
1. Introduction
Since the industrial revolution, large amounts of carbon dioxide have been released into the atmosphere through 
human activities, resulting in dramatic warming of the Earth in recent decades, further leading to frequent 
extreme events (e.g., heat waves, extreme precipitation, and extreme drought). In the process of global climate 
change, the land and ocean surface has warmed substantially owing to global warming (Frölicher et al., 2018; 
Sutton et al., 2007), which can affect land-sea carbon and water cycles, solar energy flow, and biological commu-
nity composition, thereby, directly and indirectly influencing vegetation growth and productivity (Carnicer 
et al., 2019; Piao et al., 2008). Therefore, it is critical to understand how land and sea warming affects the ecosys-
tem NCU (Ballantyne et al., 2012).

The challenge with exploring the effects of climate warming on the ecosystem NCU is that the driving mecha-
nisms of climate warming are complex (e.g., warming and altered precipitation regimes, warming and land-sea 
evaporation change). They may be interactive or additive and often significantly modify vegetation productivity 
(Wu et al., 2021). Plant growth has significantly increased with the impact of climate warming in many areas of 
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the globe, and the photosynthetic capacity and duration of the growing season have been significantly enhanced, 
resulting in increased carbon uptake in terrestrial ecosystems (Lucht et al., 2002). However, the effects of warm-
ing on plant carbon uptake may transition to negative effects once temperatures exceed a suitable ecophysio-
logical threshold. A growing body of research suggests that reduced water supplies due to continued climate 
warming and decreased precipitation have limited plant growth and productivity (Humphrey et al., 2021; Ukkola 
et al., 2016; Wu et al., 2021; Zhao & Running, 2010).

Recently, increased vapor pressure deficit (VPD) has been considered an increasingly important driver of plant 
growth and productivity on the global scale, mainly caused by land warming (Bastos et  al.,  2013; Grossiord 
et al., 2020; Liu et al., 2017; Yuan et al., 2019). VPD describes the difference between the vapor pressure at 
saturation and the actual vapor pressure for a given temperature, determined by atmospheric relative humidity 
and temperature. An increase in VPD would likely constrain vegetation carbon uptake and water use in terrestrial 
ecosystems (Grossiord et al., 2020; Novick et al., 2016). However, there are different opinions on the drivers of 
VPD increase, some studies suggested that reduced soil moisture due to climate warming limit the land evapotran-
spiration, reduces the relative humidity, and thus raises the VPD (Humphrey et al., 2021; Massmann  et al., 2019). 
Others indicated the increased VPD is caused by the increased temperature and reduced relative humidity owing 
to ocean warming (Byrne & O’Gorman, 2018). Most of the moisture over land is transported from the oceans, 
accounting for 35% of precipitation and 55% of evapotranspiration over land (Yuan et al., 2019), which deter-
mines VPD variation over land.

Coastal areas are the most intense land-sea interaction zones with complex climatic conditions. As the ocean 
becomes warmer, the land surface temperature is amplified (Byrne & O’Gorman, 2013; Sutton et al., 2007), 
and the relative humidity declines (Byrne & O’Gorman, 2018; Zappa et al., 2020), which results in an increase 
in VPD and affects human and land ecosystem health. Additionally, coastal ocean warming is closely linked 
to remarkable changes in coastal urban thermal environments, showing consistent trends of increases in land 
temperature and demonstrating the strong coupling of coastal oceans and lands under the influence of global 
warming and regional interactions of the coastal ocean, land, and the atmosphere (Hu et al., 2021). Therefore, 
coupled land-sea warming in coastal areas is becoming a significant topic for coastal research on global climate 
change. The coupled land-sea warming is defined as strong interactions between land and sea warming, which 
may be additive effects, antagonistic effects, or synergistic effects, that have a positive/negative impact on land 
net carbon uptake by altering atmospheric moisture and thermal conditions together. However, studies rarely 
focus on the effects of coupled land-sea warming on net ecosystem carbon uptake, and it remains unclear whether 
the coupled land-sea warming is the dominant driver of the interannual variability in land NUC in coastal areas.

Land NCU is also affected by the land use change (Wang et  al.,  2014). A new evaluation showed the 
urbanization-induced decrease in net primary production (NPP) offset 30% of the climate-driven increase at a 
global scale (Liu et al., 2019). As one of the important components of urbanization, urban land expansion and its 
effects on terrestrial NPP have been widely examined at a regional scale (Imhoff et al., 2004; Pei et al., 2013). 
Coastal areas with highly intensive urbanization are affected by the interaction of climate drivers and land use 
change. Here, our goals are to investigate (a) how the coupled land-sea warming affects carbon uptake variability 
in the GBA; and (b) how rapid urbanization can result in large NUC losses in coastal areas with highest intensive 
human activities. Therefore, it is necessary to explain which factor attributes more to coastal carbon uptake vari-
ability between climate-driven and urbanization-driven scenarios, which is critical in coastal areas to implement 
carbon neutrality.

2. Materials and Methods
2.1. Study Area

Our study area covers approximately 179,800 km 2 on the south coast of China, consists of Guangdong, Hong 
Kong, and Macau, and borders the Northern South China Sea (NSCS) (Figure 1). The prevailing climate in this 
region is subtropical, with an annual rainfall of 1,700 mm and an average annual temperature of 19 °C. The study 
area mostly belongs to the monsoon climate region, with rainfall and heat energy occurring in the same seasons, 
providing a favorable plant growth environment. The primary ecosystem types include evergreen broadleaf forest, 
evergreen needle leaf forest, mixed forest, and alpine shrub. Since the economic reform in 1978, the GBA region 
has witnessed rapid and unprecedented urbanization. In 2020, this region became one of the largest metropolitan 

Writing – original draft: Bingxiong Fan
Writing – review & editing: Bingxiong 
Fan, Yangfan Li



Earth’s Future

FAN AND LI

10.1029/2021EF002556

3 of 17

areas in China, with urban areas five times larger than those in 2000. During 1982–2018, most of the regions 
in the NSCS warmed, and the sea surface temperature anomaly trend increased and was abnormally cold before 
2000 but abnormally hot after 2000 (Figure S1 in Supporting Information S1). Such ocean warming phenom-
ena were reported to be harmful to marine and terrestrial ecosystems and their associated biological systems 
(Arias-Ortiz et al., 2018; Smale et al., 2019; Tkachenko & Soong, 2017).

2.2. Data Sources

2.2.1. Multivariate NPP Data Sets and Accuracy Testing

We collected three NPP products from the global land surface satellite (GLASS) (http://www.glass.umd.edu/
Download.html), multiresolution satellite remote sensing (MUSES) global vegetation productivity data set 
(https://zenodo.org/record/3996814#.YVSjOjFBw2w) and moderate-resolution imaging spectroradiometer 
(MODIS). The GLASS NPP product had a high temporal resolution (8  days over 1982–2018) and a spatial 
resolution of 0.05° and was derived by the eddy covariance—light use efficiency (EC-LUE) model with GLASS 
leaf area index (LAI)/photosynthetically active radiation (PAR) products, moisture stress, and air temperature, 
which were validated to be more continuous and complete in terms of their temporal and spatial distributions and 
have better accuracy than the MODIS NPP products (Yuan et al., 2007). To validate the accuracy of the GLASS 
NPP product in the GBA of South China, the carbon flux data set of observed sites (Din Hushan, Hong Kong, Zu 
Rong, Hei Shiding, Nan Wang, and Liu Jiashan, shown in Figure 1) was collected from the ChinaFLUX website 

Figure 1. Location of meteorological stations, net primary productivity (NPP) validation sites, and land cover types in the 
study area.

http://www.glass.umd.edu/Download.html
http://www.glass.umd.edu/Download.html
https://zenodo.org/record/3996814
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(http://www.chinaflux.org/) and Luo  (1996). ChinaFLUX is a Chinese network of meteorological tower sites 
used to measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere 
and has been widely used in ecosystem model validation (Hu et al., 2008; Yu et al., 2006). The validation results 
suggested that the GLASS NPP had better accuracy than the MUSES NPP in the GBA of South China (Figure 
S2 in Supporting Information S1); the squared R was 0.67 (p < 0.01), and the root mean square error (RMSE) 
was 20.93 gC/m 2/month.

2.2.2. Land Use/Cover Data Sets

The land use/cover maps of the Chinese land use/cover data set (CLUD) in 1985, 1990, 1995, 2000, 2005, 2010, 
and 2015 were obtained from the Resource and Environment Science and Data Center (http://resdc.cn/Default.
aspx). The CLUD was extracted by visual interpretation after a series of preprocessing methods based on a vari-
ety of multispectral satellite data, which were validated with a 94.3% average classification accuracy in the six 
primary land cover categories (i.e., cropland, forest, grassland, water bodies, built-up areas, and wetland). We 
extracted the boundaries of built-up areas for 1985 and 2015 to analyze the urbanization-driven NPP losses near 
the NSCS.

The GlobeLand30 data set for 2000, 2010, and 2015 was obtained from the National Geomatics Center of China 
(http://www.globallandcover.com) to validate the accuracy of CLUD. The data set was produced using more than 
20,000 Landsat and Chinese HJ-1 satellite images with resolutions of 30 m (Chen et al., 2017). Specifically, the 
MCD12Q1 data set from the IGBP classification scheme was obtained for 2000–2015 to analyze annual NPP 
variation in different land use/cover types because it had a more continuous time series than the CLUD. The 
annual NPP variation in different land use/cover types from 1985 to 2000 was based on the CLUD in 1985, 1990, 
and 1995. Considering the different spatial resolutions in NPP data and land use/cover data, we used the GALSS 
NPP data as a benchmark to resample the land use data with a higher resolution to 0.05° of spatial resolution.

2.2.3. Meteorological Data

The sea surface temperature (SST) and SST anomaly maps of the Coral Reef Temperature Anomaly Database 
(CoRTAD) from 1985 to 2015 were obtained from the National Oceanic and Atmospheric Administration's 
National Centers for Environmental Information (NOAA NCEI; https://www.ncei.noaa.gov/access/metadata/
landing-page/bin/iso?id=gov.noaa.nodc:NCEI-CoRTADv6#Coverage), with a weekly temporal resolution and 
a spatial resolution of 4 km. We extracted the SST and SST anomaly data in the NSCS region to analyze the 
variability in the NSCS SST and reveal the phenomenon of ocean warming in the NSCS. The annual time series 
of atmospheric CO2 concentration data at the South China Sea observatory was obtained from the NOAA Earth 
System Research Laboratory (NOAA ESRL; http://www.esrl.noaa.gov/gmd/ccgg/trends). Meteorological data 
over land were extracted from the HadISDH data set provided by the Met Office Hadley Center (https://www.
metoffice.gov.uk/hadobs/hadisdh/) and the Chinese Resource and Environment Science and Data Center (https://
www.resdc.cn/Default.aspx), and monthly temperature, specific humidity, and relative humidity were used to 
calculate the vapor pressure deficit over land (Harris et al., 2014).

2.3. Theil-Sen Median Trend Analysis and Turning Point Detection in the LNPP

Spatiotemporal trends in the LNPP from 1985 to 2015 in the Guangdong-Hong Kong-Macao region were 
analyzed at the pixel level using a robust nonparametric Theil-Sen median trend analysis method, which is widely 
applied to trend analyses of long-time series with nonnormal data, with the Mann-Kendall (M-K) method to 
check the significance of the data trends (Ding et al., 2020; Rajah et al., 2014). The functions are as follows:

𝑍𝑍 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑆𝑆 − 1√
𝑉𝑉 𝑉𝑉𝑉𝑉(𝑆𝑆)

, 𝑖𝑖𝑖𝑖 𝑆𝑆 𝑖 0

0, 𝑖𝑖𝑖𝑖 𝑆𝑆 = 0

𝑆𝑆 + 1√
𝑉𝑉 𝑉𝑉𝑉𝑉(𝑆𝑆)

, 𝑖𝑖𝑖𝑖 𝑆𝑆 𝑖 0

 (1)

where Z is the standard normal test statistic, S is the M-K score, and Var(S) is the variance of S. The M-K test 
statistic Z is approximately normally distributed when the sample size n > 8. If Z > 0, it signifies that there is 

http://www.chinaflux.org/
http://resdc.cn/Default.aspx
http://resdc.cn/Default.aspx
http://www.globallandcover.com
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:NCEI-CoRTADv6
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:NCEI-CoRTADv6
http://www.esrl.noaa.gov/gmd/ccgg/trends
https://www.metoffice.gov.uk/hadobs/hadisdh/
https://www.metoffice.gov.uk/hadobs/hadisdh/
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an increasing trend and vice versa. In our study, the threshold of Z scores used for testing significance over time 
was 1.96 at the 5% significance level (α = 0.05), which provided both the significance and direction of the trend.

� =
∑�−1

�=1

∑�

�=�+1
��� (�� − ��) (2)

𝑉𝑉 𝑉𝑉𝑉𝑉(𝑆𝑆) =
𝑛𝑛(𝑛𝑛 − 1)(2𝑛𝑛 + 5) −

∑𝑚𝑚

𝑖𝑖=1
𝑡𝑡𝑖𝑖 (𝑡𝑡𝑖𝑖 − 1) (2𝑡𝑡𝑖𝑖 + 5)

18
 (3)

where n is the number of data points; xi and xj are the data values in time series i and j (j > i), respectively; ti is 
the number of ties of extent i; and sig(xj − xi) is the sine function expressed as:

𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑠𝑠) =

⎧⎪⎪⎨⎪⎪⎩

1, 𝑠𝑠𝑖𝑖 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑠𝑠 > 0

0, 𝑠𝑠𝑖𝑖 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑠𝑠 = 0

−1, 𝑠𝑠𝑖𝑖 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑠𝑠 < 0

 (4)

The Theil-Sen median slope estimator for estimating the slope of the trend in a sample with N pairs of data can 
be calculated as follows:

�� = ������
(

�� − ��

� − �

)

��� � = 1, . . . , �, (5)

where xj and xk are the data values at times j and k (j > k), respectively.

We further used the BFAST01 toolbox (checking for one major break in the time series) in R software to detect 
whether there was a spatiotemporal turning point of annual LNPP during 1985–2015. The types of turning 
points include negative reversal, interrupted increase, positive reversal, and interrupted decrease (Bernardino 
et al., 2020). A negative reversal suggests a shift in the annual LNPP from an increasing trend to a decreasing 
trend around the turning point. An interrupted increase presents a shift in the annual LNPP from an increasing 
trend toward a faster or slower increase around the turning point. A positive reversal suggests a shift in the annual 
LNPP from a decreasing trend to an increasing trend around the turning point. An interrupted decrease presents 
a shift in the annual LNPP from a decreasing trend toward a faster or slower decrease around the turning point.

2.4. Isolating Impacts of Urbanization, Land Cover Change, and Climate Warming

Terrestrial ecosystems near the NSCS might be affected by multiple factors (primarily human activities, land cover 
change, and climate warming). Thus, the isolation of multiple factors was important to understand the influence 
of different factors on land carbon uptake. First, we divided the study area into three parts: urbanization domi-
nance, land cover change (LCC) dominance, and climate dominance to minimize interference between the three 
drivers (Figure 2a). For urbanization-dominant areas, we extracted and overlaid the boundary of built-up areas 
in 1985 and 2015, and the area between the two boundaries was identified as urbanization-dominant (Figure 2b). 
For LCC-dominant areas, the area that has undergone a significant land cover change (except for conversion to the 
built-up area) was identified as LCC-dominant, for example, conversion between forest and grassland (Figure 2c). 
For climate-dominant areas, permanent natural land, which did not undergo land use change and was far away 
from human activities from 1985 to 2015, was identified as climate-dominant (Figure 2d).

2.5. Detecting the Effects of Coupled Land-Sea Warming on LNPP Variability

Temperature, precipitation, humidity, CO2 concentration, VPD, and soil moisture are major drivers on the vari-
ation of vegetation productivity and carbon uptake, which has been indicated by numerous studies (Bastos & 
Fleischer, 2021; Liu et al., 2019; Runyon & Waring, 1994; Yang et al., 2008; Zhu et al., 2016). Land-sea environ-
mental coupling could be considered as an important mechanism of net carbon uptake variability in the land-sea 
interface, especially when land surface temperature and dryness are amplified by ocean warming. Therefore, for 
our study area, a humid coastal area, we hypothesized that the land and neighboring ocean warming gradually 
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became a major negative driver affecting LNPP. Then, focusing on climate-dominant areas, six environmental 
and climatic factors (mean annual sea surface temperature (SST), mean annual land surface temperature (LST), 
mean annual precipitation, atmospheric specific humidity (ASH), soil moisture content (SMC), and mean annual 
VPD) and two ecological factors (leaf area index and net primary production) were selected to build an empirical 
model and verify our hypothesis. A structural equation model (SEM) was adopted to test and quantify the inter-
action of climate factors, the effects of land and ocean warming on LNPP variability, and the relative importance 
of direct and indirect pathways among different drivers.

2.5.1. Anomaly Calculation and Sensitivity Analysis

Before SEM analysis, the anomalies of all factors from 1985 to 2015 were first calculated to analyze the effects 
of land-sea temperature change on LNPP variability and to make dimensionless factors comparable. The formula 
is as follows:

��� =
��� −��

���
 (6)

where Aij is the anomaly of factor i in year j, Xij is the observed value of factor i in year j, Mi is the average value 
of factor i during 1985–2015, and SDi is the standard deviation of factor i during 1985–2015. Then, the sensitivity 
analysis of the LNPP variation to drivers was applied to provide support for the SEM analysis. The sensitivity of 
the LNPP anomaly to a variable is defined as:

𝑆𝑆𝑖𝑖𝑖𝑖 =
𝐴𝐴𝑖𝑖𝑖𝑖

𝐴𝐴(LNPP, 𝑖𝑖)

 (7)

where Sij is the sensitivity index of factor i in year j and A(LNPP, j) is the anomaly of LNPP in year j.

Due to the indirect effect of ocean warming on LNPP variability, the sensitivity of land drivers to ocean warming 
was further analyzed by the Granger causality test. The Granger causality test is a popular method for testing 
causal inference in temporal data and detecting interaction relationships between vegetation variation and climate 

Figure 2. (a) Distribution of climate-dominant area, land cover change (LCC)-dominant area and urbanization-dominant area, (b)–(d) isolation methods of urbanization 
dominance, LCC dominance, and climate dominance.
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change (Jiang et al., 2015; Kong et al., 2018). The Granger causality test was performed in R software using the 
bruceR and lmtest packages.

2.5.2. Construction of the SEM Coupling Land-Sea Warming

After data manipulations were complete, an SEM coupling land and sea warming was established based on 
known or hypothetical effects and relationships among climate factors, LNPP, and LAI anomalies. The SEM 
analysis with databases was performed in R software using the lavaan and semPlot packages to test whether and 
how the coupled land-sea warming affected the LNPP variability. A good model fit was indicated by 0.05 ≤ P 
(chi-square) ≤ 1.00, CFI ≥ 0.9, and 0 ≤ SRMR ≤ 0.05 (SRMR is the standardized root mean square residual). 
To test whether it had better performance when coupling land and sea warming, the other SEM without the effect 
of ocean warming was built to compare with that of coupling land and sea warming. The detailed step-by-step 
procedure for the SEM analysis can be seen in Figure 3.

2.6. Contribution of Climate Warming and Urbanization to LNPP Variability

By isolating the impacts of urbanization and climate on the variability of LNPP, we identified the 
urbanization-induced LNPP variation by overlaying the map of the urbanization-dominant areas with the LNPP 
trend. Climate-driven LNPP variation was identified by overlaying the map of climate-dominant areas with 
the LNPP trend. Afterward, the relative contributions of urban expansion (Cue), climate warming (Ccw), and 
land cover change (Clcc) were determined as proportions between the trends of climate-driven LNPP change, 
urbanization-induced LNPP change, LCC-induced LNPP change and the sum of their absolute values. The equa-
tions of percent contribution are as follows:

𝐶𝐶𝑢𝑢𝑢𝑢 =
|Δ𝑈𝑈𝑈𝑈𝑈𝑈|

|Δ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶| + |Δ𝑈𝑈𝑈𝑈𝑈𝑈| + |Δ𝐿𝐿𝐶𝐶𝐶𝐶| × 100% (8)

𝐶𝐶𝑐𝑐𝑐𝑐 =
|Δ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|

|Δ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶| + |Δ𝑈𝑈𝑈𝑈𝑈𝑈| + |Δ𝐿𝐿𝐶𝐶𝐶𝐶| × 100% (9)

𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙 =
|Δ𝐿𝐿𝐶𝐶𝐶𝐶|

|Δ𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶| + |Δ𝑈𝑈𝑈𝑈𝑈𝑈| + |Δ𝐿𝐿𝐶𝐶𝐶𝐶| × 100% (10)

where |∆Urb| is the absolute value of urbanization-induced LNPP change; |∆Clim| is the absolute value of 
climate-driven LNPP change; |∆LCC| is the absolute value of LCC-induced LNPP change.

The value of climate-driven LNPP change (∆Clim), urbanization-induced LNPP change (∆Urb), and LCC-induced 
LNPP change (∆LCC) were calculated by the following equations:

Δ���� =
∑�

�=1
�� × Δ� (11)

Figure 3. Step-by-step procedure for detecting the effects of coupled land-sea warming on the land net primary productivity 
(LNPP) variability based on the structural equation model (SEM) analysis.
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Δ��� =
∑�

�=1
�� × Δ� (12)

Δ��� =
∑�

�=1
�� × Δ� (13)

where βi, βj, and βk are the slope of the LNPP trend in the ith pixel of climate-dominant areas, jth pixel of 
urbanization-dominant areas, and kth pixel of LCC-dominant areas, respectively. ∆t is the temporal span from 
1985 to 2015. The unit of ∆Clim, ∆Urb, ∆LCC is TgC.

We further calculated the contribution of each climate factor to the variability in LNPP based on the SEM anal-
ysis. If there was a directly connected path between two factors (e.g., precipitation and LNPP), the contribution 
of precipitation to LNPP was the standardized path coefficient; if there was an indirectly connected path between 
two factors (e.g., SST and LNPP), the contribution of SST to LNPP was produced by multiplying all the stand-
ardized path coefficients on the connected paths. In addition, the contribution of climatic factors to LNPP was the 
sum of standardized direct and indirect path coefficients. The functions are as follows:

Direct ef fects 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝛾𝛾𝑖𝑖𝑖𝑖 (14)

Indirect ef fects ��� =
∏�

�=�−1
��� (15)

Total ef fect 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐶𝐶(𝐷𝐷)𝑖𝑖𝑖𝑖 + 𝐶𝐶(𝐼𝐼)𝑖𝑖𝑖𝑖 (16)

where Cij is the contribution of variable i to j, γij is the standardized path coefficient between i and j, n is the 
number of connected paths between i and j, and m is the number of connected variables between i and j.

3. Results
3.1. The Spatiotemporal Variation of LNPP Near the NSCS

The annual LNPP near the NSCS presented a significant turning point in 2003 in the piecewise linear regression 
and showed a slow increase during 1985–2003 but a sharp decline after 2003 and then a slow increase again 
during 2004–2015 (Figure 4a). There was large spatial heterogeneity in the annual LNPP variation before 2003. 
For most regions, the annual LNPP turning time occurred in 2003, and turning point types were mainly focused 
on positive reversal and interrupted increase (Figure 4b). Positive reversal suggested a shift in annual LNPP from 
a decreasing trend to an increase around 2003, and an interrupted increase presented a shift in annual LNPP from 
an increasing trend toward a faster or slower increase around 2003.

In the whole region, the total LNPP loss was 0.40 Tg C from 1985 to 2015. In different land use/cover types, all 
land use/cover types showed a decreasing trend of annual LNPP with the largest decline in cropland and forest 
(Figure  4c and Table S1 in Supporting Information  S1). The spatial pattern of the annual LNPP trend with 
significant spatial heterogeneity presented an overall decrease (the count of significant decrease was almost three 
times more than significant increase), which showed a significant decrease in most inner regions but a significant 
increase in the northeast and southwest regions (Figure 4d).

3.2. Effects of Coupled Land-Sea Warming on the LNPP Variability

To identify the key drivers and mechanism of the LNPP turning point in 2003, we built structural equation models 
of the effects of coupled land-sea warming on annual LNPP variability focusing on climate dominance areas. 
First, the sensitivity analysis of the LNPP variation to drivers was analyzed to prepare for the SEM construction. 
We observed a sharp decline (turning point) in the LNPP after 2003 and used the negative values (subset values) 
of the LNPP anomaly to analyze the sensitivity of the declined LNPP to drivers and test how the coupled land-sea 
warming affected the sharp decline in the LNPP after 2003. Figure 5 showed the results of the sensitivity analysis 
of the LNPP anomaly to driver anomalies. The precipitation and SMC anomalies positively promoted the annual 
LNPP turning after 2003, which indicated the possible relationship between LNPP turning and abnormally low 
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rainfall and moisture (Figures 5a and 5d). However, the LST, ASH, and VPD anomalies reversely promoted 
LNPP turning after 2003 (Figures 5b and 5c), suggesting the possible relationship between LNPP turning and 
abnormally high LST and VPD.

Afterward, the Granger causality test was applied to detect the coupled relationship between land and sea warm-
ing (e.g., SST anomaly and LST anomaly, oceanic evaporation anomaly, and land humidity anomaly). Our results 
suggested a high consistency in interannual variability between the SST anomaly and LST anomaly in the GBA 
(Figure 6a). The LST anomaly and SST anomaly were mutually affected, and the LST anomaly was amplified 
by the SST anomaly, which was consistent with global observations of land/sea surface temperature (Byrne & 
O’Gorman, 2018). The oceanic evaporation anomaly was affected by the land relative humidity anomaly, and 
there was a 2-year lag time on the impact of the oceanic evaporation anomaly on the land relative humidity 
anomaly (Figure 6b).

Finally, two SEMs of coupled land-sea warming and not considering ocean warming were constructed, and the 
results showed that the model had better performance and could better explain the interannual variability in the 

Figure 4. The spatiotemporal dynamics of annual land net primary productivity (LNPP) from 1985 to 2015. (a) Temporal dynamics of annual LNPP (light blue shade 
is spatial error range); (b) spatial distribution of turning time and turning point types of annual LNPP (NR: negative reversal, II: interrupted increase, PR: positive 
reversal, ID: interrupted decrease); (c) the trend of annual LNPP in different land use/cover types (light blue shade is distribution range of data); (d) spatial dynamics of 
annual LNPP.
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LNPP when coupled land-sea warming was considered (Figure 7). Figure 7b shows the results of the SEM analy-
sis with coupled land-sea warming. The LAI anomaly and LNPP anomaly were significantly negatively related to 
the VPD anomaly (γ = −0.34 and −0.76, p < 0.001), where γ was the standardized path coefficient. SEM analysis 
was further used to evaluate the indirect effects of the SST and LST anomalies on the LNPP anomaly, and we 

Figure 5. (a–e) Sensitivity analysis of the annual land net primary productivity (LNPP) anomaly to the precipitation anomaly 
(PREA), land surface temperature anomaly (LSTA), vapor pressure deficit anomaly (VPDA), atmospheric specific humidity 
anomaly (ASHA), and soil moisture content anomaly (SMCA). The negative and positive sensitivity indices present a 
negative and positive correlation between the LNPP anomaly and driver anomaly, respectively.

Figure 6. The Granger causality test of Northern South China Sea (NSCS) ocean warming and land climate change. (a) The interaction of the sea surface temperature (SST) 
anomaly (SSTA) and land surface temperature (LST) anomaly (LSTA); (b) the interaction of the oceanic evaporation anomaly (OEA) and relative humidity anomaly (RHA).
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Figure 7. Structural equation models of coupled land-sea warming effects on the inter-annual variability and turning of land 
net primary productivity (LNPP) in the Greater Bay Area (GBA), including the structural equation model (SEM) without 
ocean warming (a) and with the coupled land-sea warming (b). The solid arrows represent significant effects (*p < 0.05, 
**p < 0.01, ***p < 0.001), dashed arrows represent nonsignificant effects (p > 0.05), the width of arrows represents the 
intensity of standardized path coefficients, and the numbers on the arrows are standardized path coefficients. The blue boxes 
represent explanatory variables, the green box represents the dependent variables and the dark gray boxes represent mediator 
variables in the model.
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observed that the SST and LST anomalies presented a significant indirect effect on the LNPP anomaly (γ = −0.26 
and −0.25, respectively). We also observed that the SST anomaly presented a significant direct effect and was 
positively related to the VPD anomaly (γ = 0.59, p < 0.001), but the atmospheric specific humidity (ASH) anom-
aly presented a stronger direct effect and was negatively related to the VPD anomaly (γ = −0.78, p < 0.001). 
The LST anomaly presented a significant direct effect and was positively related to the VPD anomaly (γ = 0.31, 
p < 0.01). The model identified the VPD anomaly as a major direct driver of the annual LNPP anomaly and 
turning point, and the SST and LST anomalies were the major indirect drivers. To explain our SEM results, other 
possible SEMs were supplemented in the Supplementary materials (Figure S3 in Supporting Information S1), 
and the correlations between all the analyzed variables in the SEMs were also supplemented in the Supporting 
Information S1 (Figure S4).

3.3. Contribution of Climate Warming and Urbanization to LNPP Variability

By isolating the impacts of climate warming, urbanization, and LCC on LNPP variability, we identified 
climate-driven, urbanization-driven, and LCC-driven LNPP changes and calculated the proportions of the contri-
bution of the three drivers to the LNPP anomaly. The results suggested that climate warming and urbanization 
were the determinant factors of LNPP variability near the NSCS, accounting for 50.00% and 40.00%, respectively 
(Table 1). In addition to the serious decline in LNPP (0.20 Tg C) caused by climate warming, urbanization also 
caused a large loss in LNPP (0.16 Tg C). To clarify the contribution of each climate factor to the variability in 
LNPP under coupled land-sea warming, we further calculated the percent contribution index of each climate 
factor and identified the key factors among climate drivers. The results showed that the VPDA was the key 
direct contributor to LNPP variability with contributions of 53.91% (Figure 8a and Table 1), and the SSTA and 
LSTA were the two indirect contributors with contributions of 20.16%, and 19.38%, respectively (Figure 8b and 
Table 1).

4. Discussion
4.1. VPD Change Explained Spatiotemporal Variation of LNPP

Changes in water availability determined by temperature and humidity variation are becoming the dominant 
drivers of global vegetation productivity change (Murray-Tortarolo et  al., 2016; O'Sullivan et  al., 2020). Our 
results showed that annual LNPP had a similar trend with the relative humidity but an opposite trend with the 
VPD after 2003 (Figure S5 in Supporting Information S1). A reduced relative humidity, indicating water stress 
conditions and atmospheric dryness, caused an increase in the VPD (Figure S5 in Supporting Information S1), 
which triggered stomatal closure to conserve water and caused vegetation evapotranspiration and photosynthesis 
decline (Pascolini-Campbell et al., 2021; Xiao et al., 2020). Additionally, the SEM results showed that the VPD 
anomaly and LST anomaly had strong direct and indirect effects on the LNPP anomaly, respectively, in most of 
the GBA (Figure 7). The VPD and LST increase near the NSCS indicated that the water availability decline was 
positively related to the LNPP decrease.

Drivers NPP change (TgC) Area (km 2) Proportion (%) Sub-Drivers Direct effects (γ) Proportion (%) Indirect effects (γ) Proportion (%)

Climate −0.20 3688.02 50.00 SMCA 0.16 11.34 0.07 5.43

LSTA −0.15 10.64 −0.25 19.38

SSTA −0.26 20.16

PREA 0.19 13.47 0.06 4.65

ASHA −0.15 10.64

VPDA −0.76 53.91

Urbanization −0.16 190.21 40.00

Land cover change −0.04 79.23 10.00

Table 1 
Contributions of Climatic Drivers and Urbanization to LNPP Variability
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Most of the global variability in modeled land carbon uptake is driven by temperature and vapor pressure deficit 
effects that are controlled by soil moisture (Humphrey et al., 2021). Soil moisture-atmosphere feedbacks play a 
key role in land carbon uptake variability under drought stress (O'Sullivan et al., 2020). In our study, we observed 
that soil moisture had a significant correlation but a low effect (standardized path coefficient γ = 0.16) of soil 
moisture on LNPP variability (Figure 7). Some studies have suggested that the stomata of the leaves effectively 
expand and photosynthesis is promoted when the soil moisture supply is sufficient to support leaf evaporation 
(Bateni & Entekhabi, 2012; Yin et al., 2014). However, they have not considered the effect of the VPD driven by 
reduced vapor transport from the ocean on plant photosynthesis. In this case, even if the soil moisture supply is 
sufficient, the plant leaf stomata will close to prevent water loss as the vapor pressure deficit increases. However, 
soil moisture-atmosphere feedback (soil moisture-vapor pressure deficit) is likely to be an important factor for 
land carbon uptake in the future near the NSCS because the increasing trend of the global VPD will continue to 
the end of the 21st century according to the predictions of global climate models (Yuan et al., 2019), and the soil 
moisture gradually decreased after 2013 in the GBA (Figure S6 in Supporting Information S1).

4.2. Coupled Land-Sea Warming Driven VPD Increase

Global warming has become severe in recent decades due to anthropogenic CO2 and heat emissions (Abatzoglou 
et al., 2019). Additionally, the ocean became warmer because 30% of anthropogenic CO2 and heat have sunk 
into the ocean every year (Bronselaer & Zanna, 2020; Resplandy et al., 2018). Ocean warming in turn increases 
land surface temperature and specific humidity to balance the moist static energy over the land and ocean (Byrne 
& O’Gorman, 2018). A recent study suggested that there was a strong coupling relationship between summer 
temperature and humidity anomalies and SST anomalies in coastal cities during a marine heatwave (Hu, 2021).

Approximately 85% of atmospheric water vapor is evaporated from the surrounding oceans, with the remaining 
15% coming from evaporation and transpiration over terrestrial ecosystems (Trenberth et al., 2007). Although 
atmospheric specific humidity increased as oceanic evaporation increased under sea surface temperature increases 
in recent decades (IPCC, 2021), coupled land-sea warming caused an increase in atmospheric specific humidity 
and a decrease in relative humidity over land. Finally, the land VPD increased under this trend.

As the land VPD increased, leaf stomata contracted to prevent water loss when leaf water evaporation was 
greater than the soil moisture supply under drought stress, which is not conducive to plant photosynthesis (Ding 
et al., 2018; Novick et al., 2016). Therefore, we proposed a hypothesis that land and neighboring ocean warming 
in the GBA increases near the land VPD and further decreases LNPP. SEM analysis was adopted to prove our 
hypothesis, and the model results showed that LNPPA was indirectly negatively correlated with the coupled 

Figure 8. (a) Contributions of direct climate drivers to land net primary productivity (LNPP) variability; (b) contributions of 
indirect climate drivers to LNPP variability, including the soil moisture content anomaly (SMCA), land surface temperature 
anomaly (LSTA), sea surface temperature anomaly (SSTA), precipitation anomaly (PREA), atmospheric specific humidity 
anomaly (ASHA), and vapor pressure deficit anomaly (VPDA).
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land-sea warming (γ = −0.51) (Figure 7 and Table 1). The VPD increase due to coupled land-sea warming was 
identified as a major driver of the LNPP decrease in most of the GBA, which was consistent with our hypothesis.

4.3. The Relative Importance of Urbanization Compared With Climate Warming in LNPP Variability

Urbanization is one of the key components of human-associated disturbance, and its effects on LNPP have been 
widely examined (Imhoff et al., 2004; Jia et al., 2018). In general, impervious surface increases with urbanization 
directly caused vegetation decreases and declines in NPP, but urbanization indirectly enhanced vegetation growth 
by increasing urban temperature and CO2 concentration, which can offset 30% of the direct negative impact of 
urbanization (Zhao et al., 2016). However, the overall negative effect of urbanization on NPP is much greater than 
the positive effect. Our results suggested that land regions near the NSCS experienced rapid urbanization from 
1985 to 2015, especially in the GBA. A large amount of cropland and forest were converted into built-up areas, 
which caused a large loss in LNPP due to urbanization (Figure S7 in Supporting Information S1). This finding 
was consistent with previous research (Zhang et al., 2021). Globally, rapid urbanization in the past decade has 
caused a net loss of 22.4 TgC in terrestrial NPP, and although this is small compared to the total terrestrial carbon 
sink and anthropogenic CO2 emissions worldwide, the urbanization-driven decrease in NPP offset 30% of the 
climate-driven increase from 2000 to 2010 (Liu et al., 2019). In our study, the LNPP in built-up areas presented a 
decreasing trend from 1985 to 2015 driven by rapid urbanization (Figure 4c), which was consistent with previous 
research (Cao et al., 2004; Zhang et al., 2021). Rapid urbanization in the past several decades has caused a net 
loss of 0.16 TgC in LNPP and an increase of 190 km 2 in newly built-up areas near the NSCS. Compared with 
the climate-driven decrease in LNPP, the reduced LNPP per unit area driven by urbanization was much greater 
than that driven by climate warming, approximately 19 times higher than the climate-driven reduced LNPP 
per unit area (Table 1). Thus, vegetal losses driven by urbanization were equally important for LNPP variabil-
ity compared with climate warming from a long-term perspective. The interaction of urbanization and climate 
warming needs to be considered when formulating strategies for reducing CO2 emissions, increasing sinks, and 
mitigating climate change.

5. Conclusions
Our study focuses on the impact of land-sea warming interactions on coastal ecosystem services under global 
warming, and the mechanism by which land-sea warming affects the carbon uptake of terrestrial ecosystems 
was explored based on the theory of land-sea water vapor transport and ocean amplification of land temperature. 
Climate warming, LCC, and urbanization were integrated to reveal the dominant factors of LNPP variability 
under climate change and human activities. We found that vapor transported from the ocean to land decreased 
and relative humidity decreased over land owing to land and neighboring ocean warming in the GBA, therefore 
resulting in an increase in VPD over land, and this effect reduced vegetation photosynthesis and land net carbon 
uptake on the south coast of China. Atmospheric VPD, as a characterization of land surface humidity anomaly, 
was the key direct driver affecting land net carbon uptake, accounting for 53.91%. Additionally, coupled land-sea 
warming had a significant indirect effect on terrestrial carbon uptake with a contribution of 39.54%. Urbanization 
led to a large loss in LNPP, which was slightly less than the decrease in LNPP driven by climate warming.

Our results revealed coupled land-sea warming as a dominant factor in the spatial-temporal evolution and vari-
ability of regional carbon uptake in the Guangdong, Hong Kong, and Macau regions, which can improve the 
carbon flux model of regional ecosystems and inform the formulation of regional climate change mitigation 
strategies and the realization of regional carbon peak and carbon neutrality goals.

Abbreviations
ASH atmospheric specific humidity
ASHA atmospheric specific humidity anomaly
GBA Guangdong-HongKong-Macao Greater Bay Area
LAI leaf area index
LAIA leaf area index anomaly
LCC land cover change
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LNPP land net primary production
LNPPA land net primary production anomaly
LST land surface temperature
LSTA land surface temperature anomaly
NCU net carbon uptake
NSCS Northern South China Sea
OEA oceanic evaporation anomaly
PREA precipitation anomaly
RHA relative humidity anomaly
SEM structural equation model
SST sea surface temperature
SSTA sea surface temperature anomaly
SMC soil moisture content
SMCA soil moisture content anomaly
VPD vapor pressure deficit
VPDA vapor pressure deficit anomaly
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