of the South Atlantic (Marshall et al., 2022) and western tropical South Pacific
(Bonnet et al., 2017, 2023).

4.2 Biogeochemical responses to Eddy E2

We found the most prominent anomalies of both N + N and DO occurred surrounding the
DCM layer (Figure 5), suggesting that the uplift of nutrient-enriched waters into the DCM layer
enabled significant biological uptake of nutrients and production of DO. Thus, the DCM layer
served as a buffer zone limiting the impact of eddies extending to the near-surface ocean (Barone
Moreover, our results also identified that the cyclonic eddy could decouple changes in nutrients and DO concentrations. Over our relatively short duration for each transect, provided limited ventilation of DO occurred below the mixed layer, additional biological processes must be involved. So far, several mechanisms have been proposed to address these positive excess DO anomalies around the band of DCM layer and negative excess DO anomalies down below, including (i) production of carbon-enriched dissolved organic matter (Abell et al., 2005; Fawcett et al., 2018), (ii) formation of transparent exopolymer particles (TEPs; Letscher & Villareal, 2018), (iii) the vertical migration of phytoplankton (Barone et al., 2022; Letscher & Villareal, 2018), and (iv) consumption of \(N + N \) by heterotrophic bacteria (Fawcett et al., 2018; Letscher & Villareal, 2018). Although we cannot evaluate the relative contribution of these mechanisms that may have likely led to the observed excess DO anomalies, accumulation of external new nitrogen from enhanced \(N_2 \) fixation would likely be another option (Fawcett et al., 2018). This process can result in more DO production and thus leads to the increasing positive excess DO anomalies with eddy evolution. In this case, the subsequent decomposition of these N-enriched organic matter could partly explain the negative excess DO anomalies below the DCM layer. We thus suggest the enhanced \(N_2 \) fixation in the surface should play a vital role in the observed excess DO anomalies. This was further supported by the not significantly but lower POC : PON values observed at the eddy core stations of transects E2-2, E2-3, and E2-4 (Figure 6c; Table 1).

We also observed more intense chlorophyll fluorescence around the DCM within the eddy core. We suggest this was likely due to the combined effects of the enhanced upward nutrient supply and increased light availability. Cyclonic eddy uplift of deeper waters resulted in the shoaling of the nutricline, thereby leading to increased diapycnal nutrient fluxes delivered to the lower euphotic zone (Table 1). Moreover, this uplift also displaced the light-limited DCM community to a shallower depth with higher light intensities (Figures 2i–2l). Consequently, the combination of nutrient enrichment and improved light conditions within the eddy core created an environment conducive to more enhanced phytoplankton growth and biomass accumulation. Nevertheless, we did not observe any substantial enhancement in TChl \(a \) over the entire euphotic zone, which was probably due to concomitant increases in grazing rates. This was further supported by the persistent dominance of picophytoplankton (> 70%) in these waters, whose growth is expected to be tightly coupled to losses by zooplankton grazing (Calbet & Landry, 2004; McAndrew et al., 2007). In addition, despite slight enhancements in microphytoplankton
biomass (also fucoxanthin, the biomarker of diatoms) at the core stations of Eddy E2-2, E2-3, and E2-4, the core of Eddy E2 was notably not dominated by microphytoplankton, with their contribution to TChl \(a \) inventories only accounting for less than 2% (Figure 6d). This was consistent with a previous study conducted near this region where the authors hypothesized this to be a result of the low nutrient supply into the euphotic zone as well as the chemical composition of nutrients (Yun et al., 2020). In contrast, the well-developed cyclonic eddy Opal off the Hawaiian Islands displayed a large diatom bloom that accounted for ~80% of the total carbon-based biomass, which was 100-fold higher than background levels (Benitez-Nelson et al., 2007; Brown et al., 2008). It is difficult to attribute this difference between these eddies to any particular mechanism, with differences in upwelling intensity, the duration of uplift of nutrient-enriched isopycnals, and sampling timing potentially all playing important roles (Rii et al., 2008). In fact, remote sensing showed that Eddy E2 evolved with further depressed sea surface height until it reached a minimum SLA a month after our observations (Figure 1b). Hence, it is reasonable to presume that Eddy E2 has the potential of forming a diatom bloom provided upward nutrient supply are intense enough and of long enough duration.

5 Conclusions

Our observations demonstrated enhanced phosphate consumption above the nutricline within the core of a subtropical cyclonic eddy in the Northwest Pacific, which was likely due to elevated \(\text{N}_2 \) fixation driven by enhanced Fe supply relative to N. This region is characterized by primary N limitation of the bulk phytoplankton community (Browning et al., 2022; Yuan et al., 2023), indicating that phosphate is presently sufficiently available for supporting phytoplankton growth. However, climate forcing has been proposed to be enhancing eddy activity in this region (Matear et al., 2015), which could contribute to the further drawdown of residual phosphate in surface waters, and potentially eventually drive this system to a situation where phytoplankton become P stressed (Martin et al., 2014; Van Mooy et al., 2009). Further detailed assessments of eddies on nutrient biogeochemistry such as that presented here, in conjunction with the resolution of dissolved Fe, will be crucial for better elucidating how an altered frequency of these episodic events will impact the broader oceanic biogeochemistry of this region in the future.
Acknowledgments

We thank three anonymous reviewers and the Editor for their constructive comments. We thank the captain and other crew of R/V TKK for their cooperation during the cruise. Tao Huang, Lifang Wang, Liguo Guo, and Wen Lin are thanked for their assistance in sample analysis. Haoran Liu is thanked for his helpful discussion. Yanping Xu and Zhe Wang are thanked for their logistical assistance. This study was supported by the National Natural Science Foundation of China (Grants 41890804 and 41730533). Z. Yuan was supported by the Chinese Scholarship Council (File No. 202106310003).

Open Research

Biogeochemical data collected onboard used in this study are available on the Science Data Bank (Yuan & Dai, 2023, https://doi.org/10.57760/sciencedb.08040). The altimetric Mesoscale Eddy Trajectories Atlas (META3.1exp DT) was distributed by AVISO+ (Pegliasco et al., 2021, https://doi.org/10.24400/527896/A01-2021.001). Daily sea level anomaly (SLA) at 0.25° resolution was obtained from the Copernicus Climate Change Service Climate Data Store (2018) (https://doi.org/10.24381/cds.4c328c78). The satellite-derived chlorophyll a for April 2019 at 9 km resolution was downloaded from the NASA Ocean Biology Processing Group (2019) (https://oceancolor.gsfc.nasa.gov/l3/order/).

References

Browning, T. J., Al-Hashem, A. A., Hopwood, M. J., Engel, A., Belkin, I. M., Wakefield, E. D.,

https://doi.org/10.1029/2008GB003418

Copernicus Climate Change Service Climate Data Store. (2018). Sea level gridded data from satellite observations for the global ocean from 1993 to present [Dataset]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).

https://doi.org/10.24381/cds.4c328c78

https://doi.org/10.1029/2022RG000800

https://doi.org/10.1126/science.1123570

https://doi.org/10.1038/nature05392

https://doi.org/10.1002/2017GL074921

https://doi.org/10.5670/oceanog.2001.06

Sweeney, E. N., McGillicuddy, D. J., & Buesseler, K. O. (2003). Biogeochemical impacts due to mesoscale eddy activity in the Sargasso Sea as measured at the Bermuda Atlantic Time-

https://doi.org/10.1038/NMICROBIOL.2017.118

https://doi.org/10.1126/science.289.5480.759

https://doi.org/10.1029/2020JC016436

https://doi.org/10.1126/science.aay9514

https://doi.org/10.1016/S0967-0637(99)00085-0

https://doi.org/10.1029/2020GL088820

Figure captions

Figure 1. Study area and the evolution of Eddy E2. (a) Map of the western North Pacific showing the sampling locations (open circles) with the context of satellite-derived chlorophyll a in April 2019. Blue line indicates the trajectory of the center of Eddy E2 within the whole lifespan. Boxed regions identify the study locations. (b) Sea level anomaly (SLA) of the center of Eddy E2 within the whole lifespan. The shaded bars indicate the periods of four observations. (c), (d), (e), (f) Surface distribution of SLA and the satellite-derived geostrophic current velocities corresponding to the date when sampling campaigns were conducted at the eddy core. Black dots represent the sampling stations along the transects.

Figure 2. Depth sections of hydrological features and in situ chlorophyll (Chl) fluorescence along the four transects. (a), (b), (c), (d) Temperature; (e), (f), (g), (h) Salinity; (i), (j), (k), (l) Chl fluorescence. Black solid lines denote the depth of the base of the mixed layer. Black dashed lines denote the depth of isopycnal surfaces with potential density anomaly of 23.5 and 24 kg m$^{-3}$ (approximately situated within the upper and lower boundaries of the deep Chl maximum). Red solid lines in the right panel denote the depth of the top of the nutricline. Labels on the top of each panel represent the position of the sampling stations, with blue labels highlighting the core stations.

Figure 3. Depth sections of nutrients and dissolved oxygen (DO) along the four transects. (a), (b), (c), (d) N+N; (e), (f), (g), (h) PO$_4^{3-}$; (i), (j), (k), (l) DO; (m), (n), (o), (p) Si(OH)$_4$. Black dots represent the sampling points. Black solid lines denote the depth of the base of the mixed layer. Black dashed lines denote the depth of isopycnal surfaces with potential density anomaly of 23.5 and 24 kg m$^{-3}$ (approximately situated within the upper and lower boundaries of the deep Chl maximum). Red solid lines denote the depth of the top of the nutricline. Labels on the top of each panel represent the position of the sampling stations, with blue labels highlighting the core stations.
Figure 4. Representative depth profiles of PO$_4^{3-}$ and DO concentrations for the core (blue) and edge (pink) stations in Eddy E2-2, E2-3, and E2-4. (a), (b), (c) PO$_4^{3-}$; (d), (e), (f) DO. Arrows denote the depth of the base of the mixed layer.

Figure 5. Depth sections of nutrient and DO anomalies along the four transects. (a), (b), (c), (d) N+N anomaly; (e), (f), (g), (h) PO$_4^{3-}$ anomaly; (i), (j), (k), (l) DO anomaly; (m), (n), (o), (p) Excess DO anomaly. Black solid lines denote the depth of the base of the mixed layer. Black dashed lines denote the depth of isopycnal surfaces with potential density anomaly of 23.5 and 24 kg m$^{-3}$ (approximately situated within the upper and lower boundaries of the deep Chl maximum). Red solid lines denote the depth of the top of the nutricline. Labels on the top of each panel represent the position of the sampling stations, with blue labels highlighting the core stations.

Figure 6. Biogeochemical features at each station during the cruise. (a) Surface distribution of SLA and N$_2$ fixation rate. Error bars represent the standard deviations of triplicate measurements; (b) N+N and PO$_4^{3-}$ inventories in the upper 60 m overplotted with nutricline depth; (c) POC and PON inventories in the upper 200 m overplotted with POC : PON ratio; (d) Grouped TChl a inventory in the upper 200 m overplotted with microphytoplankton Chl a inventory. Note that the proportion of microphytoplankton Chl a inventory is consistently too low to be visually discernible in the stacked bar chart. Stations labeled in blue and the filled squares represent the core stations of Eddy E2.

Figure 7. Correlations among the mean concentrations of PO$_4^{3-}$ and TChl a in the mixed layer, surface N$_2$ fixation rate, and SLA (a–d). The dashed lines indicate the 95% confidence band. Coloured circles represent SLA.

Figure 8. Depth profiles of N + N to PO$_4^{3-}$ (N/P) ratios for the four transects. (a) E2-1; (b) E2-2; (c) E2-3; (d) E2-4. Only the stations that remained continuously within Eddy E2 were included. Therefore, station A35 and station A36, which were previously located in an anticyclonic eddy (see Figure 1d), were excluded from the dataset. Blue and pink coloured profiles represent the core and edge stations, respectively. Vertical dashed line represents the mean N/P ratio of 14.1 at...
500 m over all stations (n = 24). The arrow denotes the range of the base of the euphotic zone (0.1% light level) at each transect.