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Exploiting Rapidly Time-Varying Sparsity for
Underwater Acoustic Communication
Weihua Jiang , Member, IEEE, Feng Tong , Member, IEEE, and Zhengliang Zhu

Abstract—Due to the combined effects of different acoustic prop-
agation, reflection patterns in different time-scale, time-varying
underwater acoustic (UWA) channel generally exhibits hybrid
sparsity, i.e., contains not only rapidly time-varying elements, but
also stationary or slowly time-varying ones. While the classic sparse
reconstruction algorithms such as orthogonal matching pursuit
(OMP) generally do not take it into account, the existence of
static multipath will unavoidably hinder the tracking of rapid time
variations. In this paper, a sequential adaptive observation length
orthogonal matching pursuit (SAOLOMP) approach is proposed
to sequentially explore rapidly time-varying sparsity in a two-step
sequential manner. Specifically, the static components are firstly
separated via simultaneous orthogonal matching pursuit (SOMP)
among continuous measurements. Upon the residual error of the
SOMP, the measurement-wise OMP is applied for estimating the re-
mained dynamic components. As the variation of the SOMP resid-
ual error indicates how rapidly the remained dynamic multipath
components vary, the observation length of the OMP is adjusted
according to the gradient of residual error to adapt to rapidly
time-varying components. Finally, both types of sparse components
are summed up to obtain the whole channel response. Numerical
simulations as well as experimental results from field UWA com-
munication data show that the proposed algorithm exhibits better
performance in exploiting rapidly time-varying sparsity than the
state-of-the-art compressive methods do under UWA channel.

Index Terms—Hybrid sparse, rapidly time-varying, sequential
adaptive observation length orthogonal matching pursuit,
underwater acoustic communication.

I. INTRODUCTION

W ITH the increasing demand of marine information ac-
quisition and transmission, underwater acoustic (UWA)

communication technology has drawn more and more attention
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in diverse marine fields [1]–[3]. However, UWA channel is
recognized as an extremely adverse wireless channel with time-
space-frequency variation, strong multipath, limited bandwidth
and high noise [4]–[6], rendering UWA communication a highly
challenging mission. One of the typical difficulties is that, the
complicated characteristics of UWA channel pose significant
limitation on the estimation and equalization of UWA channel
for improving the UWA communication performance.

Under the framework of compressed sensing, the sparse char-
acteristic of UWA channel can be explored to improve the com-
munication performance and reduce the noise interference [7],
[8]. While the research community is trying to find the sparse
solution by minimizing the l0 norm, directly searching for the
minimum l0 norm will inevitably cause NP hard problem [9]–
[11]. Besides, it is easily affected by noise, because any slight
noise will be possibly identified as the nonzero elements. Plenty
of approximation algorithms are studied to solve the problems
introduced by l0 norm [9]–[12], such as the smoothing l0-norm
(SL0) [12].

The greedy algorithm has been commonly used to recover
sparse signals, which includes methods such as matching pur-
suit (MP) [13] and orthogonal matching pursuit (OMP) [14].
Due to its noise robustness in sparse recovery, greedy method
gains extensive applications for the estimation of sparse UWA
channel. Within several continuous measurement windows, the
static sparse channel generates substantial correlations [15],
[16], which has been applied for improving the UWA channel
estimation performance under the framework of joint sparse
recovery [17], [18]. Note that, a popularly known variant of the
OMP algorithm for joint sparse recovery is simultaneous OMP
(SOMP) [15]. Nevertheless, most of the compressed sensing
algorithms do not take care of the time-varying characteristics
of UWA channel.

On the other side, for the UWA channel with dynamic sparsity,
based on the dynamic compressed sensing theory [19]–[23],
Kalman Filtered Compressed Sensing (KF-CS) has been inves-
tigated to the recovery of time-varying sparsity by combining
a reduced order Kalman filter (KF) with CS. However, for
UWA channel, with the exception of rapidly time-varying paths
such as those caused by dynamic sea surface, there also exist
static or slowly time-varying paths, including those experiencing
direct propagation or bottom reflection. In other words, UWA
channel generally contains hybrid sparsity [24]. Since the rapidly
time-varying multipath is usually generated by highly dynamic
sea surface, typical UWA channels may simultaneously exist
both static components and rapidly time-varying ones, such as
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those in shallow water or in the upper layer of deep sea. Thus,
the above CS algorithms derived under the assumption of static
sparse or dynamic sparse generally do not take this type of hybrid
sparsity into account [24].

As a result, the sparse recovery performance of these state-
of-the-art methods significantly decreases at the presence of the
hybrid sparsity. To be specific, while improving the estimation
of static sparse elements, the SOMP algorithm is subject to
performance degradation as the time-varying sparse elements
tend to be ignored [17], [18]. Meanwhile, when applying KF-CS
for time-varying sparsity, those static sparse components will
cause mismatch to the dynamic assumption.

By formulating the sparse UWA channels as sparse set in-
cluding static and time-varying elements, a static-dynamic dis-
criminative compressed sensing (SDD-CS) algorithm is pro-
posed to exploit the hybrid sparsity of UWA channel [24].
However, as the SDD-CS algorithm separated the time-varying
components and then applied sparse estimation under the KF-
CS framework, the presence of rapidly time-varying mul-
tipath arrivals that cannot be formulated by Kalman dy-
namic model would cause significant performance degradation.
This is because, for the conventional KF-CS type algorithms,
the sparse UWA channel is assumed to change slowly with
time [23].

Previously several strategies have been investigated for es-
timating rapidly time-varying underwater acoustic channels.
The adaptive subspace-tracking reduced-rank amplitude esti-
mation using the RLS method (ASRAE-RLS) and the adaptive
subspace-tracking reduced-rank model-based amplitude estima-
tion method (ASRMAE) [25] have been proposed for improving
the rapidly time-varying UWA channel estimation, respectively,
however, the classic adaptive filter based algorithms can not
efficiently exploit the sparsity structure of the UWA chan-
nel. By predicting the cluster-based channel parameters and
reconstructing a virtual current received signal, the temporal
multiple sparse Bayesian learning (TMSBL) method [26] has
been applied to estimate rapidly time-varying channel in UWA
OFDM communications. However, the practical UWA channel
is not always in cluster structure. In addition, in [27] the Delay-
Doppler spread function based algorithm is adopted to estimate
rapidly time varying channel in Delay-Doppler domain, which
unfortunately needs huge computational complexity to resolve
the two-dimensional solution over a large doubly spread UWA
channel.

Motivated by previous efforts for exploiting static and time-
varying sparsity, the core contribution of this paper is that,
by similarly decomposing the sparse components into static
elements and dynamic ones, sparse reconstruction with gradient
descent variable measurement length was proposed for estimat-
ing rapidly time-varying components instead of KF-CS. Thus,
the proposed algorithm can equivalently convert the rapidly
time-varying channel estimation problem into the multiple short-
time stationary channels estimation problem.

Recently, various algorithms have been proposed to im-
prove the quality of joint sparse recovery, such as rank-aware-
order recursive matching pursuit (RA-ORMP) [28], compres-
sive MUSIC (CS-MUSIC) [29], subspace-augmented MUSIC

(SA-MUSIC) [30], and signal space matching pursuit
(SSMP) [31]. However, compared with SOMP algorithm, [31]
revealed that the above algorithms achieved similar recovery
performance in channels with a high degree of sparsity, at the
expense of extra computational burdens.

Hence, similar to the previous SDD-CS strategy, firstly the
SOMP is applied to separate and estimate the relatively static
sparse elements, which provides the static components estima-
tion by joint sparsity recovery. Next, the residual error of the
SOMP is used to reconstruct the time-varying component by the
OMP. Considering that, for OMP processing, a shorter observa-
tion length leads to enhanced capability of time variation estima-
tion, the novelty of this paper is to adaptively tune the observation
length of measurement-wise OMP along the descent gradient to
adapt to different level of time variation. Finally, the results of
static and time-varying component are summed up to form the
whole hybrid sparse solution. Thus, by applying the SOMP and
observation length adjustable measurement-wise OMP on the
static and the remained dynamic sparse elements respectively,
the proposed algorithm, referred as sequential adaptive obser-
vation length orthogonal matching pursuit (SAOLOMP) algo-
rithm, is derived for efficient exploitation of rapidly time-varying
sparsity contained in UWA channel.

Note that in the case when the static component estimation is
inaccurate, such as when the static multipath experiences drastic
amplitude variation, the resulting estimation error becomes a
part of residual error. By applying viable observation length
OMP on the residual error, “static” multipath component that
caused this type of inaccurate estimation is actually equivalent
to rapidly time-varying multipath.

Numerical simulation as well as the field test in shallow and
deep sea were carried out to verify the effectiveness of the
proposed algorithm in exploring rapidly time-varying sparsity
to improve UWA communication performance. Note that, while
the Least Square QR-factorization (LSQR) [32] and the OMP
algorithm provided comparison baseline in terms of typical
non-sparse and greedy sparse algorithm, SDD-CS, SOMP, and
SL0 algorithm [12] were selected as comparison algorithm as the
representative of static-dynamic discriminative CS, distributed
CS, and norm type CS strategies, respectively.

The rest content of this paper is as follows. Section II describes
the system model of UWA communication and the classic
OMP and SOMP algorithms. Section III analyzes the impact
of rapidly time-varying UWA channel, and introduces the pro-
posed SAOLOMP algorithm and the brief discussion. Section IV
presents the numerical simulations. Section V analyzes the field
experiment results from both shallow and deep sea. Finally, we
make the conclusion in Section VI.

Notation: Bold capital letters denote matrices. The set op-
erations ∪ and \ denote the union operation and difference
operation, respectively. The operation A �B denotes the con-
catenation between vectors A and B. φ denotes the empty set.
||x|| represents the l2 norm (Euclidean norm) of the vector x.
||x||1 refers to the l1 norm, which is the sum of the absolute value
of each vector element.A† represents the matrix pseudo inverse.
The set [i, j] denotes the set [i, i+ 1, . . . , j]. T c denotes the
complement ofT which is in [i, j], i.e.T c = [i, j] \ T .A[i,j],[p,k]
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denotes a sub-matrix obtained from i-th to j-th rows and p-th to
k-th columns of A.

II. SYSTEM MODEL

A. System Model of UWA Communication

The UWA communication signal can be expressed by [14]

y(i) =
N−1∑
j=0

s(i− j)x(j) + w(i), i = 0, . . .,M − 1, (1)

where s, y,w, x are the discrete transmitted signal, recorded sig-
nal, additive noise, and UWA channel impulse response (CIR),
respectively. M and N are the length of y and x, respectively.
To be specific, M is the observation length for the channel
estimation. It is an implicit assumption that the UWA channel
keeps stationary during the observation period [33].

(1) can be written in matrix format as

y = Ax+w, (2)

where y, x, w are the recorded UWA signal, UWA CIR, and
additive noise in the vector form, respectively. The measurement
matrix A ∈ CM×N can be obtained from the transmitted signal
as following,

A =

⎛
⎜⎜⎜⎜⎝

s(0) · · · s(−N + 1)

s(1) · · · s(−N + 2)
...

. . .
...

s(M − 1) · · · s(M −N)

⎞
⎟⎟⎟⎟⎠ . (3)

Evidently, estimation of UWA channel x in (2) can be con-
verted to a compressed sensing problem, and search for the
sparse solution of x, where the sparsity factor κ is the number
of non-zero elements in x.

B. OMP and SOMP Algorithm

Iterative greedy algorithms have been developed to recover
the sparse channel x from the recorded signal y, among which
the OMP algorithm has been proven to successfully recover the
acquired signal from incoherent measurements with high prob-
ability [34]. The optimization problem of the sparse recovery
can be described by [14]

argmin ||x||1 s.t. ||y −Ax||22 ≤ ε, (4)

where ε is the noise factor. The OMP algorithm iteratively selects
the vectors from the matrix A ∈ CM×N that contain most of
the energy of the vector y, M is the observation length for
the channel estimation. The sparse solution x at each iteration
is made based on inner products between the columns of A
and a residual. The residual reflects the component of y that is
orthogonal to the previously selected columns.

This algorithm is popular because it can be easily imple-
mented. Besides, there will be no columns selected twice since
the residual is always orthogonal to the selected columns, so that
computational complexity of algorithm can be reduced [35].

For sparse UWA channel with common support, distributed
compressed sensing is capable to further improve the perfor-
mance of sparse recovery by exploiting the joint sparsity [15],
[16]. According to the Joint Sparsity Models 2 (JSM2) of
distributed compressed sensing theory theory [16], when the
sparse channel measured in adjacent times has similar non-zero
elements but different magnitudes, among multiple continuous
measurement window the sparse channels can be modeled as
sparse solutions with common support, the common support is
the location of the static sparse elements. It means that sparse
set among adjacent measurements can be reconstructed jointly
by employing distributed compressed sensing method.

Under the JSM2 model, the UWA channel xt of the t-th
measurement can be written as [15]:

xt = ΨtΩ+ dt, t ∈ (1, 2, . . ., D), (5)

whereΩ anddt are the common supports and different multipath
arrivals in D measurements, respectively. Ψt is the magnitudes
of the common supports, D is the number of measurements
used for joint sparse recovery. Therefore, the UWA channel
of D continuous measurements is composed of two forms of
elements, namely, elements with the common supports Ω, but
different magnitudes Ψt, and those with different multipath
arrivals dt. Based on the JSM2 framework, estimation of sparse
channel can be transformed into the following problem

argmin

D∑
t=1

(||xt||1) s.t. ||Y −AX||22 ≤ ε, (6)

where

Y = [y1, . . .,yD],Y ∈ CMD×1, (7a)

X = [x1, . . .,xD],X ∈ CND×1, (7b)

ε is the noise factor, yt is the recorded signal of the t-th
measurement. The measurement matrix A can be described by

A =

⎛
⎜⎜⎜⎜⎝

A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · AD

⎞
⎟⎟⎟⎟⎠ , A ∈ CMD×ND, (8)

where At is the measurement matrix of the t-th measurement.
The constraint condition for (6) is that, all the UWA channel
includes several non-zero elements with common supports,
while the sparsity of each UWA channel may be different.
Especially, as D = 1, the SOMP algorithm becomes the classic
OMP algorithm.

III. DERIVATION OF THE PROPOSED ALGORITHM

A. The Observation Length of Rapidly Time-Varying UWA
Channel

As shown in (1), for classic channel estimation equation, there
is an implicit assumption that the UWA channel is stationary dur-
ing the observation period. In other words, the observation length
M for channel estimation should be smaller than the coherence
time of UWA channel. Otherwise, for rapidly time-varying UWA
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channel in which observation length M may be larger than
the channel coherence time, inherent channel estimation error
would be unavoidably generated to degrade the performance of
channel estimator. Therefore, tuning the observation length with
respect to channel time-varying degree is vital for estimating
time-varying channel.

The received signal in (2) can be rewritten as

y = A[1,M ],[1,N ]x̃+w, (9)

where x̃ is the estimated channel at time period [1,M ]. The UWA
channel that experiences rapidly time-varying at period [1,M ]
can be approximately decomposed into short-time stationary
channels in p subperiods. Let subperiods

M = Q1 +Q2 + · · ·+Qp, (10)

where Qj , j ∈ (1, 2, . . . , p), are the duration of each stationary
subperiod. Therefore, the (2) can be described precisely by

y =
p�

k=1
y[( k∑

j=1
Qj−1+1

)
,

(
k∑

j=1
Qj

)]
,1

=
p�

k=1
A[( k∑

j=1
Qj−1+1

)
,

(
k∑

j=1
Qj

)]
,[1,N ]

x̃k +w, (11)

where � is the concatenation operation between vectors,
Q0 = 0, x̃k ∈ CN×1 is the estimated channel for time period
[(
∑k

j=1 Qj−1 + 1), (
∑k

j=1 Qj)]. To formulate rapidly time-
varying UWA channel with multiple short-time stationary chan-
nels, the objective function of searching the optimal duration
Qj , j ∈ (1, 2, . . . , p), to minimize residual error can be ex-
pressed by

(Q̂1, Q̂2, . . . , Q̂p)

= argmin ||y − p�
k=1

A[( k∑
j=1

Qj−1+1

)
,

(
k∑

j=1
Qj

)]
,[1,N ]

x̃k||2.

(12)

The solution for (12) can be derived by minimizing the cost
function

J = ||y − p�
k=1

A[( k∑
j=1

Qj−1+1

)
,

(
k∑

j=1
Qj

)]
,[1,N ]

x̃k||2. (13)

Thus, the challenging problem of rapidly time-varying chan-
nel estimation is equivalent to measurement-wise estimation
of short-time stationary channel, which can be implemented
by applying estimation algorithm with observation length Qj

adaptively tuned at the j-th subperiod. However, as addressing
the (12) is a highly complicated multiple-dimension optimiza-
tion problem, in the next subsection a gradient descent tuning
algorithm is designed to simplify the tuning process.

B. Sequential Adaptive Observation Length Orthogonal
Matching Pursuit (SAOLOMP) Algorithm Derivation

With the purpose to deal with rapidly time-varying channel,
after the separation of static and time-varying components, an
adaptive adjustment equation is designed to tune the observation
length, with which the measurement-wise OMP is applied to

estimate dynamic elements. The flow chart of the proposed
SAOLOMP algorithm is shown in Fig. 1.

Let (ξt)s and (ξt)v denote the residual error of static and
dynamic components estimation of the t-th measurement, re-
spectively. Ωs denotes the column index of selected atom for the
SOMP, note that Ωs remains unchanged when t ∈ (1, 2, . . ., D).
(Ωt)v denotes the column index of selected atom for the
measurement-wise OMP of t-th measurement.

The SAOLOMP algorithm has the following steps:
Input:
D adjacent measurements of recorded signal Y =

[y1,y2, . . .,yD],Y ∈ CMD×1,A ∈ CMD×ND; the maximum
iterations K for static elements; threshold vthreshold of residual
error.

Initialization:
The SOMP residual error as (ξt)s = yt, and the column index

of atom as Ωs = (Ωt)v = φ. Meanwhile, we set the initial OMP
residual error (ξt)v = (ξt)s, where t ∈ (1, 2, . . ., D).

Step 1:
We adopt the SOMP algorithm to estimate the static elements

by utilizing the correlation among adjacent measurements.
Firstly, selecting atom At from A to perform inner product with
residual error (ξt)s, and summing the inner product outputs ofD
adjacent measurements to determine the location corresponding
to the maximum value γk. Hence, we have

γk = argmax
j=1,2,...,N

D∑
t=1

| 〈(At)[1,M ],[j], (ξt)s
〉 |, (14)

where subscript k is the iteration number. Then, the time delay
γk is added to the static components index Ωs as

Ωs = Ωs ∪ γk. (15)

Based on the selected static components index Ωs, we calculate
the static elements (x̃t)s of each measurement of UWA channel
with least squares (LS) method as

(x̃t)s = (At)
†
[1,M ],[Ωs]

yt. (16)

Next, we calculate and update the residual error (ξt)s as

(ξt)s = yt − (At)[1,M ],[Ωs](x̃t)s, (17)

where t ∈ (1, 2, . . ., D). Iteration stops when the iteration times
reaches the defined number K and obtain the static elements
(x̃t)s, otherwise the iteration continues.

Step 2:
Similar to the SDD-CS algorithm [24], upon the residual error

of the SOMP, the measurement-wise OMP is applied to estimate
the remained dynamic elements. We also set the OMP residual
error (ξt)v = (ξt)s, t ∈ (1, 2, . . ., D). Meanwhile, (yt)v is con-
tributed by dynamic elements of recorded signal (yt), (yt)v is
set as the SOMP residual error (ξt)v , i.e.

(yt)v = (ξt)v, t ∈ (1, 2, . . ., D). (18)

The measurement matrix At can be expressed by

At = (At)[1,M ],[Ωs∪Ωc
s]

= (At)[1,M ],[Ωs] � (At)[1,M ],[Ωc
s]
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Fig. 1. The flow chart of the proposed SAOLOMP algorithm.

= (At)s � (At)v, (19)

where Ωc
s represents the complement of Ωs, i.e. Ωc

s =
[1 : N ]\Ωs. (At)s ∈ CM×K and (At)v ∈ CM×(N−K) denote
the term related to dynamic and static elements, respectively.
� is the concatenation operation between matrices, and the
concatenation order follows index Ωs and Ωc

s.
Meanwhile, as the residual error (ξt)s is mainly contributed

by time-varying components of multipath channel, it is used as
the cost function of (13), namely,

J = ||(ξt)s||2

= ||yt − (At)[1,M ],[Ωs](x̃t)s||2

=

M∑
i=1

(yt(i)− (At)[i],[Ωs]
(x̃t)s)

2, (20)

where t ∈ (1, 2, . . ., D). While directly addressing the (12) to
search optimum observation length is a highly complicated
nonlinear optimization problem, inspired by the gradient op-
timization for filter length [36] or norm strength [37], we expect
to derive a gradient descent observation length tuning algorithm
by similarly defining the residual error gradient with respect to
the observation length as

∇JM =
∂||(ξt)s||2

∂M
, t ∈ (1, 2, . . ., D). (21)

However, while the magnitude of residual error in (20) indi-
cates the match of the channel time variation and the observation
length, directly using the residual error gradient ∇JM in (21)
may lead to negative effect. The reason is that, as revealed in
(20), J is equal to the product of M and the mean square of
(ξt)s, and ∇JM actually is the mean square of (ξt)s. It means
that descent gradient with ∇JM will be only along the direction
of discreasing M , thus unsuitable for optimum M search.

Note that transient gradient of residual error with respect to
the static sparse element (x̃t)s can be expressed by

∇J(x̃t)s =
∂||(ξt)s||2
∂(x̃t)s

= −2(ξt)s(At)[1,M ],[Ωs], (22)

where the size of the measurement matrix (At)[1,M ],[Ωs] con-
tains the observation lengthM , i.e., the gradient∇J(x̃t)s implic-
itly indicates the impact of M on residual error. Meanwhile, to
avoid the negative effect of∇JM ,∇J(x̃t)s can be used for tuning
M along the negative direction in the sense that it will approach
to minimum point upon the optimum M . Thus, different from
the gradient descent derivation in [36] that directly adopted the
error gradient with respect to the filter length, the gradient of
residual error with respect to the static sparse element (x̃t)s as

defined in (22) is adopted to search the optimum M along the
descent direction.

Although herein we cannot give a theoretical optimal deriva-
tion, the gradient optimization provides an effective method
to solve this observation length optimization problem from
the viewpoint of gradient approximation. Thus, a sub-optimal
observation length is adaptively tuned to fit the UWA channel
with rapidly time-varying multipath as

(Mt)v = ceil

(
M − 1

2
μ||∇J(x̃t)s ||

)

= ceil(M + μ||(ξt)s(At)[1,M ],[Ωs]||), (23)

where μ is the step size, ceil(B) represents round the elements
of B to the nearest integers greater than or equal to B, t ∈
(1, 2, . . ., D). Therefore, the measurement matrix

(At)v = (At)[1,(Mt)v ],[Ωc
s]

(24)

is the size of (Mt)v × (N −K) matrix, the term (yt)v is the
size of (Mt)v × 1 vector, where t ∈ (1, 2, . . ., D).

Step 3:
For the dynamic elements estimation, the measurement-wise

OMP is proposed to adapt to rapid time variations of UWA
channel. Firstly, we select atom At from (At)v to perform inner
product with residual error (ξt)v , and determine the location
corresponding to the maximum value (γt)k.

(γt)k = argmax
j=1,2,...,N−K

| 〈(At)[1,(Mt)v ],[j], (ξt)v
〉 |, (25)

where subscript k is the iteration number, and t ∈ (1, 2, . . ., D)
represents D adjacent measurements. Then, we update the dy-
namic components index (Ωt)v as

(Ωt)v = (Ωt)v ∪ (γt)k. (26)

Based on the index (Ωt)v , we calculate the dynamic elements
(x̃t)v of UWA channel with LS method as

(x̃t)v = (At)
†
[1,(Mt)v ],[(Ωt)v ]

(yt)v. (27)

Next, the residual error (ξt)v is updated as

(ξt)v = (yt)v − (At)[1,(Mt)v ],[(Ωt)v ](x̃t)v, (28)

where t ∈ (1, 2, . . ., D). Iterations stop when the current resid-
ual (ξt)v is smaller than the threshold vthreshold, thus the dy-
namic elements (x̃t)v are obtained.

Step 4:
Finally, the whole sparse solution of the UWA channel is

obtained by summing up the static and dynamic elements as

x̃t = (x̃t)s � (x̃t)v, t ∈ (1, 2, . . ., D), (29)
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TABLE I
PSEUDO-CODES OF THE PROPOSED ALGORITHM

TABLE II
COMPUTATIONAL COMPLEXITY

where � is the concatenation operation between vectors, and
the concatenation order follows index Ωs and (Ωt)v . The iter-
ation procedures above indicate that, the proposed SAOLOMP
method is capable of not only making fully use of the hybrid
sparse feature of the UWA channel by separating static and
dynamic sparse components, but also exploiting the rapidly
time-varying sparsity by adaptive observation length adjust-
ment.

The proposed SAOLOMP algorithm is described using MAT-
LAB like pseudo-codes as Table I.

C. Brief Discussion

1) Parameter Choice: Since the proposed SAOLOMP algo-
rithm contains discriminative estimation, the parameters K and
vthreshold have the impact on the different dynamic sparsity
ratio. Larger K would lead to more contribution for static
components, which is good for the UWA channel with slowly
time-varying sparsity, and vice versa. On the other hand, larger
vthreshold would result to more details for dynamic components.
Thus, in practical terms, suitable K and vthreshold value should
be taken into account.

2) Computational Complexity Analysis: Table II shows
the approximate computational complexity of the proposed
SAOLOMP algorithm, as well as the LSQR, OMP, SOMP,
SL0, and SDD-CS algorithms. The computational complexity
represents all operations of the algorithms. Notation: I denotes
the iteration times for LSQR algorithm, M and N are the
length of observation time and CIR, respectively. Also, Ns and
Nv are the length of static multipath and dynamic multipath,
respectively, Mv is the observation length for the dynamic
components estimation. κ denotes the sparsity factors of UWA
channel, K is the iteration times to obtain the static elements for
the SAOLOMP algorithm.

The computational complexity for the SAOLOMP algorithm
is O(KMN + (κ−K)Mv(N −K)) which mainly comes
from the static components and dynamic components estima-
tion. Specifically, while the static components are obtained by
the SOMP algorithm in K times iteration associated with the
computational complexityO(KMN), the dynamic components
correspond to a complexity of O((κ−K)Mv(N −K)), which
are caused by the measurement-wise OMP algorithm in (κ−K)
times iteration with observation length Mv and remaining CIR
length (N −K). Compared with the OMP and the SOMP
algorithms, the computational complexity for the SAOLOMP
algorithm is slightly reduced, since the observation length Mv

is shorter than M to fit the UWA channel with different time-
varying sparsity. Moreover, the SDD-CS method needs to de-
compose hybrid multipath arrivals into static and time-varying
components, which correspond to additional computation.

3) Recovery Guarantee: In order to analyze the performance
of the compressed sensing algorithm, the restricted isometry
property (RIP) framework has been widely applied [38]–[40].
Suppose that there exists a constant δ ∈ (0, 1) such that

(1 − δ)||x||22 ≤ ||Ax||22 ≤ (1 + δ)||x||22, (30)

for all κ-sparse vector x. Then, the matrix A is said to satisfy
the RIP. Specifically, the smallest δ satisfying (30) is called the
RIP constant of A and is denoted by δκ.

Over the years, various RIP-based recovery guarantees of
OMP have been proposed [38]–[43]. [40] presented an optimal
RIP condition for the success of the OMP algorithm, when the
l2-normalized sampling matrix is employed. Furthermore, [39]
showed the nearly optimal restricted isometry condition for
rank aware order recursive matching pursuit (RA-ORMP) to
accurately recover the joint sparse vectors if a sampling matrix
has unit l2-norm, and also provided the performance guaran-
tee of RA-ORMP in the more realistic scenarios of general
sampling matrices. Note that, by tuning the observation length,
the proposed SAOLOMP algorithm is equivalent to converting
the problem of the time-varying sparse recovery into multiple
short-time sparse recovery, which enables classic RIP-based
performance analysis. In the future we will investigate the suffi-
cient condition for SAOLOMP algorithm from the perspective
of adjustable observation length to ensure the exact support
recovery.

Authorized licensed use limited to: Xiamen University. Downloaded on June 02,2023 at 09:35:34 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: EXPLOITING RAPIDLY TIME-VARYING SPARSITY FOR UNDERWATER ACOUSTIC COMMUNICATION 9727

IV. NUMERICAL SIMULATION

In this section, based on the bell-hop [44] toolkit, numeri-
cal simulation is conducted to verify the effectiveness of the
SAOLOMP algorithm under the artificial UWA channel with
slowly and rapidly time-varying sparsity. The original UWA
channel is firstly created by the bell-hop toolkit, from which
the paths caused by the sea surface artificially imposed with
slow time variations and rapid ones, respectively. In particular,
to generate the slowly and rapidly time-varying sparsity, the
random variation follows normal distribution is imposed on the
delay of surface path with a variance of 0.1 and 1, respectively.
Meanwhile, the magnitude of sea surface is imposed with dif-
ferent amplitudes of sinusoidal variations. Since the direct path
and bottom path are relatively stable, without loss of general-
ity, we assume that the delay of direct path and bottom path
remain unchanged, and the magnitude is imposed with different
amplitudes of sinusoidal variations to generate some degrees of
variation, which is often affected by the ocean environment.

The distance and depth of the simulation channel is set to
500 meters and 10 meters respectively with the transmitter and
receiver located at 8 meters and 10 meters below the sea surface,
respectively. The length of CIR is N = 190 with equivalent
sampling rate 4000 Hz. The observation length is M = 100,
and the sparsity factor, namely the non-zero element, of the
simulated CIR is κ = 6. The measurement matrix A is formed
by the quadrature phase shift keying (QPSK) symbols.

The CIR of the simulated UWA channel, of which the 5-th
and 6-th path imposed with artificial time variations to simulate
surface dynamics, is shown in Fig. 2. It can be noticed from
Fig. 2 that compared with Fig. 2(a), the simulated channel in
Fig. 2(b) presents obviously more rapid time-varying sparsity.

In the simulation test, the parameters of each method are
adjusted to the optimal recovery SNR output (ρCR) for per-
formance evaluation, where

ρCR = 10log10||h||22/ ||h− h̃||22, (31)

and h̃ is the estimated impulse response. The received SNRρy =
30 dB, and it is assumed that the sparsity factors κ is known for
all the methods beforehand. For the SAOLOMP, SDD-CS, and
SOMP algorithm, the data block D is 6, the step size is μ = 0.5,
the maximum iterations K = 4, and the threshold vthreshold is
5e-1. The error tolerance for the LSQR algorithm is 1e-6. For the
SL0 method, the step size of iteration is set to 0.6. The sparsity
factor κ is set to 6 for the OMP and SOMP algorithms.

The correlation coefficient ρ [45] provides a measure of time-
varying degree of channel. Shown in Fig. 3(a) is the correlation
coefficients of channels under different time-varying character-
istic, for the UWA channel with slowly time-varying sparsity,
the correlation coefficient ρ is all above 0.91. On the other hand,
for the UWA channel with rapidly time-varying sparsity, the
correlation coefficientρ shows a significantly decline trend along
0.8. Fig. 3(b) presents the observation lengthMv for the dynamic
multipath channel estimation of the SAOLOMP algorithm under
the UWA channel with slowly and rapidly time-varying sparsity,
respectively. For the channel with slowly time-varying sparsity,

Fig. 2. The simulated UWA channel with slowly and rapidly time-varying
sparsity. (a) Channel with slowly time-varying sparsity. (b) Channel with rapidly
time-varying sparsity.

Fig. 3. The correlation coefficient ρ and the observation length Mv under
the channel with slowly and rapidly time-varying sparsity. (a) Correlation
coefficient. (b) Observation length.

Authorized licensed use limited to: Xiamen University. Downloaded on June 02,2023 at 09:35:34 UTC from IEEE Xplore.  Restrictions apply. 



9728 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 9, SEPTEMBER 2022

Fig. 4. The outputs of different algorithms under the UWA channel with slowly
and rapidly time-varying sparsity. (a) ρCR. (b) BER.

the Mv value remains comparatively constant around an averag-
ing length of 96. As the proposed SAOLOMP algorithm enables
the tuning capability of Mv according to the gradient of the
residual error of the SOMP, the observation length Mv exhibits
a much more dynamic trend to adapt to rapidly time-varying
sparsity, around an averaging length of 88.

In the numerical simulation, in order to evaluate the commu-
nication performance, the linear minimum mean-square error
(MMSE) equalizer is adopted to recover the received sym-
bol [46]. The channel recovery SNR (ρCR) and bit error rate
(BER) results obtained by different algorithms are shown in
Fig. 4(a) and (b), respectively. One may observe from Fig. 4 that
the proposed algorithm achieves the best accuracy among all the
algorithms. Meanwhile, it is also evident that, under different
time-varying sparsity pattern, the ρCR and BER output of the
SAOLOMP remains stable and robust, while that of the SOMP
algorithm is subject to significant performance degradation with
rapidly time-varying sparsity. Specifically, because dynamic
compressed sensing is designed for recovering the UWA channel
with slowly time-varying sparsity, the channel with rapidly time-
varying sparsity will cause the model mismatch and significant
performance degradation for SDD-CS method. The simulation
results demonstrate that the proposed SAOLOMP can adaptively
tune the observation length to fit the UWA channel with differ-
ent time-varying sparsity and is robust to work at the rapidly
time-varying sparsity scenario.

The ρCR and BER outputs of different algorithms with
SNR from −5 to 40 dB under the UWA channel with slowly
and rapidly time-varying is shown in Fig. 5. As presented in
Fig. 5, the main trend of these algorithms is that under different

Fig. 5. The outputs of different algorithms with different SNR under the UWA
channel with slowly and rapidly time-varying. (a) ρCR. (b) BER.

time-varying sparsity pattern, affected by the noise, the ρCR

increases and BER decreases with the SNR from −5 to 40
dB. The proposed SAOLOMP algorithm achieves the highest
output SNR ρCR and the lowest BER among all the other
reference algorithms. Specifically, one may also notice that
the SDD-CS estimator corresponds to significant performance
degradation, as the existence of noise significantly deteriorates
the time-varying components tracking, even at the channel with
slowly time-varying sparsity.

V. FIELD EXPERIMENT

A. Shallow Sea Experiment

The shallow sea experiment was carried out in the shallow
water area at Wuyuan Bay, Xiamen, China, as shown in Fig. 6.
The average depth of the experimental site is 7 meters, and the
distance between the receiver and the transmitter is about 1000
meters. The signal was transmitted by a transducer suspended
at a depth of 4 meters below the sea surface. A four-element
receiving array was mounted at the rear of a ship, covering from
1.5 meters to 6 meters below the sea surface with an element
spacing of 1.5 meters. The bandwidth of transducer is 13-18
kHz.

The modulation mode is QPSK with a data rate of 8 kbps and
a carrier frequency of 16 kHz. The length of CIR is N = 190
with equivalent sampling rate 8000 Hz for the baseband signal
and the observation length is M = 150. As in the simulation
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Fig. 6. Setup of the shallow sea experiment.

experiment, the parameters of each method are adjusted to the
optimal BER output for performance evaluation. Especially, for
the SAOLOMP algorithm, the data block D is 5, the step size
is μ = 0.5, the maximum iterations K = 4, and the threshold
vthreshold is 5e-1. For the SL0 method, the step size of iteration
is set to 0.7. The error tolerance for the LSQR algorithm is
1e-6. The sparsity factor κ is set to 15 for the OMP and SOMP
algorithms. For the SOMP and the SDD-CS algorithm, the data
block D is set to 5 either.

The time-varying channel response of the four different UWA
channels are shown in Fig. 7. It can be seen from Fig. 7 that,
as the shallow water geometry leads to serious sea surface and
bottom interactions for sound propagation, all the four channels
exhibit typical hybrid sparse structure comprising of a group
of comparatively static multipath arrivals and some rapidly
time-varying ones. To be specific, in these four channels, except
some obvious rapidly time-varying multipath, the relatively
static multipath arrivals are at the time delay of 6.1 ms, 6.6
ms, 6.1 ms and 7.1 ms, 5.9 ms and 6.4 ms, respectively.

Given in Fig. 8(a) is the channel correlation coefficients of the
four different UWA channels corresponding to four receiving
elements, from which one may observe that four UWA channels
exhibit different degree of time-varying, with the channel 1
and channel 4 experiencing most rapid and slow time-varying
behavior. Moreover, Fig. 8(b) provides the observation length
Mv during processing of the proposed SAOLOMP algorithm
for the four different channels. It can be found from Fig. 8(a)
and (b) that, while Mv for all the four channels exhibit frequent
variations as driven by the gradient of the SOMP residual error,
Mv associated with channel 1 and channel 4 corresponds to the
bigger and smallest averaging value, respectively.

In the shallow sea experiment, the multi-channel time rever-
sal (TR) receiver with periodical channel estimate updating is
adopted for performance evaluation in terms of receiver out-
put [47], which consists of a multi-channel TR processor and a
single-channel RLS algorithm driven decision feedback equal-
ization (DFE) to address the residual inter-symbol interference.
A second-order phase locked loop is implanted in the DFE to
compensate the residual carrier phase offset.

The data packet of the shallow sea test totally contains 25000
symbols, i.e., 50000 bits, of which a 1000-symbol-long pream-
ble precedes the data packet for initialization of the channel
estimate and DFE. Periodic 200 training symbols were inserted

TABLE III
AVERAGE BER AND ρEO DRIVEN BY DIFFERENT ESTIMATION ALGORITHMS

IN THE SHALLOW SEA EXPERIMENT

between 300 symbol data blocks to retrain the receiver. The
data packet structure is shown in Fig. 9. The single-channel
adaptive DFE followed the combing time reversal is updated
with RLS algorithm. The filter length of the RLS updating
forward and backward are set to 32 and 16, respectively, with
the RLS forgetting factor of 0.998.

Considering that among the four channels the channel 1 and
channel 4 have the most rapid and most slow time variations,
respectively, two types of 3-channel pattern are formed by com-
bining three channels to drive the multi-channel TR receiver for
performance evaluation with respect to different time-varying
sparsity. Specifically, the channel 1, 2, 3 are combined as the
UWA channel pattern with rapidly time-varying sparsity, while
the channel 2, 3, 4 are combined as the UWA channel pattern
with slowly time-varying sparsity. Therefore, the performance
of multi-channel TR receiver driven by different channel estima-
tion algorithm is compared under different time-varying sparsity
pattern.

The Output Signal Noise Ratio (ρEO) is applied to evaluate
the accuracy of the solution of sparse recovery as

ρEO = 10log10||s||22/||s− s̃||22, (32)

where s is the transmitted symbol, s̃ denotes the soft output
from the receiver. Therefore, the communication metrics of the
TR receiver are used to evaluate the performance of channel
estimation algorithm, namely, ρEO, BER, and constellation.

The average BER and ρEO associated with different chan-
nel estimation algorithms under the channel with slowly and
rapidly time-varying sparsity are shown in Fig. 10(a) and (b),
respectively. As given in Fig. 10(a) and (b), it is evident that
all the algorithms experience performance degradation when
the channel type changes from slowly time-varying to rapidly
time-varying. Meanwhile, the proposed SAOLOMP algorithm
outperforms the LSQR and the other compressed sensing chan-
nel estimation algorithms under both two types of channel. Note
that, while for channel with slowly time-varying sparsity, the
SDD-CS algorithm yields only slightly worse BER and ρEO

performance than the proposed algorithms does, for channel with
rapidly time-varying channel, the SDD-CS algorithm exhibits
much worse BER and ρEO performance than the proposed
algorithm does. The average BER and ρEO driven by differ-
ent channel estimation algorithms are presented in Table III,
from which similar trend can be noticed. Specifically, when the
channel time-varying pattern changed from slow to rapid, a BER
degradation of 1.90%, 0.84%, 1.12%, 2.15%, 3.39% and 0.39%
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Fig. 7. The CIR of UWA channels obtained by the proposed SAOLOMP method in the shallow sea experiment. (a) Channel 1. (b) Channel 2. (c) Channel 3. (d)
Channel 4.

Fig. 8. The channel correlation coefficients ρ and the observation length Mv

under four different channels in the shallow sea experiment. (a) Correlation
coefficient. (b) Observation length.

Fig. 9. The formation of the data packet.

Fig. 10. The outputs driven by different channel estimators under UWA chan-
nel with slowly and rapidly time-varying sparsity in the shallow sea experiment.
(a) ρEO . (b) BER.

for the LSQR, OMP, SL0, SOMP, SDD-CS and SAOLOMP
algorithm can be observed, respectively.

Moreover, as shown in Table III, under channel with slowly
time-varying sparsity, the ρEO obtained by the receiver driven
by the LSQR, OMP, SL0, SOMP, SDD-CS, and SAOLOMP
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Fig. 11. Constellation outputs driven by different channel estimators in the shallow sea experiment. (a) Under the channel with slowly time-varying sparsity. (b)
Under the channel with rapidly time-varying sparsity.

algorithms are 11.30 dB, 13.39 dB, 13.19 dB, 13.40 dB, 14.01
dB, and 14.26 dB, respectively. While for the channel with
rapidly time-varying sparsity, the ρEO of LSQR, OMP, SL0,
SOMP, SDD-CS, and SAOLOMP algorithms are 10.63 dB,
12.69 dB, 12.53 dB, 12.13 dB, 11.47 dB, and 13.65 dB, respec-
tively. Similarly, SAOLOMP algorithm corresponds the least
performance loss. Note that, while the SDD-CS method achieves
the second best BER and ρEO performance in channel with
slowing time-varying sparsity, it experiences the most significant
performance degradation in terms of both BER and ρEO. The
reason may be that the Kalman dynamic model used by SDD-CS
method to formulate time-varying sparsity fails to track the rapid
time variations.

The constellation outputs driven by different channel esti-
mators, namely SOMP, OMP, SDD-CS, SAOLOMP method,
under the channel with slowly and rapidly time-varying sparsity
are illustrated in Fig. 11, respectively. As shown in Fig. 11, it
is clear that for both types of channel pattern, the constellation
output of the SAOLOMP algorithm outperforms that of all the
other reference algorithms. Meanwhile, the constellation output
of SDD-CS exhibits the most obvious performance degradation,
when the channel pattern changes from slowly to rapidly time-
varying sparsity. Thus, the constellation outputs result is also
consistent with the BER and ρEO results given in Fig. 10 and
Table III.

B. Deep Sea Experiment

The deep sea experimental data was collected in south China
sea, China. The depth of the experimental area is about 2800
meters, with the transmitter and the receiver located 100 m
and 12 m below the water surface, respectively. The distance
between the transmitter and the receiver is about 2 kilometers.

The transmitter signal is QPSK with a data rate of 8 kbps, and
the carrier frequency of 16 kHz. The bandwidth of transducer is
13–18 kHz.

For the channel estimator, the length of CIR is set to N =
160 with equivalent sampling rate 8000 Hz for the baseband
signal and the observation length is set to M = 145. As in
the simulation experiment, the parameters of each method are
adjusted to the optimal BER output for performance evaluation.
Specifically, for the SAOLOMP algorithm, the data block D
is 6, the step size is μ = 0.5, the maximum iterations K = 3,
and the threshold vthreshold is 5e-1. For the SL0 method, the
step size of iteration is set to 0.75. The error tolerance for the
LSQR algorithm is 1e-6. The sparsity factor κ is set to 10 for the
OMP and SOMP algorithms. For the SOMP and the SDD-CS
algorithm, the data block D is also set to 6.

In the deep sea experiment, a single-channel TR receiver
followed by a single-channel DFE is adopted for performance
evaluation in terms of the receiver communication metrics, i.e,
ρEO, BER, and constellation. For the RLS algorithm driven
DFE, the forward and backward filter length are 32 and 16
respectively, with a forgetting factor of 0.996. While the data
packet totally contains 13500 symbols, of which the length of
preamble, periodic training symbol and data block is 1000, 175
and 325 symbols, respectively.

The deep sea experimental channel as shown in Fig. 12
belongs to upper channel that contains both direct path and
surface-reflection path, corresponding to a steady path at 4 ms
delay and an obvious time-varying path at about 7 ms delay,
respectively. Fig. 13(a) presents the channel correlation co-
efficients of the UWA channels to investigate the degree of
time-varying. As shown in Figs. 12 and 13(a), the deep sea
UWA channel exhibits rapidly time-varying sparsity pattern.
Besides, Fig. 13(b) provides the observation length Mv during
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Fig. 12. The CIR of UWA channels obtained by the proposed SAOLOMP
method in the deep sea experiment.

Fig. 13. The channel correlation coefficients ρ and the observation length Mv

in the deep sea experiment. (a) Correlation coefficient. (b) Observation length.

processing of the proposed SAOLOMP algorithm. It can be seen
from Fig. 13(b) that similar to the curve in Fig. 8, Mv driven
by gradient experiences frequent variations to track the channel
with time-varying sparsity.

Note that, as revealed in both Figs. 7 and 12, deep sea
channel has a stronger stable path than shallow water channel
does, thus, although the correlation coefficient curve of the
deep sea channel as shown in Fig. 13(a) exhibits less rapidly
time-varying than that of the shallow sea channel as shown in
Fig. 8(a), time-varying path in deep sea actually experiences
similar rapid time-variations as channels in shallow water. It
can also be verified by the observation length curves as shown
in Figs. 8(b) and 13(b), both of which corresponding to similar
average observation length at around 140.

As presented in Fig. 14(a) and Table IV are the ρEO curve
and average ρEO in the deep sea experiment, respectively. The

Fig. 14. The outputs driven by different channel estimators in the deep sea
experiment. (a) ρEO . (b) BER.

TABLE IV
AVERAGE BER AND ρEO DRIVEN BY DIFFERENT ESTIMATION ALGORITHMS

IN THE DEEP SEA EXPERIMENT

ρEO is obtained by the TR-DFE driven by the LSQR, OMP,
SL0, SOMP, SDD-CS, and SAOLOMP algorithms, respectively.
Especially, while the lowestρEO of LSQR is 10.33, the proposed
SAOLOMP method generates the highest ρEO of 13.11, versus
12.83 by OMP, 12.56 by SL0, 12.94 by SOMP and 13.02 by
SDD-CS algorithm.

In addition, the BER curve as well as average BER achieved
by different channel estimation algorithms in the deep sea ex-
periment are shown in Fig. 14(b) and Table IV, respectively.
Among all the six channel estimation methods, the SAOLOMP
method realizes the lowest BER output. Due to substantial
estimation noise, the LSQR algorithm presents the worst esti-
mation performance. Compared with the proposed SAOLOMP
algorithm, the classic compressed sensing channel estimation
algorithms, namely, the OMP, SL0, and SOMP algorithms go
through markedly performance decrease. Besides, affected by
the UWA channel with rapidly time-varying sparsity, SDD-CS
method also occurs performance degradation. It is evident that
the proposed SAOLOMP algorithm yields the lowest BER 1.6%,
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Fig. 15. Constellation outputs driven by different channel estimators in the
deep sea experiment. (a) LSQR. (b) OMP. (c) SOMP. (d) SDD-CS. (e) SL0. (f)
SAOLOMP.

which corresponding to a reduction of 3.25%, 0.46%, 0.97%,
0.29%, and 0.16% over the LSQR, OMP, SL0, SOMP and
SDD-CS algorithm, respectively.

The constellation outputs driven by different channel estima-
tors in the deep sea experiment are illustrated in Fig. 15. It can
be found that the LSQR method shows the worse constellation
quality, since there is visible estimation noise. The OMP, SOMP,
and SL0 estimators can exploit the channel sparsity, or joint
sparsity, the estimation results show a great noise abatement
effect. However, the UWA channel with rapidly time-varying
sparsity will unavoidably bring about considerable performance
degradation for the classic compressed sensing channel estima-
tion algorithms. In addition, SDD-CS method yields the second
highest constellation quality, while the SDD-CS algorithm is
able to exploit hybrid sparsity of UWA channel. Nevertheless,
this type of algorithm is designed for the UWA channel with
slowly time-varying sparsity, the estimation performance of
SDD-CS method would be affected by the rapidly time-varying
components. As shown in Fig. 15, it is clear that, the constellation
quality of SAOLOMP algorithm is obviously better than the
other three sparse algorithms, because the SAOLOMP algorithm
is derived to exploit the UWA channel with rapidly time-varying
sparsity, and can adaptively tune the observation length to fit the
UWA channel with different time-varying sparsity. Therefore,
the constellation outputs result in the deep sea experiment is in
line with the average BER results in Table IV either.

VI. CONCLUSION

A sequential adaptive observation length orthogonal matching
pursuit (SAOLOMP) algorithm is presented to explore rapidly
time-varying sparsity for UWA channels.

The core idea of the proposed algorithm is to firstly adopt
the joint sparse recovery SOMP to separate static components.
As the residual error of the SOMP processing indicates time
variation level of the remained time-varying components, the
measurement-wise OMP is performed on the residual error of
the SOMP for reconstruction of dynamic component, with the
observation length of which adaptively adjusted according to
the gradient of residual error. Finally, estimation results of these
two components are summed up to obtain the whole hybrid
sparse signal, thus enabling efficient identification of rapidly
time-varying sparsity via separation of hybrid sparse elements
and adaptive observation length adjustment.

Numerical simulations, as well as two typical UWA com-
munication scenarios, i.e., one in shallow sea and one in deep
sea, show that, at the presence of rapidly time-varying sparsity,
the proposed SAOLOMP algorithm yields better performance,
when compared with the classic algorithms.
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