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Small Size Array Underwater Acoustic DOA
Estimation Based on Direction-Dependent

Transmission Response
Jiaheng Li , Feng Tong , Member, IEEE, Yuehai Zhou , Yi Yang, and Zhiqiang Hu

Abstract—It has been recognized that the performance of the
traditional direction of arrival (DOA) estimation algorithms is
highly dependent on array geometry parameters, especially the
array size and element number. Unfortunately, significant perfor-
mance degradation may be caused under unideal array geometry
such as small size array onboard small underwater vehicle. Among
all the possible directions, the presence of underwater target at a
certain direction constitutes a type of spatial sparsity. Thus, spatial
sparse recovery provides a potential way to address this challenging
problem. As each DOA will correspond to a different transmission
response pattern with respect to each array element, thus consti-
tutes a direction-dependent transmission response (DDTR) that can
be explored. However, random contribution of underwater acoustic
(UWA) channel contained in DDTR makes it extremely difficult
to directly construct dictionary matrix with DDTR. In this paper,
a novel DDTR based small size array DOA estimation method is
proposed. First, DDTRs are decomposed into time delay (TD) term
and random channel response (RCR) term to decouple the adverse
impact of UWA channel. Second, TD is conveniently constructed as
dictionary matrix in terms of geometry relationship. Then, by accu-
mulating the constructed DOA at frequency bins selected with en-
ergy or correlation coefficient, a selective frequency accumulation
compressed sensing reconstruction (SFA-CS) algorithm is designed
to mitigate the negative effect of UWA channel. Compared with
the conventional DOA estimation algorithms, simulation results
demonstrate that the proposed method can achieve small array
DOA estimation with a lower root mean squared error (RMSE)
and higher success rate (SR).

Index Terms—DOA estimation, small size array, transmission
response, RMSE.

I. INTRODUCTION

D IRECTION of arrival (DOA) estimation of underwater
targets is widely used in ocean observation technology,
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such as underwater sensor networks, navigation, and marine en-
gineering [1], [2], [3]. Traditional DOA estimation methods such
as multiple signal classification (MUSIC), minimum variance
distortionless response (MVDR), and their variants [4], [5], [6]
generally require a dense and large array to yield high precision,
indicating a precision constraint imposed by the size and element
number of the array.

Recently, rapid development of underwater technology wit-
nessed actively evolution of small size underwater vehicles such
as autonomous underwater vehicle (AUV), unmanned underwa-
ter vehicle (UUV), etc. that enable dense and low-cost deploy-
ment [7], [8]. The physical size of those small vehicles is usually
limited to m-level, resulting in the size of the onboard array
being inevitably limited to m-level, as well as the limited num-
ber of acoustic sensors, and steering blind region. In addition,
the circumstances of low signal-to-noise ratio (SNR) and few
snapshots, etc., will also significantly degrade the performance
of the DOA estimation achieved by a small size array.

To overcome the above limitations, Yang et al. established an
accurate acoustic localization model with a small sensor array
and proved that this model is quite suitable for 4 and 5-elements
spatial square arrays [9]. Su et al. proposed a time delay-based
DOA estimation method based on a small size array. Using the
generalized correlation method, the time delays between the
signal and each element of the array are estimated and used to
localize the sources [10]. Taking a tiny dimension three sensor
line array, Sun et al. proposed a new signal phase matching-based
DOA estimation method. The DOA estimation accuracy of this
method is close to that of MUSIC and can furtherly estimate the
signal waveform [11].

Different from conventional DOA estimation algorithm that
directly explores spatial information contained in signal from
each array element, compressed sensing (CS) theory provides a
new way to address the challenging DOA estimation problem
by converting the problem of DOA into that of spatial sparse re-
covery [12], [13], [14]. Malioutov et al. utilized the sparse signal
representation methodology for source localization and imposed
a penalty on the lack of sparsity of the spatial spectrum [15].
Liang et al. proposed a DOA estimation method based on sparse
Bayesian learning to overcome the spatially colored noise [16].
Gurbuz et al. assumed sparsity in the bearing domain and used a
basis pursuit strategy to reconstruct the bearing domain vector.

To reduce the complexity and computation, Chang et al.
proposed a CS-based array processing method. This method
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multiples the spatial and temporal compressed matrices with
array signals to get a small size array system [17]. For a low
SNR and few snapshots, Li et al. proposed a new DOA estimation
method based on sparse signal recovery. This method constructs
a new weighted matrix to penalize the l1-norm constrained
model, effectively suppressing the false peaks [18]. In fact, the
above methods took random projections of the received signals at
the sensors rather than taking random projections of the bearing
vector directly [19].

However, due to the highly complicated time-frequency se-
lectivity of underwater acoustic (UWA) channel [20], acoustic
signal emitted by target source will be refracted by nonho-
mogeneous water medium and reflected by sea surface and
seafloor. Therefore, the received signals corresponding to the
same DOA may be the superposition of multipath from dif-
ferent sources, or the received signals corresponding to dif-
ferent DOAs may be the superposition of multipath from
the same source [21]. Thus, besides the limitation caused
by the array geometry parameter, the adverse multipath ef-
fect poses further challenges to the small size array DOA
estimation.

Referring to localization examples in biological organisms,
such as humans, bats, etc., sound localization or DOA estimation
can be performed even just by one single ear [22], [23]. This
is because, before the sound arrives at the eardrum, it will
be scattered by the head, torso, and ear pinna. This type of
scatters is constructed by the superposition of different mul-
tipath and changed as a function of the location or DOA of the
source, referred to as the head-related transfer function (HRTF).
Jia et al. designed a multisource listening system, the meta-
material enclosure (ME) was adopted to construct an artificial
frequency-dependent transmission characteristic, thus enabling
a single microphone 3D DOA via sparse recovery [23].

Similarly, underwater acoustic signals generated by under-
water target experience different multipath pattern associated
with different DOA. Therefore, for a certain direction with
respect to the array, the transmission response between the target
and the array constitutes the direction-dependent transmission
response (DDTR). Meanwhile, among all the possible DOAs,
the presence of the target in a certain direction constitutes a type
of spatial sparsity, thus the DOA estimation can be achieved by
sparse reconstruction algorithms, such as orthogonal matching
pursuit (OMP), stagewise weak OMP (SWOMP), compressive
sampling matching pursuit (CoSaMP) algorithms [24], [25],
[26].

However, in [23], while the measurement matrix determined
by the ME and signals can be experimentally constructed in
advance, the room impulse response is not considered in this
model and thus still poses a difficulty under an unknown envi-
ronment. In this sense, for underwater acoustic DOA estimation,
a similar problem exists as the DDTR also contains a random
contribution of UWA channel, which also makes it extremely
difficult to directly construct a dictionary matrix.

To address the negative impact of UWA channel, a novel
CS-based underwater DOA estimation method is proposed in
this paper by the means of DDTR decomposition and frequency
accumulation.

Fig. 1. Structure of the underwater acoustic signal receiver.

Specifically, DDTRs are decomposed into time delay (TD)
term and random channel response (RCR) term to decouple
the impact of UWA channel. While TDs associated with each
DOA can be constructed as the dictionary matrix according
to the array geometry, weighting of RCRs on sparse vector
unavoidable affects the sparse recovery performance. Although
the RCRs exhibit random frequency fading features, the target
DOA remains the same at frequency-domain. Therefore, by
accumulating the DOA results of frequency bins, a selective fre-
quency accumulation compressed sensing reconstruction (SFA-
CS) algorithm is designed to reconstruct DOAs. Furthermore,
the energy selection and correlation coefficient selection are
introduced for different selected ways, called ESFA-SC and
CSFA-CS, respectively. Simulation results demonstrate that the
proposed method can effectively estimate the DOAs with a lower
root mean squared error (RMSE) and higher success rate (SR),
compared with CS-based methods and MVDR algorithm.

The rest of this paper is organized as follows. Section II
introduces the system model. Section III transforms the DOA
estimation into sparse signal reconstruction and proposes the
SFA-CS algorithms to estimate the DOAs. Simulations results
are performed in Section IV to verify the effectiveness of the
proposed algorithms. Finally, Section V concludes the paper.

II. SYSTEM MODEL

Without loss of generality, a small size quasi-cylindrical array
(QCA) as shown in Fig. 1 is considered here. The number
of omni-directional acoustic sensors is M + 1, where M > 2.
rm = [xm, ym, zm] and (

�

θm,
�

φm) denote the position vector
and the elevation and azimuth angles of the m-th element,
respectively. xm, ym, zm are less than the distance between the
target and array. The radius of the quasi-cylindrical is d ≤ 0.1
m, and the height is h ≤ 1 m, referred to as a small size array.
Then, the propagation vector v(θ, φ) is expressed as

v(θ, φ) = [sin(θ) cos(φ), sin(θ) sin(φ), cos(φ)]T , (1)

and the (M + 1)× 1 steering vector α(θ, φ) is shown as

α(θ, φ) = [α0(θ, φ), α1(θ, φ), . . . , αM (θ, φ)]T

= [exp(−jωr0v(θ, φ)), . . . , exp(−jωrMv(θ, φ))]T ,
(2)
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Fig. 2. Illustration of decomposing the CIR of array element into element delay and aligned multipath response.

where (θ, φ) are the elevation and azimuth angles of the target,
ω = 2π/λ. λ is the wavelength of the signal, and (·)T denotes
the transpose.

Generally, the target signal s(t) can be described here in its
digital form, as a set of discrete samples

s(n) = Aej2πfcn, n = 1, 2, . . ., N, (3)

where A is the signal strength, and fc is the central frequency.
N is the number of samples.

Take the m-th element as an example, the signal received at
the time instant n can be expressed as

ym(n) = hm(rk, n) ∗ s(n) + em(n),

m = 0, . . .,M,K = 1, . . .,K, (4)

where “*” denotes the convolution, K is the number of target
sources.rk = [xk, yk, zk] is the position vector of thek-th target,
(θk, φk) are the corresponding elevation and azimuth angles, and
em(n) is the additive noise. hm(rk, n) is the channel impulse
response (CIR) and can be expressed as

hm(rk, n) =

Pk∑
p=1

am,k(nT )δ(τ − τm,k(nT )), (5)

where T is the sampling period satisfying the Nyquist rate,
Pk, am,k(nT ), and τm,k(nT ) are the number of multipath,
path amplitudes and path delays, respectively. Moreover, when
there is a relative movement of the source, array or water
medium, hm(rk, n) is affected by the Doppler spread, as
the doubly selective characteristics of UWA channel. Which
means that τm,k(nT ) is time-varying and can be expressed
as an approximate first-order polynomial: τm,k(nT ) ≈ τm,k −
γm,knT, where γm,k denotes the factor of Doppler spread.

As shown in Fig. 2, hm(rk, n) can be decomposed into an
element delay and aligned multipath response. While the former

is determined by array geometry, the latter is the aligned channel
response obtained by aligning CIR of all elements. Namely, CIR
can be expressed as

hm(rk, n) = htd,m(rk, n) ∗ hca,m(rk, n), (6)

where htd,m(rk, n) denotes the element time delay (TD) term
between the m-th element and k-th target, and hca,m(rk, n)
denotes the aligned random multipath channel response (RCR)
term caused by random UWA channel.

Therefore, (4) can be rewritten as

ym(n) = htd,m(rk, n) ∗ hca,m(rk, n) ∗ s(n) + em(n). (7)

Take the coordinate origin as the reference, the time delay τm,k

in htd,m(rk, n) can be written as

τm,k = (‖rk‖ − ‖rk − rm‖)/c, (8)

where ‖ · ‖ denotes the modulus length, and c is the sound
velocity.

Supposed that Rm is the distance between the m-th element
and the coordinate origin and Rm ≈ 1 m as the defined small
size array. Rk is the distance between the k-th target and the
coordinate origin and Rk > 50 m as a far-field target. Then, (8)
can be rewritten as (9), shown at the bottom of this page.

Due to Rm

Rk
< 0.02 � 1, R2

m

R2
k
≈ 0. And set Ξ =

sin(θk) sin(
�

θm) cos(θk − �

θm) + cos(
�

φm) cos(φk), then

τm,k ≈
(
Rk −Rk

√
1 − 2Rm

Rk
Ξ

)
/c

=

(
Rk −Rk

(
1 − 2Rm

Rk
Ξ

)1/2
)
/c. (10)

It is obvious that Ξ ≤ 2, thus, 2Rm

Rk
Ξ < 0.08 � 1. Therefore,

based on generalized binomial expansion, (1 − 2Rm

Rk
Ξ)1/2 in

τm,k =

(
Rk −

√(
xk −Rm sin

(
�

θm

)
cos
(

�

φm

))2
+
(
yk −Rm sin

(
�

θm

)
sin
(

�

φm

))2
+
(
zk −Rm cos

(
�

φm

))2
)
/c

=

(
Rk −Rk

√
1 − 2Rm

Rk

(
sin (θk) sin

(
�

θm

)
cos
(
θk − �

θm

)
+ cos

(
�

φm

)
cos (φk)

)
+

R2
m

R2
k

)
/c. (9)
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(10) can be approximated to(
1 − 2Rm

Rk
Ξ

)1/2

=

∞∑
i=0

1
2

(
1
2 − 1

) · · · ( 1
2 − i

)
!

i!
(

1
2 − i

)
!

(
−2Rm

Rk
Ξ

)i

= 1 − Rm

Rk
Ξ +

1
2

(
Rm

Rk
Ξ

)2

− 1
2

(
Rm

Rk
Ξ

)3

. . .

≈ 1 − Rm

Rk
Ξ, (11)

where “!” denotes the factorial. Then, (8) is simplified as

τm,k ≈
(
Rk −Rk

(
1 − 2Rm

Rk
Ξ

)1/2
)
/c

≈
(
Rk −Rk

(
1 − Rm

Rk
Ξ

))
/c

=
Rm

c
Ξ. (12)

Therefore, the TD term htd,m(rk, n) is

htd,m(rk, n) ≈ δ

(
n− Rmfs

c
Ξ

)
, (13)

where fs is the sampling frequency.
As shown in (13), the TD term htd,m(rk, n) is only re-

lated to (θk, φk) and can be approximated as a function
of the DOA of target. Thus, htd,m(rk, n) can be rewritten
as htd,m((θk, φk), n). On the other hand, due to the ran-
dom frequency fading, hca,m(rk, n) also can be rewritten as
hca,m((θk, φk), n), as the impact on hca,m of position rk can
be moved to the random characteristics of hca,m.

Suppose that the frequency-domain received signal isY(f) =
[Y0(f), . . ., YM (f)]T , f = 1, . . ., F , corresponding to the time-
domain received signal y(n) = [y0(n), . . ., yM (n)]T , n =
1, 2, . . ., N . Then,Y(f) can be equivalently expressed in matrix
form as

Y(f) = H(rk, f)S(f) +E(f)

= Htd((θk, φk), f)Hca((θk, φk), f)S(f) +E(f),
(14)

where S(f) is the discrete Fourier transform (DFT) of the
transmitted signal. For position rk, H(rk, f), Htd((θk, φk), f),
andHca((θk, φk), f) are the DFT of CIR, TD, and RCR, respec-
tively. And which are shown as

H(rk, f) = [H0(rk, f), . . ., HM (rk, f)]
T ,

Htd((θk, φk), f)=[Htd,0(θk, φk),f), . . ., Htd,M(θk, φk), f)]
T,

Hca((θk, φk), f)=[Hca,0(θk, φk),f), . . ., Hca,M(θk, φk), f)]
T.

(15)
E(f) = [E0(f), . . ., EM (f)]T is the DFT of the ad-
ditive stationary zero-mean white Gaussian noise
e(n) = [e0(n), . . ., eM (n)]T satisfied E[em(n)] = 0 and

E[em(n)s(n)] = 0. F is the length of DFT and “E[·]” denotes
the expectation.

III. DOA ESTIMATION METHOD

A. Sparse Signal Reconstruction

For all the possible directions of the target sources, (θ, φ)
are uniformly discretized to a q1 × q2 spatial direction

matrix Doa =

⎧⎪⎨⎪⎩
(θ1, φ1) · · · (θ1, φq2)

...
. . .

...
(θq1 , φ1) · · · (θq1 , φq2)

⎫⎪⎬⎪⎭, which can

be further constructed as an 1 × q1q2 spatial direction
vector Doa = {(θ1, φ1), . . ., (θ1, φq2), (θ2, φ1), . . ., (θq1 , φq2)}
by expanding the spatial direction matrix according
to column. Define the DDTR matrix D((θ, φ), f) =
[H((θ1, φ1), f), . . .,H((θD, φD), f)], D = q1q2 denotes the
number of the elements in Doa, or the total number of the
discretized spatial directions. Then, (14) can be written as

Y(f) = D((θ, φ), f)S((θ, φ), f) +E(f)

= Dtd((θ, φ), f)Dca((θ, φ), f)S((θ, φ), f) +E(f),
(16)

where Dtd((θ, φ), f) = [Htd((θ1, φ1), f), . . .,Htd((θD, φD,
f)] and Dca((θ, φ), f)=[Hca((θ1, φ1), f), . . .,Hca((θD, φD),
f)] are the redundant TD and RCR matrix corresponding
to Htd((θ, φ), f) and Hca((θ, φ), f). S((θ, φ), f) =
[S((θ1, φ1), f), . . ., S((θD, φD), f)]T is the frequency-domain
vector corresponding to Doa. It is easy to find that the DOAs
of targets can be estimated according to the indexes of the
non-zero elements in S((θ, φ), f).

Generally, the number of target sources is much less than
the number of the discretized spatial directions, i.e., K � D.
Thus, S((θ, φ), f) is said to be sparse, and according to CS
theory, S((θ, φ), f), Y(f) and D((θ, φ), f) can be regarded
as the sparse vector, observation vector and dictionary matrix,
respectively.

Then, the estimation of DOA can be transformed into a sparse
recovery problem shown in (17) with the sparsity factor K.

min
s.t.

‖S((θ, φ), f)‖0
‖D((θ, φ), f)S((θ, φ), f)−Y(f)‖ ≤ ε,

(17)

where ε is the allowable reconstruction error. Appendix proves
thatD((θ, φ), f) satisfies the restricted isometry property (RIP):

(1 − δ2K) ‖S((θ, φ), f)‖2
2 ≤ ‖D((θ, φ), f)S((θ, φ), f)‖2

2

≤ (1 + δ2K) ‖S((θ, φ), f)‖2
2

,

(18)
where δ2K � 1 is a static related to the sparsity of 2K.
Therefore S((θ, φ), f) can be reconstructed losslessly with high
probability fromD((θ, φ), f) andY(f) by using an appropriate
reconstruction algorithm, such as OMP algorithm [27]. And
then, the DOAs of the target sources can be further estimated
through the vector S((θ, φ), f).
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Algorithm 1: ESFA-CS/CSFA-CS algorithm.

Input: y(n), Doa, K, Fη .
1: Initialization : Construct the dictionary matrix

Dtd((θ, φ), f) with (13), and the frequency-domain
vector Y(f), f = 1, . . ., F using DFT. Set the
estimated DOA set Θ ∈ ∅.

2: For ESFA-CS algorithm, select the top Fη frequency
bins with the largest PY(f) as the set
ΩE = {max

f
(PY(f), Fη)}. Or for CSFA-CS

algorithm, select the top Fη frequency bins with the
largest R(f) as the set ΩR = {max

f
(R(f), Fη)}.

3: For each f ∈ ΩE or f ∈ ΩR, set Y(f) and
Dtd((θ, φ), f) as the observation vector and dictionary
matrix, then, using CS algorithm to reconstrust
S̃((θ, φ), f).

4: Calculate the estimated sparse vector
�

S̃ using (23) or
(25) for ESFA-CS or CSFA-CS algorithms.

5: Sort
�

S̃ in descending order and obtain the

corresponding index: [
�

S̃′,Θ] = sort(
�

S̃,‘descend’).
6: Select the top K indexes: Θ = Θ(1 : K).
7: End.
Output: Estimated DOAs:
{(θ1, φ1), . . ., (θK , φK)} = DoaΘ.

B. SFA-CS Algorithm

However, practically Dca((θ, φ), f) exhibits random fre-
quency selective fading, and cannot be experimentally ob-
tained. Thus, D((θ, φ), f) is hard to be constructed to recover
S((θ, φ), f) from (16). Considering that the redundant TD ma-
trix Dtd((θ, φ), f) is directly related to the array geometry and
the target DOAs,Dtd((θ, φ), f) can be conveniently constructed
by calculating delay according to the geometry relationship.
Therefore, by rearranging S((θ, φ), f) and Dca((θ, φ), f), (16)
can be rewritten as

Y(f) = Dtd((θ, φ), f)S̃((θ, φ), f) +E(f), (19)

where S̃((θ, φ), f) denotes S((θ, φ), f) weighted by
Hca((θ, φ), f), which is expressed as

S̃((θ, φ), f) =

⎡⎢⎣ Hca((θ1, φ1), f)S((θ1, φ1), f)
...

Hca((θD, φD), f)S((θD, φD), f)

⎤⎥⎦ . (20)

And the sparse recovery problem can be further described as

min
s.t.

∥∥∥S̃((θ, φ), f)∥∥∥
0∥∥∥Dtd((θ, φ), f)S̃((θ, φ), f)−Y(f)

∥∥∥ ≤ ε.
(21)

As expressed in (19), the random frequency fading character-
istic of Hca((θ, φ), f) unavoidably renders the uncertain spatial
sparsity of S̃((θ, φ), f) and performance degradation of the CS
reconstruction algorithm. Considering that in each frequency bin
within the target source bandwidth, while the Hca((θ, φ), f)
exhibits a random fading feature, the S̃((θ, φ), f) remains a

similar sparse pattern as the target DOA is the same. Thus, the
negative impact ofHca((θ, φ), f) on reconstructing S̃((θ, φ), f)
can be suppressed by accumulation S̃((θ, φ), f) from selected
frequency bins, i.e., selective frequency accumulation (SFA).
Under the framework of SFA compressed sensing (SFA-CS),
introduced in the next paragraph, two types of frequency bins
selection methods, energy selection and correlation coefficient
selection are adopted to derive ESFA-CS (Energy SFA-CS) and
CSFA-CS (Correlation SFA-CS) algorithm, respectively. For
moving underwater vehicles, the inherent Doppler spread will
inevitably cause signal mismatch and thus degrade the conven-
tional DOA estimation methods. Note that, because the proposed
SFA-CS algorithms estimate the DOA by accumulating selected
frequency bins, theoretically it can work normally if the Doppler
frequency shift is within a certain range.

1) ESFA-CS Algorithm: Define the total frequency energy of
the received signals from different array elements is

PY(f) =

M∑
i=0

|Yi(f)|, f = 1, . . ., F. (22)

where “|·|” denotes absolute value. Then, suppose that ΩE is the
set of the top Fη = ceil(η ∗ F ) frequency bins containing the
largest PY(f), where η denotes the proportion of all frequency
bins, and “ceil(·)” denotes rounding up. For each energy se-
lected frequency bin f ∈ ΩE , ESFA-CS algorithm reconstrucsts
the sparse vector S̃((θ, φ), f) using CS reconstruction algo-

rithm, and calculates the estimated sparse vector
�

S̃ according
to (23).

�

S̃ =
∑
f∈ΩE

S̃((θ, φ), f). (23)

Then, the indexes of the K largest elements in
�

S̃ correspond to
the indexes of K DOAs in Doa, and the estimated DOAs are
obtained.

2) CSFA-CS Algorithm: Note that, as revealed in (23), by en-
ergy selection accumulation of S̃((θ, φ), f) from energetic bins,
the performance of ESFA-CS algorithm is still subject to random
fading caused by Hca((θ, φ), f), as the energy distribution of
S̃((θ, φ), f) has been weighted by Hca((θ, φ), f).

However, among different frequency bins f , while the random
Hca((θ, φ), f) are uncorrelated, the sparse vector S̃((θ, φ), f)
tends to exhibit similar dominant component at (θ, φ) associated
with target direction. This indicates that the cross-correlation
coefficient of S̃((θ, φ), f) along different f will contribute to
suppressing the random fading impact of Hca((θ, φ), f) on
S̃((θ, φ), f).

Thus, a correlation selection strategy is designed under the
SFA-CS framework as CSFA-CS. Specifically, suppose that
fPmax is the frequency bin corresponding to the largest PY(f),
the cross-correlation coefficient between S̃((θ, φ), fPmax) and
S̃((θ, φ), f) can be written as

R(f) =
|〈Y(fPmax),Y(f)〉|
〈|Y(fPmax)| , |Y(f)|〉 , f = 1, . . ., F, (24)
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where “〈·, ·〉” denotes inner product. Define ΩR is the set of
the top Fη = ceil(η ∗ F ) frequency bins containing the largest
R(f). Different from ESFA-CS algorithm, CSFA-CS algorithm

calculates the estimated sparse vector
�

S̃ according to (25).
�

S̃ =
∑
f∈ΩR

S̃((θ, φ), f). (25)

The proposed ESFA-CS/CSFA-CS algorithms are described
in Algorithm 1. Here, function “max{a, b}” returns the indexes
of the top b columns with the largest value in a. “[a,b] =
sort(c,‘descend’)” is a sorting function, sorts c in descending
order and returns the corresponding elements and indexes as
separate output variables: a and b. DoaΘ returns the elements
in Doa whose indexes are the elements of the set Θ.

In particular, the CS algorithm in Step 3 can be replaced
by any other CS reconstruction algorithms, such as convex
optimization methods or greedy schemes. However, considered
practical underwater engineering applications, greedy schemes
such as OMP, SWOMP, CoSaMP are simple to implement,
and have low computational complexity and fast convergence
speed. Therefore, the ESFA-CS and CSFA-CS in this paper are
proposed as ESFA-OMP, ESFA-SWOMP, ESFA-CoSaMP, and
CSFA-OMP. And, in Step 2, ESFA-CS and CSFA-CS select
the frequency bins as the sets of ΩE and ΩR according to en-
ergy selection and correlation coefficient selection, respectively.

Meanwhile, in Step 4, ESFA-CS and CSFA-CS calculate
�

S̃ using
(23) and (25), respectively.

IV. SIMULATION RESULTS

In this section, numerical simulations are carried out to verify
the performance of the proposed SFA-CS algorithm, including
ESFA-OMP, ESFA-SWOMP, ESFA-CoSaMP, and CSFA-OMP
with OMP, SWOMP, CoSaMP, and MVDR algorithms adopted
for comparison reference. The simulations were performed us-
ing MATLAB R2016a running on a computer with Intel i7-
10700 processor and 16 G memory. The root mean squared error
(RMSE) and success rate (SR) are used to assess the performance
of DOA estimation, which are defined as

RMSE =

√√√√ 1
2Ntotal

Ntotal∑
n=1

((
θn − �

θn

)2
+
(
φn − �

φn

)2
)
,

(26)

SR =
N |

θn=
�
θnφn=

�
φn

Ntotal
, (27)

where Ntotal is the total number of the spatial location of the
target sources. θn and φn are the true value of the elevation
and azimuth angles of the n-th source, where

�

θn and
�

φn are the
estimation of θn and φn, respectively. N |

θn=
�
θnφn=

�
φn

denotes

the number where θn =
�

θn and φn =
�

φn. Consider a small size
4-elements QCA with a radius d = 0.1 m and height h = 1 m
under one single target. The omnidirectional space is divided
into 30 different discretized spatial directions, that is, there
are 30 different DOAs in the spatial direction matrix, whose

Fig. 3. The waveform of the two types of target signals. (a) Motor-boat noise.
(b) White Gaussian noise.

Fig. 4. The underwater channel impulse responses between different array
elements and target sources in different directions. (a) Direction 1 of element
0. (b) Direction 2 of element 1. (c) Direction 3 of element 2. (d) Direction 4 of
element 3.

elevation angles θ range from 45◦ to 135◦ with a step size of
45◦, and azimuth angles φ range from 0◦ to 180◦ with a step
size of 20◦. The number of Monte Carlo trials is 200, each of
which is obtained by averaging results among all the 30 possible
directions.

To evaluate the influence of different target signals on DOA
estimation performance, motor-boat noise experimentally col-
lected in Wuyuan Bay, Xiamen, China and white Gaussian
noise artificially generated is adopted as the target signals,
respectively. As shown in Fig. 3(a) and Fig. 3(b), these two
types of noises exhibit different temporal characteristics. With
a sampling rate of 250 kHz, the length of processing win-
dow and DFT are both 4096. Different level of additive white
Gaussian noise (AWGN) is used as the additive noise to gen-
erate an input SNR range of −10 dB to 30 dB with a step
size of 5 dB.

An artificial underwater acoustic multipath channel is gen-
erated by Bellhop model through Matlab [28]. With a water
depth of 50 m, the distance between the array and target source
is 200 m, and the depth of array and target source are both
10 m. Fig. 4(a)–4(d) show the underwater channel impulse
responses between different array elements and target sources
in different directions. It is shown that the TD terms and RCR
terms are different for different directions and array elements.
Such difference constitutes DDTR which can be explored for
spatial sparsity recovery DOA estimation.
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Fig. 5. Comparison of RMSEs and SRs of eight DOA estimation methods as a function of the input SNR with motor-boat noise as the target signal. (a) RMSE.
(b) SR.

Fig. 6. Comparison of RMSEs and SRs of eight DOA estimation methods as a function of the input SNR with white Gaussian noise as the target signal. (a)
RMSE. (b) SR.

A. Effects of UWA Channel on DOA Estimation

This section shows three sets of simulations to verify the
effects of UWA channel on DOA estimation, including the
comparison of RMSEs and SRs under different input SNR using
two types of target signals, and the comparison of RMSEs, and
SRs under different Doppler spread.

Fig. 5(a) and Fig. 5(b) show the RMSEs and SRs versus
the input SNR with motor-boat noise as the target signal for
eight different methods, where four SFA-CS algorithms, three
CS algorithms, and one traditional algorithm are selected as the
comparisons. The proportion for SFA-CS algorithms is set to be
η = 20%. It can be seen that with an increase in the input SNR,
the DOA estimation performances in RMSE and SR of the SFA-
CS algorithms and CS algorithms increase. However, MVDR
algorithm shows the poor DOA estimation performance for all
input SNR. The reason is that the traditional DOA estimation
algorithms are subject to significant performance degradation
as the array size is seriously limited. On the other hand, com-
pared with the three CS algorithms, SFA-CS algorithms show
obvious advantages in RMSE and SR. This is because that the

superposition of multi-frequency bins suppresses the influence
ofHca((θ, φ), f) on sparsity. Then, the four SFA-CS algorithms
can reconstruct the sparse vectors more efficiently and obtain
satisfactory DOA estimation performances.

Furthermore, as shown in Fig. 5(a) and Fig. 5(b), CSFA-OMP
algorithm achieves a smaller RMSE and higher SR than ESFA-
OMP algorithm does, indicating that the correlation selection
strategy outperforms the energy selection in mitigating the ad-
verse impact of randomly fading channel response.

Fig. 6(a) and Fig. 6(b) show the RMSEs and SRs versus
the input SNR with white Gaussian noise as the target signal,
respectively. The proportion for SFA-CS algorithms is set to
be η = 20%. It can be seen that with an increase in the input
SNR, the DOA estimation performances also increase. Even
if the RMSEs of SWOMP are larger than that of MVDR, the
SRs of SWOMP are higher than that of MVDR, which means
that SWOMP could estimate the true DOAs with a greater
probability. For MVDR, the performances are still poor even
if the input SNR = 30 dB.

In addition, compared Fig. 5 with Fig. 6, one may see that, for
both two types of source signals, the SFA-CS algorithms achieve
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Fig. 7. Comparison of RMSEs and SRs of eight DOA estimation methods as a function of different Doppler spread with white Gaussian noise as the target signal.
(a) RMSE. (b) SR.

Fig. 8. Comparison of RMSEs and SRs of eight DOA estimation methods as a function of different numbers of array elements with white Gaussian noise as the
target signal. (a) RMSE. (b) SR.

better DOA estimation performance than the CS type algorithms
and MVDR algorithm do under different SNR. Meanwhile, from
both Fig. 5 and Fig. 6, it is also obvious that the CSFA-OMP algo-
rithm exhibits better RMSE and SR results than the ESFA-OMP
does under the SFA framework. This reveals that the correlation
selection strategy outperforms the energy selection in mitigating
the adverse impact of randomly fading UWA channel. Consid-
ering the different target signal types, under the same SNR, the
motor-boat noise corresponds to a slightly better behavior than
the white Gaussian noise. For example, under the specific SNR
of 5 dB, the RMESs of the former and latter are 30.7◦ and 44.6◦,
respectively.

Considering the doubly selective characteristics of UWA
channel, Fig. 7(a) and Fig. 7(b) show the comparison of RMSEs
and SRs of eight DOA estimation methods as a function of
different Doppler spread, respectively. The input SNR is set to
be 20 dB. The proportion for SFA-CS algorithms is η = 20%.
The Doppler spread is imposed on the source signal by artificial
resampling and set to range from −30 Hz to 30 Hz with a step
size of 10 Hz. It can be seen that the SRs of OMP, SWOMP,
and CoSaMP algorithms seriously decline with an increase

in Doppler spread. While the performances of the proposed
SFA-CS algorithms exhibit certain robustness upon the Doppler
spread. The reason is that the DDTR decomposition and fre-
quency accumulation offer particular tolerance capability upon
the Doppler spread.

B. Effects of Array Parameters on DOA Estimation

This section shows two sets of simulations to verify the
effects of array parameters on DOA estimation, including the
comparison of RMSEs and SRs under different numbers of
array elements, and different sizes of the array. In addition, the
DOA estimation performances of the proposed methods under
different input SNR and proportion of the frequency η are also
presented here.

Fig. 8(a) and Fig. 8(b) show the RMSEs and SRs of eight
different methods as functions of different numbers of array
elements, respectively. The input SNR is set to be 20 dB and
the proportion for SFA-CS algorithms is η = 20%. It can be
seen that with an increase in the number of array elements, the
RMSEs of all the methods decline slightly, meanwhile the SRs
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Fig. 9. Comparison of RMSEs and SRs of CSFA-OMP algorithm as a function of different sizes of the array with white Gaussian noise as the target signal.
(a) RMSE. (b) SR.

Fig. 10. Comparison of RMSEs and SRs of eight DOA estimation methods as a function of different input SNR and different η. (a) RMSE. (b) SR.

increase slightly. This means that increasing the number of array
elements can improve the DOA estimation performance, though
the improvement is not obvious. Besides, it is noted that when
there are seven array elements, the RMSEs and SRs of most
algorithms have deteriorated. According to Fig. 1, the bottom
of the array is divided by 6 elements, the azimuth angle of
those elements is a multiple of 30◦, as well as some of the
targets. Therefore, these targets may be coplanar with some array
elements, resulting in performance degradation. For MVDR,
even if the array elements are increased, the performance is still
poor.

To verify the DOA estimation performance of the pro-
posed CSFA-OMP algorithm under different sizes of the QAC,
Fig. 9(a) and Fig. 9(b) show the comparison of RMSEs and SRs,
respectively. The size of the QAC is determined by the radius d
and height h. Therefore, four groups of simulations are designed
in this paper, that is, d = 0.1 m, h = 1 m; d = 0.2 m, h = 2 m;
d = 0.3 m, h = 3 m; d = 0.4 m, h = 4 m. The proportion for
CSFA-OMP algorithm is η = 20%, and the input SNR is set to a
range of −10 dB to 30 dB with a step size of 5 dB. It can be seen
that when the input SNR is at a low level, the DOA estimation
performance of large-sized arrays is significantly better than that
of small-sized arrays, i.e. SR = 62.4% for d = 0.4 m, h = 4
m versus SR = 12.5% for d = 0.1 m, h = 1 m when SNR

= −10 dB. With an increase in the input SNR, the difference
in DOA estimation performance between different size arrays
gradually decreases. However, the performance of large size
arrays is still better than that of small size arrays. This is because
a large size array leads to a wide distribution of acoustic sensor
spacing, resulting in a more negligible correlation of the received
signals of each acoustic sensor compared with the small-sized
array. Therefore, the signals received by the large-sized array
contain more spatial information and can be used to estimate
the DOA more accurately.

Fig. 10(a) and Fig. 10(b) show the RMSEs and SRs of four
SFA-CS algorithms as functions of different input SNR and
proportion of the frequency η with white Gaussian noise as
the target signal. The input SNRs are set to be 25 dB and
30 dB, respectively. It can be seen from the figures that with
the increase of η, the performances of the four algorithms under
different input SNRs increase slowly and then tend to be stable.
That is, the performances of the four algorithms will not keep
increasing as the increase of η. For CSFA-OMP and ESFA-OMP
algorithms, the performances tend to be stable when η = 0.3.
And, for ESFA-SWOMP and ESFA-CoSaMP algorithms, the
performances tend to be stable when η = 0.4. The above results
show that a suitable proportion of the frequency η can improve
the performance of SFA-CS algorithms. However, considering
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TABLE I
COMPLEXITIES AND AVERAGE RUNNING TIMES OF EIGHT DOA ESTIMATION

METHODS

the complexity of the algorithms, η needs to be determined
according to the actual situation.

C. Complexities

Table I lists the computational complexities and average run-
ning times of the eight DOA estimation methods, where N ,
M + 1 and F are the numbers of samples, array elements and
the length of DFT. D is the number of elements in Doa, and K
is the sparsity factor. The proportion for SFA-CS algorithms is
η. Each algorithm was run for 50 times to calculate the average
running time. OMP algorithm is mainly in the calculation of the
inner product, the common computational complexity is approx-
imately O(KD(M + 1)). SWOMP method needs to set maxi-
mum iterations to halt the SWOMP algorithm, the computational
complexity is approximatelyO(SD(M + 1)). CoSaMP method
selects multiple atoms in each iteration, and some of them may
be discarded in the next iteration. Therefore, the computational
complexity is approximatelyO(2K2D(M + 1)). SFA-CS algo-
rithms add the processing of multi-frequency bins on the basis of
CS algorithms. Thus, the complexity of SFA-CS algorithms will
increase too. And, for CSFA-OMP algorithm, the process of cor-
relation coefficient calculation also increases the computational
complexity. MVDR algorithm has a computational complexity
of about O(N(M + 1)2), due to calculating and inverting of the
covariance matrix, corresponding to the longest running time as
given in Table I.

We may also observe from Tab. 1 that, with additional calcula-
tion for multi-frequency bins accumulation, the running time of
SFA-CS algorithms is an order of magnitude higher than that of
CS algorithms. However, considering the obvious performance
enhancements yielded by the SFA-CS type algorithms, moder-
ately increasing computational complexity is still acceptable.

V. CONCLUSION

In this paper, a novel small size array underwater DOA estima-
tion method is proposed by exploring DDTR constituted spatial
sparsity to overcome the performance constraint of traditional
DOA estimation approaches under the limited array size and
element number. Meanwhile, the adverse impact of randomly
fading UWA channel was mitigated by decomposing the DDTR
into TD term and RCR term. While TD term is conveniently re-
lated to array geometry, RCR term can be addressed by SFA-CS.
Moreover, two types of selection strategies, i.e., energy selection

and correlation selection, are designed under the framework of
SFA-CS to enable sparse reconstruction of target DOAs.

Finally, simulation results demonstrate the superiority of
the proposed algorithms in terms of RMSE and SR. And the
proposed SFA-CS algorithms are also verified to be robust to
Doppler spread. The proposed method provides a new way for
small size array-based underwater DOA estimation and has the
potential of being applied in booming small underwater vehicle
scenarios.

APPENDIX

This appendix proves the RIP.
Firstly, as shown in (16), for a certain f , Y(f) ∈ C(M+1)×1,

D((θ, φ), f) ∈ C(M+1)×D, and S((θ, φ), f) ∈ CD×1, where
D((θ, φ), f) and S((θ, φ), f) can be expressed as

D ((θ, φ) , f) =

⎡⎢⎢⎢⎣
D01 D02 · · · D0D

D11 D12 · · · D1D
...

...
. . .

...
DM1 DM2 · · · DMD

⎤⎥⎥⎥⎦ , (28)

S ((θ, φ) , f) = [S1, S2, . . ., SD]T . (29)

It is easy to find that the DOAs of targets correspond
to the indexes of non-zero elements in S((θ, φ), f).
Suppose that there are K targets and the DOAs are
{(θk1 , φk1), (θk2 , φk2), . . ., (θkK

, φkK
)}. Thus, Sd �= 0, d ∈

{k1, . . ., kK} and Sd = 0, d /∈ {k1, . . ., kK}. Then,

(1 − δ2K) ‖S ((θ, φ) , f)‖2
2 = (1 − δ2K)

∑
d∈{k1,...,kK}

S2
d,

(30)
and

(1 + δ2K) ‖S ((θ, φ) , f)‖2
2 = (1 + δ2K)

∑
d∈{k1,...,kK}

S2
d.

(31)
Secondly, ‖D((θ, φ), f)S((θ, φ), f)‖2

2 can be written as

‖D ((θ, φ) , f)S ((θ, φ) , f)‖2
2=

M∑
m=0

⎛⎝ ∑
d∈{k1,...,kK}

DmdSd

⎞⎠2

.

(32)
According to the CS theory, Dmd in D((θ, φ), f) is the value
after normalization. Suppose that D′((θ, φ), f) is the matrix
before normalization and which is given as

D′ ((θ, φ) , f) =

⎡⎢⎢⎢⎣
D′

01 D′
02 · · · D′

0D
D′

11 D′
12 · · · D′

1D
...

...
. . .

...
D′

M1 D′
M2 · · · D′

MD

⎤⎥⎥⎥⎦ . (33)

Therefore,

Dmd =
D′

md

‖D′ ((θ, φ) , f)‖ =
D′

md√∑M
m=0

∑D
d=1 D

′2
md

. (34)
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And then, (32) can be rewritten as

‖D ((θ, φ) , f)S ((θ, φ) , f)‖2
2

=
∑M

m=0

(∑
d∈{k1,...,kK}

(
D′

md√∑M
m=0

∑D
d=1 D

′2
md

)
Sd

)2

=

∑M
m=0

(∑
d∈{k1,...,kK}D′

mdSd

)2

∑M
m=0

∑D
d=1 D

′2
md

.

(35)
When there is one single target, that is K = 1. Then, (35) is

‖D ((θ, φ) , f)S ((θ, φ) , f)‖2
2 =

∑M
m=0 (D′

mk1Sk1)
2

∑M
m=0

∑D
d=1 D

′2
md

=
∑M

m=0 D
′2
mk1∑M

m=0

∑D
d=1 D

′2
md

S2
k1
.

(36)

Finally, due to K � D, combined (36) with (30) and (31), it
is obvious that there always exists a static δ2K satisfied

(1 − δ2K)S2
k1

≤
∑M

m=0 D
′2
mk1∑M

m=0

∑D
d=1 D

′2
md

S2
k1

≤ (1 + δ2K)S2
k1

(37)
by constructing a suitableD((θ, φ), f). This completes the proof
of the RIP. Similarly, when K > 1, D((θ, φ), f) also satisfies
the RIP.
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