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A B S T R A C T   

Tidal wetlands, the global hotspots of biodiversity and carbon stocks, are currently experiencing widespread 
modifications in their composition due to human disturbances and changing climate. Accurate mapping of tidal 
wetland composition is crucial and urgently required for the conservation and management of coastal ecosystem, 
as well as for maximizing their associated services. However, remote sensing of tidal wetlands is still challenge 
due to periodic tidal fluctuations, frequent cloud cover, and similar spectral characteristics with terrestrial land- 
cover types. Previous approaches to mapping the tidal wetlands have been restricted to small study regions or 
have focused on an individual tidal wetland type, thus limiting their ability to consistently monitor the 
composition of tidal wetlands over large geographic extents. To address the above issues, we proposed a novel 
algorithm on Google Earth Engine, called Multi-class Tidal Wetland Mapping by integrating Tide-level and 
Phenological features (MTWM-TP), to simultaneously map mangroves, salt marshes and tidal flats for specifying 
large-scale tidal wetland composition. The MTWM-TP algorithm firstly generates several noise-free composite 
images with different tide levels and phenological stages and then concatenates them into a random forest 
classifier for further classification. The usage of tide-level and phenological features eliminates inland landscapes 
and help to distinguish deciduous salt marshes and evergreen mangroves, leading to a statistically significant 
improvement in accuracy. We applied the algorithm to 10,274 Sentinel-2 images of East Asia and derived a 10-m- 
resolution multi-class tidal wetland map with an overall accuracy of 97.02% at a sub-continental scale. We found 
that tidal wetlands occupied 1,308,241 ha of areas in East Asia in 2020, of which 89.12% were tidal flats, 9.39% 
were salt marshes, and only 1.49% were mangroves. This spatially explicit map of tidal wetland composition will 
provide valuable guidance for coastal biodiversity protection and blue carbon restoration. In addition, the 
proposed MTWM-TP algorithm can serve as a reliable means for monitoring sub-continental- or larger-scale tidal 
wetland composition more broadly.   

1. Introduction 

Tidal wetlands, composing of unvegetated tidal flats, mangroves, 
and salt marshes (Turpie et al., 2015; Yang et al., 2008), play a unique 
role in linking terrestrial and marine environments, providing numerous 
crucial ecosystem services such as coastal protection, fishery enhance
ment, and carbon sequestration to people (Barbier et al., 2011). Despite 
their small portion of the Earth's surface (<0.5%), tidal wetlands are 
widely distributed in diverse climate zones and are among the most 
productive ecosystems on the planet (Donato et al., 2011), storing a 

large amount of carbon (10–24 Pg C globally) (Duarte et al., 2013). 
However, at the same time tidal wetlands are one of the most fragile 
ecosystems worldwide, severely threatened by disturbance from climate 
change, which triggers extensive variation of tidal wetland composition 
(TWC). For example, decreased frost frequency and precipitation 
resulted in mangroves encroached into salt marshes (Cavanaugh et al., 
2014; Saintilan et al., 2014) and transferred salt marshes to unvegetated 
tidal flats (Osland et al., 2016). Climate-induced sea-level rise is also 
likely to alter the TWC by changing the flood frequency and inundation 
depth (Nicholls and Cazenave, 2010; Kirwan et al., 2016). In turn, 
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changes in TWC will cause alterations of habitats for some migratory 
shorebirds and the native species that inhabit stable tidal wetland 
mosaic (Kelleway et al., 2017) and affect the carbon cycle of the coastal 
environments (Lovelock and Reef, 2020). As a result, dynamic moni
toring of TWC at a large scale is pivotal for accounting for coastal carbon 
sequestration, understanding the changes of coastal habitats, and for 
broadly protecting sensitive coastal ecosystems under changing climate. 

Remote sensing techniques offer a cost-effective way to continuously 
detect TWC over large geographic extents and long historic periods. 
However, they are more challenging in detecting tidal wetlands than 
terrestrial landscapes due to the highly dynamic intertidal environment. 
The remotely-detected spatial extent of tidal wetlands is greatly 
impacted by the tidal stage at the time of remote sensing data capture 
(O'Connell et al., 2017; Sun et al., 2021). The use of low-tide images thus 
is necessary to capture the moment of tidal wetland exposure and detect 
the entire spatial extent. On the other hand, frequent cloud cover in the 
coastal area, particularly tropical and subtropical regions, reduces the 
likelihood of acquiring clear-sky low-tide images. Even with cloud-free 
low-tide imagery, similar spectral characteristics of tidal wetlands and 
terrestrial landscapes such as terrestrial vegetation and bare soils can 
also hinder accurate classification. These challenges could be addressed 
at the local scale by using high-accuracy Light Detection and Ranging 
(LiDAR) topographic mapping, sub-meter remote sensing images like 
World-View 2 imagery, and field measurements of tidal stages (e.g., 
Campbell and Wang, 2018), but are still prevailing for those large-scale 
studies that can only acquire moderate-resolution satellite remote 
sensing data like Landsat or Sentinel imagery with a long revisiting 
period. In such a situation, it is critical to develop efficient and general 
algorithms to account for tidal fluctuations, cloud contamination, and 
spectral similarity. 

Since visual tidal differences among satellite images are evident, 
with lower tides exhibit more visible vegetated wetlands and tidal flats, 
a straightforward way to deal with tidal fluctuations and cloud coverage 
is to manually collect cloud-free low-tide scenes (e.g., Gu et al., 2021; Jia 
et al., 2018). There are also precedents (Rogers et al., 2017; Murray 
et al., 2012) for automatically collecting the most suitable low-tide 
scenes using the estimated tidal height from tide models. Additionally, 
to overcome the issue of similar spectral characteristics, several studies 
(Chen et al., 2017; Lopes et al., 2020) manually delineated accurate 
shorelines as a pre-processing step to excluded inland areas. Nonethe
less, these strategies can be too labor-intensive and time-consuming to 
apply at a national or larger scale. More importantly, the inherent lim
itation of these, and any method which utilizes single-date scenes, is the 
requirement for cloud-free satellite images during low tide, which may 
be unavailable for many regions where cloud coverage is frequent. 

With advances in computation resources like Google Earth Engine 
(GEE) (Gorelick et al., 2017), several recent studies used multi-temporal 
instead of single-date images into tidal wetland mapping to address the 
three challenges above (Wang et al., 2019). Based on multi-tidal 
remotely-sensed imagery, tidal variations were considered as an essen
tial feature rather than a barrier to separate tidal wetlands from 
terrestrial landscapes because only the spectral characteristics of tidal 
wetlands vary with tide levels (Rogers et al., 2017; Taddeo et al., 2019). 
Image compositing methods, which select the best pixels for each pixel 
location from an image stack, were widely used in these studies to 
generate cloud-free composite images with different tidal inundation 
status. Image compositing allows exploiting all imagery, including 
partially cloudy images, thus is particularly suitable for moderate- 
resolution optical sensors like Sentinel-2 (S2) which provide detailed 
spatial information but lack sufficient cloud-free observations. For 
instance, Sagar et al. (2017) generated a median composite of Normal
ized Difference Water Index (NDWI) in each tidal stage interval to 
delineate the intertidal extent of Australia based on a full time-series of 
Landsat observations. Another milestone of mapping tidal wetlands 
through composite images is Murray et al. (2019), who extracted the 
global distribution of tidal flats by using several quantile composite 

images representing different tidal stages. However, their methods do 
not capture the highest and lowest tide conditions, thus omitting mar
ginal tidal wetlands. By developing the quantile composite method, 
Zhao et al. (2020) used the 95th and 5th quantiles at each pixel of the 
image stack to obtain the lowest and highest tide composite images, 
respectively. This strategy was followed by a more recent work in 
mapping tidal flats of China (Jia et al., 2021) with a difference that using 
maximum instead of quantiles to composite images (i.e., using 
Maximum Value Composite method, MaxVC). A key limitation of these 
composing methods, however, is that they are highly sensitive to image 
noise, such as residual cloud cover even after the cloud-masking pro
cedure (Coluzzi et al., 2018), and spectral reflectance outliers caused by 
atmosphere correction or sensor miscalibration. Due to the use of the full 
image stack without any filter procedure, any noise in the image stack 
would interfere with the order of pixel values and thus caused abnormal 
quantile (or maximum) value. As such, a robust method for compositing 
images with different tide levels ranging from highest to lowest is 
required to help better use tide-level features in the classification 
procedures. 

Phenology is an essential feature considered to classify vegetated 
tidal wetlands. Some studies have proposed selecting key dates repre
senting appropriate phenological windows to provide extra features in 
tidal wetland classification (Tian et al., 2020; Valderrama-Landeros 
et al., 2021). For example, Tian et al. (2020) monitored the invasion 
processes of Spartina alterniflora, an invasive salt marsh species in China, 
by combining images during the growing season (154 -270th days) and 
dormant season (1-142th days). However, since the key phenological 
dates vary with species and can vary in spatial and temporal domain 
even within the same species (Caparros-Santiago et al., 2021), un
certainties would arise in the final classification results if applying the 
same key dates to different study regions or periods. Considering these 
specificities, we need to develop an automated method without depen
dence on prior knowledge about exact phenological dates. 

There are several existing global tidal wetland products, including 
the global mangrove extent for the year 2000 (Giri et al., 2011), global 
mangrove extent from 2000 to 2012 (Hamilton and Casey, 2016), global 
mangroves from 1996 to 2016 (Bunting et al., 2018), and global tidal 
flats from 1984 to 2016 (Murray et al., 2019). While these global 
products and the above-mentioned regional works provided valuable 
resources for understanding tidal wetlands, most of them were devel
oped for an individual wetland type. As each type was mapped sepa
rately with different data sources, classification methodologies, training 
samples and interpreters, errors in each map would be accumulated in 
the final multi-class map (Xu et al., 2020), impeding their integration 
and further ecological applications. While some global multi-class land- 
cover products cover partial intertidal zones (Chen et al., 2014; Gong 
et al., 2019; Zhang et al., 2020), their classification algorithms are not 
designed for the coastal environment and mostly ignore a large part of 
intertidal areas. More recently, Mao et al. (2020) and Wang et al. (2020) 
mapped multi-class tidal wetlands at a national scale by applying a se
ries of empirical thresholds on spectral indices or remotely-sensed 
inundation frequency, but their approaches depends highly on the se
lection of empirical thresholds which can vary with location and time of 
data acquisition (Zhao et al., 2020), thereby fails to offer a general so
lution that can be extended to other regions and periods to overcome 
those three challenges in remote sensing of tidal wetlands. At present, 
we still lack a robust, accurate and general tidal wetland classification 
framework to map multi-class tidal wetlands simultaneously. Instead of 
concentrating over a small area or a short period of time, the classifi
cation framework should be operational over a large geographical extent 
without dependence on prior knowledge such as tidal height at the 
image acquisition date, key phenological dates, manually delineated 
shoreline data, and empirical thresholds. 

To overcome the above questions, this study proposed a novel clas
sification algorithm, the Multi-class Tidal wetland Mapping by inte
grating Tide-level and Phenological features (MTWM-TP), to allow 

Z. Zhang et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 269 (2022) 112799

3

large-scale mapping of TWC which includes mangroves, salt marshes, 
and unvegetated tidal flats simultaneously. To minimize the noise issue 
(such as residual clouds and spectral outliers) in the existing compos
iting techniques, MTWM-TP developed an automated approach to select 
scenes acquired at different tide levels and phenological stages to 
generate noise-free composite images representing tide-level and 
phenological information. We validated the role of integrating tide-level 
and phenological features in mapping tidal wetland composition by 
comparing with other classification methods and further tested the 
sensitivity of MTWM-TP to training sample size. Applying MTWM-TP to 
East Asia, we produced a sub-continental-scale tidal wetland composi
tion map at 10-m resolution using S2 images on GEE and discussed its 

performance compared with four existing tidal wetland products. 

2. Materials and methods 

2.1. Study area 

The study area was confined to the coastal areas of East Asia (EA; 
mainland China and Korean Peninsula) (Fig. 1), which extend from 
18.15◦N in the humid tropics to 41.00◦N in the semi-humid temperate 
zone. The eastern coast of Korean Peninsula was excluded because it is 
dominated by rocks rather than wetlands (Kim et al., 2020). The region 
has a temperate monsoon climate in the north and a tropical monsoon 

Fig. 1. Map of the study area, showing the location of field survey sites (Section 2.2.2) and tidal stations (Section 2.3.2). The red square indicates the location of BH. 
An example of UAV (unmanned aerial vehicle) orthomosaics obtained from our field survey in Luoyuan Bay, Fujian Province, China is also indicated. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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climate in the south, with average annual temperatures ranging from 9 
to 25 ◦C. Such a large area provides diverse climate and landscape set
tings to test the robustness and generality of our classification method. 

We implemented the classification within 115 S2 tiles (100 × 100 
km) (https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data 
-products) intersecting with the coastline (https://osmdata.openstreet 
map.de/). To minimize unnecessary processing, we limited our anal
ysis to low-lying areas with surface elevation less than 25 m using the 
Advanced Land Observing Satellite World 3D data, a global digital 
surface model dataset with a vertical error of 4.1 m and a horizontal 
error of 5 m (Tadono et al., 2015), due to the low elevation of the coastal 
area. The 25 m cut-off preserves the tallest tidal wetlands in EA 
considering that the tallest tidal wetland (i.e., mangrove forest) stand of 
EA is 15.3 m with a 6.31 m error (Simard et al., 2019). 

A local site located in the Beihai Harbor (BH) of Guangxi Zhuang 
Autonomous Region, China, was selected for demonstration purposes in 
this study. BH is an iconic mangrove-marsh ecotone that includes 
mature mangroves, mangrove seedlings, salt marshes, and unvegetated 
tidal flats simultaneously (Fig. 1). Such diverse landscape makes BH an 
desirable place to demonstrate the performances of our MTWM-TP al
gorithm in mapping TWC. BH experiences a southern subtropical 
monsoon climate with frequent cloud cover and rainy days (mean 
annual precipitation of 1600 mm), thus can serve as a specific site to 
examine the performance of our method in cloudy areas. Additionally, 
selection of BH was also motivated by the presence of existing field data 
and our familiarity with the site (Fig. 1). 

2.2. Data sources 

2.2.1. Sentinel-2 data 
The Sentinel-2 mission comprises a constellation of two polar- 

orbiting satellites (Sentinel-2A and -2B), which were developed to 
observe global land surface dynamic with a short repetition time (5 days 
at the Equator after the launch of Sentinel-2B in March 2017). It offers 
publicly available multi-spectral images with 13 discrete spectral bands 
ranging from 440 to 2200 nm at a spatial resolution of 10–60 m. The 
relatively high spatio-temporal resolution increases the probability of 
obtaining cloud-free images during the low/high tide conditions and 
detecting small tidal wetland patches. 

Our classification scheme was applied to time series of S2 Level-2A 
surface reflectance (SR) imagery for the year 2020 with six-month 
buffers prepended (18 months total) for capturing tidal variations and 
a full phenological cycle of vegetated wetlands. With more cloud and 
rain in the summer due to the monsoon climate, prepended six-month 
period ensures sufficient cloud-free growing season observations for 
EA. A total of 17,106 images taken from 1 Jun 2019 to 31 Dec 2020 were 
available, of which 6832 scenes almost completely covered by clouds 
(images with cloud cover greater than 70%) were filtered out to mini
mize cloud contamination according to Quality Assessment (QA) 60 
bitmask band, resulting in a total of 10,274 S2 scenes across the study 
area for further analysis. While the QA band provides a tool for cloud 
and cloud shadow masking, the performance tends to be poor, with an 
average of 37.4% errors of omission (Coluzzi et al., 2018). We thus 
further masked out pixels covered by residual clouds and cloud shadows 
using the Fmask algorithm (Zhu et al., 2015) on GEE, obtaining an 
average of 63 cloud-free scenes per pixel with a standard deviation of 28 
scenes (Fig. 1). Given that the Fmask was developed to run on top of 
atmosphere reflectance, we adapted the algorithm to perform directly 
on S2 SR images and observed reduced errors of omission for clouds and 
cloud shadows compared to the QA band and S2 Cloud Probability 
products of GEE (Fig. S1). 

2.2.2. Training samples 
Field surveys were carried out in 69 areas between May 2019 and 

October 2020 to collect training data and guide further sampling 
(Fig. 1). We acquired 758 sub-meter resolution images using a DJ 

Phantom 4 pro Unmanned Aerial Vehicle (UAV) and the in-built RGB 
sensor during the low-tide condition as a reference to develop training 
samples and get visual experience on tidal wetlands. A total of 16,074 
georeferenced polygons were collected as the training samples by 
referring to multiple sources, including existing global mangrove and 
tidal flat datasets (Bunting et al., 2018; Murray et al., 2019), S2 lowest 
tide composite images (see Section 2.3.3), high-resolution Google Earth 
images acquired during 2019–2020, and our UAV images. These 
training samples consist of five classes: “mangrove”, “salt marsh”, “tidal 
flat”, “permanent seawater” and “other” (Table 1), in which “other” 
represents terrestrial land-cover types, including inland vegetations, 
bare soils, and impervious surfaces. Note that the “other” category does 
not contain aquaculture ponds, as they have been represented by the 
“permanent seawater” category given that they are all water in terms of 
land cover, which allowed us to directly use “other” as “non-water” 
category when separate water from non-water area (see Section 2.3.4). 

2.3. MTWM-TP classification algorithm 

2.3.1. Overall classification framework 
Based on the statistically significant spectral differences of tidal 

wetlands in different tide levels and phenological stages (Figs. S2–S3; 
see Supplementary Material for more details), we proposed a tidal 
wetland classification method that integrates tide-level and phenolog
ical features, namely, the Multi-class Tidal Wetland Mapping by inte
grating Tide-level and Phenological features (MTWM-TP). We separated 
the classification of tidal wetlands into three major components: map
ping unvegetated tidal flats, classifying vegetated tidal wetlands (i.e., 
mangroves and salt marshes), and the post-processing step (Fig. 2). 

In this study, tidal flats represent the mudflats and sandflats exposed 
during the low tide condition but submerged during the high tide con
dition (Table 1). Given this definition, seawater pixels at the highest 
tidal stage but mudflats or sandflats at the lowest tidal stage were 
detected as the tidal flats. The challenge then lies in obtaining the 
highest- and lowest-tide images for detecting the whole tidal flats. We 
thus developed a new method to automatically generate noise-free sat
ellite-observable highest and lowest tide images and used Random 
Forest (RF) classifiers (Belgiu and Drăguţ, 2016) to extract tidal flats. 
Note that because sun-synchronous satellites such as S2 can only observe 
a sub-portion of the full tidal range (Rogers et al., 2017; Sagar et al., 
2017), the highest and lowest tides mentioned in this study mainly refer 
to the highest and lowest tides observed by S2 satellites (Jia et al., 2021) 
rather than extreme astronomical tide levels. 

Mangroves and salt marshes mapped in this study refer to woody and 
herbaceous vegetation rooted in the intertidal environment, respectively 
(Kelleway et al., 2017). We inputted image composites that combined 
imagery corresponding to the high and low tides into the RF classifier to 
amplify spectral differences between vegetated tidal wetlands and 
inland vegetations. However, since both mangroves and salt marshes are 
affected by the tidal fluctuance, merely using tide-level features cannot 
be effective in distinguishing between these two tidal wetland types. 
Hence, we introduced phenological features into the classification 
scheme as the salt marshes have strong greenness seasonality but 
mangroves are evergreen. We proposed a new method to generate cloud- 
free green and senescence composite images, which were further com
bined with high- and low-tide images as features for the classification. 

As the unvegetated tidal flats and vegetated tidal wetlands are 
mapped separately, a post-processing procedure is needed to integrate 
the individual results. In this step, we combined the results of two 
classification phases, applied several spatial processing techniques to 
reduce classification errors and uncertainties, and got the final classifi
cation map. 

2.3.2. Generating noise-free lowest and highest tide images 
To automatically identify low-tide and high-tide S2 scenes, we 

assumed a robust statistical relationship between spectral indices (SIs) of 
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intertidal environment and actual tidal height. To verify this assump
tion, we selected four tidal gauging stations with different tidal types 
across EA from the website of China National Shipping Services 
(https://www.cnss.com.cn/tide/) (Fig. 1; Table 2) and recorded their 
tidal height at the acquisition time of cloud-free S2 scenes from 1 Jan 
2020 to 31 Dec 2020. Then, for each S2 scene, we tested the relationship 
between actual tidal height and the average value of 8 spectral indices 
(SIs; Table S2) for tidal flat samples close to the corresponding tidal 
gauging station to determine the best proxy for tide level. Previous 
studies have reported that these indices may have positive or negative 
correlations with water level (Jia et al., 2021; Sagar et al., 2017; 
O'Connell et al., 2017; Chen et al., 2017), but it remains unclear which 
index has the best and stable performance in representing tide level. 

The most robust performance was achieved by the Normalized Dif
ference Vegetation Index (NDVI) and Normalized Difference Water 
Index (NDWI) according to their stable coefficient of determination (R2) 
across all tidal gauging stations (Fig. 3; Fig. S4), suggesting that the 
average NDVI/NDWI of tidal flats in an S2 scene can represent the tidal 
height at the acquisition time of the scene. Specifically, the negative 
relationship between NDVI of tidal flats and tidal height indicates that 
the low-tide images can be automatically identified by filtering S2 
scenes with the large NDVI value of tidal flat samples (Fig. 3). Therefore, 
we flagged each S2 scene with the spatially average NDVI value of tidal 
flat samples and then sorted them in descending order to select the 

highly ranked scenes as the low-tide observations. The LETC images 
were generated by performing the maximum NDVI compositing method 
(using the “qualityMosaic” function in GEE; Holben, 1986) on these 
selected low-tide S2 scenes. Similarly, the positive relationship between 
NDWI of tidal flats and tidal height allowed us to obtain the HETC image 
by compositing images with highly ranked average NDWI of tidal flat 
samples (Fig. 3). Considering the tidal height may vary among estuaries 
across a tile extent so that a single average NDVI/NDWI value may failed 
to reflect actual tide level anywhere, we divided each tile into several 
subregions according to the estuaries within the tile (Bishop-Taylor 
et al., 2019), and carried out the above sorting steps for each subregion 
to obtain LETC/HETC images. Notably, although the minimum NDVI 
and the minimum NDWI can theoretically represent the highest and 
lowest tides, respectively (due to the low NDVI and high NDWI of the 
water), their performance is not as good as using the MaxVC in practice 
because small index values can also be caused by cloud contamination 
(Fig. S5). In the present study, the highly ranked images refer to the top 
20% of images. This value could be dynamically adjusted according to 
the degree of cloud contamination. Larger or smaller the value will cause 
more noises or missing pixels in the final LETC/HETC image, respec
tively. Besides LETC and HETC images, we also produced median 
composites to represent noise-free low-tide and high-tide images. The 
LETC and HETC images were used to map tidal flats, and the noise-free 
low-tide and high-tide images were used to classify mangroves and salt 

Table 1 
Definitions and image characteristics of land-cover types used in this study.  

Class I Class II Description Image characteristics (Standard false colour) 

High tide Low tide Growing season Dormant season 

Tidal 
wetlands 

Mangroves Communities of shrubs or trees that grow in the 
intertidal area. 

Salt marshes Herbaceous vegetation rooted in the intertidal 
area. 

Tidal flats Mudflats and sandflats between highest and lowest 
tide levels. 

Other Permanent 
seawater 

The seawater below the lowest tide level. 

Inland 
vegetation 

Vegetation unaffected by tides, such as inland 
evergreen forests and grass. 

Bare soils Inland soil and sand without vegetation and 
building cover. 

Impervious 
surfaces 

Man-made hard areas like built-up areas, roads, 
ports, and seawalls. 
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marshes in the subsequent steps. An example performed at a cloudy 
tropical tidal station Xinying was shown in Fig. 4. 

2.3.3. Generating green and senescence images 
The traditional method of using phenological information in classi

fication is to determine the dates of key phenological events. However, 
this method is limited in large-scale applications, as mentioned in Sec
tion 1. In this study, we switched the strategy from determining the key 
phenological dates to identifying images acquired during growing and 
dormant seasons. Since salt marshes are deciduous but mangroves are 
evergreen, the growing and dormant seasons mentioned in this study 
mainly refer to salt marshes. 

We used Near-Infrared Reflectance of Vegetation (NIRv) (Table S2) 
to determine the growing-season images due to its high correlations with 
vegetation photosynthesis and superior performance in simulating 
vegetation phenology (Badgley et al., 2017). Higher NIRv indicates 
closer to the growing season. For a subregion, we flagged each S2 scene 

with the average NIRv value of salt marsh samples and then sorted the 
images in descending order. The highly ranked images were labeled as 
the growing-season images and further composited to generate a cloud- 
free green composite (CFGC) image with the median composite method 
that is insensitive to outliers (Fig. 5a). The resulting composite contains 
the median observation for each band in each pixel. We used Plant 
Senescence Reflectance Index (PSRI) (Table S2) to determine senescence 
images for salt marshes (Fig. 5b) because higher PSRI represents closer 
to the end of the growing season (Tian et al., 2020). Similar to gener
ating CFGC images, we generated cloud-free senescence composite 
(CFSC) images by compositing the highly ranked images with higher 
average PSRI of salt marsh samples. The composite images with different 
tide levels and phenological periods can be reproduced with the 
following GEE script: https://code.earthengine.google.com/063d5c60e 
a567e892dca149a189176a5. 

2.3.4. Mapping of unvegetated tidal flats 
According to the definition of tidal flats, the first step should be 

finding the maximum seawater extent (MSE) during the highest tide 
level. Since tidal flats are submerged by seawater at the high tide stage, 
we reassigned “permanent water” and “tidal flat” of training samples as 
“water”, and “other” training samples still as “other” for distinguishing 
water and land in HETC images (Fig. 2). Here we didn't use “mangrove” 
and “salt marsh” samples in separating water from non-water area 
because some of them are submerged by seawater in the HETC images. 
This design does not cause exposed mangroves and salt marshes to be 
classified as water because they are more similar to terrestrial vegetation 
contained in the “other” samples rather than water in the spectral 
domain. 

Random Forest (RF) was chosen to perform supervised classifications 
in this study due to its high accuracy and stability with less computa
tional time than other classifiers (Pelletier et al., 2016). The number of 
decision trees (Ntree) in RF is an important parameter and was set to 200 

Fig. 2. Schematic flowchart of the proposed method MTWM-TP. MHTC: Median high-tide composite; MLTC: Median low-tide composite; HETC: Highest tide 
composite; LETC: Lowest tide composite; CFGC: Cloud-free green composite; CFSC: Cloud-free senescence composite; MSE: Maximum seawater extent; MTWM: 
Multi-class Tidal wetland Map. UAV: Unmanned aerial vehicle images; GE: Google Earth images. The images show the results of our method at BH. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
General information of tidal gauging stations used in this study.  

Station Location Tidal type Sentinel-2 
overpass time 
(local time) 

The number 
of cloud-free 
images 

Dandong 39.81◦N,124,14◦E Regular 
Semi- 
diurnal 

10:36 59 

Chongming 31.53◦N,121.62◦E Irregular 
Semi- 
diurnal 

10:49 34 

Tieshan 21.58◦N,109.56◦E Irregular 
diurnal 

11:22 29 

Xinying 19.90◦N,109.50◦E Regular 
diurnal 

11:22 20  
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in this study by referring to previous works (Belgiu and Drăguţ, 2016; 
Valderrama-Landeros et al., 2021). Our sensitivity test also indicates 
that 200 trees are large enough to ensure classification accuracy 
(Fig. S6). To avoid overfitting and enhance our classification's robust
ness, we trained ten independent RF classifiers for every classification of 
this study, each randomly selecting only 70% of total training samples 
with the same classifier parameters. The mode composite of the ten RF 
results was regarded as the most likely class for each pixel. 

As an initial step, we classified each pixel in HETC images as “water” 
or “land” with classification features consisted of 12 spectral bands (i.e., 
all spectral bands in S2 SR image) and two spectral index bands (i.e., 
NDVI and NDWI). Lower resolution S2 spectral bands were resampled to 
10-m pixel size using the nearest neighbor method. To exclude inland 
water bodies such as aquaculture ponds and lakes, we converted the 
“water” pixels to vector format and further determined the maximum 
seawater extent by selecting polygons that contain tidal flat samples 
(using the “filterBounds” function in GEE) (Fig. 2). Previous studies 
usually select the water polygon with the largest area as the MSE at this 
step (Jia et al., 2021; Lu and Wang, 2021). This approach would omit 
those seawater polygons isolated by cross-sea bridges, thereby 

underestimate the actual MSE (see Fig. S7 for a specific example). Using 
the “containing tidal flat samples” criterion could take these isolated 
seawater polygons into account because we deliberately gave tidal flat 
samples to these seawater polygons when generating training samples. 
Additionally, we gave a “fake” tidal flat sample (It can be any actual 
land-cover types, but must be in the extent) for each omitted seawater 
polygons found when visually checking the classification results of 
water and land so that they can be selected according to the “containing 
tidal flat samples” criterion. Through this step, almost all inland water 
bodies would be masked out because they don't contain any tidal flats. 
The following procedure is the extraction process of tidal flats from the 
LETC images. We reassigned “permanent water”, “mangrove”, “salt 
marsh”, and “other” training samples as “other” samples and ensembled 
them with “tidal flat” samples into the RF classifier. We limited the 
classification within the intertidal environment by clipping the LETC 
images to the MSE layer to exclude spectrally similar terrestrial land- 
cover types like bare soils. Finally, we classified each pixel of the clip
ped LETC images to “tidal flat” or “other” using the mode composite of 
ten RF results. The classification was performed each three tiles along 
the coastline rather than at once for the entire study area considering 

Fig. 3. Relationships between tidal height and two spectral indices. Each point represents an S2 observation. The number in brackets of the legend indicates R2. Note 
that p < 0.05 for all models. The tidal datum of Dandong, Chongming, Tieshan, and Xinying are 150, 214, 359, and 205 cm below the mean sea level, respectively. 

Fig. 4. Time series of tidal height in Xinying station and the derived composite images with different tide levels. The scatter points present Sentinel-2 observations. 
The blue points are the Sentinel-2 scenes with the top 20% NDWI of the tidal flat samples; the red points are the Sentinel-2 scenes with the top 20% NDVI of the tidal 
flat samples. The selected scenes were composited to generate low-tide and high-tide images by maximum spectral index and median composite methods. The tidal 
datum of Xinying is 205 cm below the mean sea level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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that just one RF model cannot deal with the data variability arising from 
the landscape diversity for such a large area and to avoid exceeding the 
computation time and memory limits of GEE. 

2.3.5. Classification of vegetated tidal wetlands 
Both tide level and phenology were used in the classification scheme 

of vegetated tidal wetlands. We concatenated the median low-tide 
composite (MLTC), median high-tide composite (MHTC), CFGC, and 
CFSC images to create a 48 spectral bands image (12 bands each in the 4 
composites), so that each pixel contains the spectral response observed 
at low tide, high tide, growing season, and dormant season. We reas
signed all training samples to three classes, including “mangrove”, “salt 
marsh” and “other”, and used ten independent RF classifiers to map 
mangroves and salt marshes on the concatenated image. Besides the 
spectral bands, we added the NIRv of the CFGC and CFSC images 
(hereafter NIRvgreen and NIRvsenescence) and the NIRv difference (NIRv
green-NIRvsenescence) as classification features to account for the seasonal 
difference of greenness. The mode composite of the ten results (i.e., most 
frequent class for each pixel) was used as the final vegetated tidal 
wetland result. 

2.3.6. Post-processing 
By overlaying the tidal flat layer on top of the vegetated wetland 

map, we generated the Multi-class Tidal Wetland Map (MTWM). Since 
tidal flats and vegetated wetlands were mapped separately, some pixels 
were classified as both vegetation wetlands and tidal flats. These pixels 
are mainly distributed around the edges between tidal flats and vege
tated wetlands, suggesting that the spectral mixture caused this issue. As 
a “hard classification” study, these pixels can only have one label. In 
such a case, we corrected these pixels from mangroves or salt marshes to 
tidal flats because they have a higher probability of being tidal flats than 
vegetated wetlands supported by their NDVI distribution probability 

(Fig. S8). Experiments later in this study (Fig. 10b) also show that the 
method of mapping tidal flat has higher accuracy than classifying 
vegetated wetlands across all training sample sizes, suggesting these 
pixels are more likely tidal flats. Although we used the tide level features 
to distinguish between inland land-cover types and tidal wetlands, some 
inland errors still exist due to RF classification errors. As such, we 
further removed inland error to reduce the commission errors by 
excluding tidal wetland polygons not intersect with the 500-m buffer of 
MSE generated in phase 1. Note that we used the “intersect” rather than 
“clip” criterion in this procedure, which means any tidal wetland patch 
that intersects with the buffer of MSE would be retained entirely. Since 
the MSE contains rivers connected to the ocean (see Fig. 2), the 500-m 
buffer radius is wide enough to account for all riverine tidal wetlands 
based on the “intersect” criterion. Furthermore, to add a degree of 
robustness and remove erroneous edge pixels between different land- 
cover types within the MTWM, pixels that were not surrounded by 
their same land-cover types were converted to the most distributed type 
nearby using a majority filter with a 5 × 5 moving window (McCarthy 
et al., 2018). 

2.4. Accuracy assessment 

As for the validation samples, a stratified random sampling scheme 
was adopted to avoid arbitrariness and bias in the accuracy assessment 
(Stehman and Foody, 2019). We calculated that 2746 samples would be 
sufficient for the validation using a commonly used sample size formula 
(Stehman and Foody, 2019), as shown below: 

n =
z2p(1 − p)

d2 (1)  

where z = 1.96 for a 95% confidence interval, d is the half-width of the 
desired confidence interval (d = 0.025 in this study), p is the anticipated 

Fig. 5. Temporal profiles of NIRv and PSRI from mangroves and salt marshes in local site BH. The scatter points represent Sentinel-2 observations. Each profile is 
obtained by applying Savitzky-Golay smooth technology (Chen et al., 2004) for showing phenological dynamics. The shaded area refers to ±1 standard deviation. 
Sentinel-2 observations with the top 20% average NIRv and PSRI of salt marsh samples were selected to generate CFGC and CFSC images. 
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proportion of correct classifications for a particular class (we used the 
area proportion as the p for each wetland class). For the “other” class, we 
set p as 0.5 for deriving a large enough value (because at this value, the 
term p(1-p) is maximized) due to the lack of knowledge on the antici
pated proportion of the correct “other” class. 

Considering the relatively rare mangrove in the study area, we 
increased mangrove test samples from 90 to 200 by referring to Olofsson 
et al. (2014), who suggests the allocation of test samples could be shifted 
slightly away from proportional allocation by giving more test samples 
to the rare class. As a result, we generated a validation set consisting of 
2856 random points (at 10-m scale) within the tidal wetland extent and 
within a 1-km buffer from the MSE (Fig. S9). These points were assigned 
to one of 4 classes: “mangrove”, “salt marsh”, “tidal flat”, and “other”, 
with a direct reference to 1) LETC and CFSC images, 2) Google Earth 
images, and 3) UAV images if the validation points located in our survey 
areas. 

Four metrics were used in validation processes: User's Accuracy 
(UA), Producer's Accuracy (PA), Overall Accuracy (OA), and F1 score. 
UA quantifies the proportion of a tidal wetland class in the satellite- 
derived map consistent with the reference data and therefore mea
sures commission errors. PA quantifies the probability of a tidal wetland 
class on the ground correctly classified by the satellite-derived map, 
measuring omission errors. OA quantifies the fraction of all correctly 
classified validation points. F1 score is the harmonic mean of PA and UA 
and could be a tradeoff metric to quantify both omission and commis
sion errors for each class (Bargiel, 2017). 

For comparison with our MTWM, four publicly available tidal 
wetland maps covering our study area were chosen, including 1) global 
tidal flat data in 2014–2016 produced by Murray et al. (2019) (Mur
ray_TF), 2) two mangrove maps in 2015 published by Chen et al. (2017) 
and Hu et al. (2018) (Chen_MG and Hu_MG, respectively), and 3) 
wetland layer in 2020 selected from the latest global land cover map 
developed by the National Geomatics Centre of China (Globe30) (Chen 
et al., 2014). We compared the performance of these datasets on map
ping tidal wetlands by using the same validation samples with the cor
responding true-value label. Although the period of these datasets 
differs, a quantitative comparison still serves as a reference for assessing 
data quality, given that the time difference is less than or equal to only 
five years. 

2.5. Comparing with other methods 

To examine the role of integrating tide-level and phenological fea
tures in vegetated tidal wetland classification, we run four classifications 
at BH with the same training samples and RF parameters but different 
input classification features: 1) the spectral bands of the median com
posite image, which serves as a reference without using either tide level 
or phenology information, 2) the spectral bands of MHTC and MLTC, 
which represents the using of only tide-level feature, 3) the spectral 
bands of CFGC and CFSC, which represents the using of only pheno
logical feature, and 4) the spectral bands of MHTC, MLTC, CFGC and 
CFSC, which serves as both using tide-level and phenological features. 
We also tested whether there would be a difference in classifications of 
using composite and original images. For this, we performed the clas
sification on the concatenated image of four original S2 images with 
different tide-level and phenological stages (Table S1). 

We developed a modified k-fold cross-validation approach to rigor
ously evaluate the performance of different classification strategies 
considering that the traditional k-fold cross-validation method has 
strongly biased accuracy estimates when the sample size is small 
(Rodriguez et al., 2009). Firstly, all samples were randomly divided into 
initial training and testing sets with a 7:3 ratio. These training samples 
were then randomly divided into k partitions (k equals 5 in this study), 
each partition combined with the initial testing set was further used 
once as the actual testing set to evaluate the classification result derived 
from the remaining k-1 partitions (i.e., actual training set). This process 

was repeated 20 times so that there are 100 (20 times k, where k equals 
5) independent evaluations to provide a robust estimate of classification 
performance. Such a strategy can guarantee the independence and 
randomness of training and testing samples, and increase the size of the 
testing set with limited total samples. One-way analysis of variance 
(ANOVA) and Tukey honestly significant difference (HSD) post-hoc test 
were final performed to determine statistically significant differences 
among classification methods. 

2.6. Testing the influence of training sample size 

We performed the MTWM-TP algorithm on BH using varying sizes of 
the training pixels from 10 to 150 for each land-cover class with a step of 
10 to examine the effects of the sample size on the classification per
formance. We firstly created a sample pool containing 200 pixels for 
each class, 30% of which were then randomly selected as test sets. Actual 
training samples were randomly collected from the remaining samples 
with an equal allocation norm. For each sample size, we performed the 
classification 100 times to reduce stochastic error. The OA and the F1 
score for each wetland type were finally evaluated to assess the 
performance. 

3. Results 

3.1. Accuracy assessment of MTWM 

The tidal wetland composition of EA was accurately mapped with 
user's and producer's accuracies exceeding 94% for all classified wetland 
types and with a high overall accuracy of 97.02% (Table 3). All F1 scores 
for the three tidal wetland classes were higher than 0.95 with less than 
0.2 differences, suggesting a good balance between commission and 
omission errors and consistent performance among tidal wetland types. 

Compared to other tidal wetland maps, MTWM has considerable 
advantages in classification accuracy (Table 4). Both Chen_MG and 
Hu_MG achieve high UA at about 93% with significantly lower PA, 
indicating more omission errors than commission errors. Murray_TF has 
much lower accuracy in mapping tidal flats than MTWM, with 68.50% 
UA and 78.50% PA. This means that Murray_TF omits some tidal flats 
and also incorrectly contains a lot of non-tidal flats areas. Globe30 has a 
high UA but the lowest PA in mapping tidal wetlands, implying a sig
nificant omission error. The relatively low F1 scores indicate that these 
existing products are limited in the balance of omission and commission 
errors. 

3.2. Spatial pattern of tidal wetlands in East Asia 

Tidal wetlands in EA in 2020 covered an area of 1,308,241 ha, 
calculated using an Albers conic equal-area projection (Fig. 6; Table 5). 
Our estimate indicates that the area varies greatly among different 
wetland types at the sub-continental scale. Unvegetated tidal flats 
covered the majority portion and were widely distributed along most 
coastlines, accounting for 89.12% of total intertidal zones (1,165,888 
ha), while salt marshes and mangroves were less prevalent. About 70% 
of tidal flats occurred in China (820,031 ha), primarily in estuaries and 
deltas with large tidal ranges and high sediment inflows (Figs. 6-7). 
There was also a large extent of tidal flats on the Korean Peninsula, with 
an area of about 42% of China's tidal flats. At the province level, Jiangsu 
had the greatest extent of China's tidal flats (251,859 ha), followed by 
Shandong (118,715 ha) and Fujian provinces (89,679 ha). Vegetated 
tidal wetlands covered an area of 142,350 ha, of which salt marshes 
accounted for the majority and mangroves only 13.70%. All mangroves 
in the study area occurred in southern China, with about 80% in 
Guangdong and Guangxi provinces (Table 5). Salt marshes were 
observed across the entire extent of East Asia except for Hainan island, 
indicating broader geographical distribution than mangroves. As the 
mouth of the Yangtze River, the largest river in Asia (Fig. 7e), Shanghai 
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Table 3 
Error matrix of validation samples for tidal wetland classification.  

Classes Reference Total UA F1 score 

Mangroves Salt marshes Tidal flats Other 

Mangroves 188 0 6 6 200 94.00% 0.96 
Salt marshes 1 496 17 9 523 94.84% 0.97 
Tidal flats 0 2 574 20 596 96.31% 0.95 
Other 2 1 21 1513 1537 98.44% 0.98 
Total 191 499 618 1548 2856   
PA 98.43% 99.40% 92.88% 97.74%    
OA       97.02%  

Table 4 
Classification accuracy of existing tidal wetland products.   

Chen_MG (mangroves) Hu_MG (mangroves) Murray_TF (Tidal Flats) Globe30 (Tidal wetlands) 

UA 93.24% 93.42% 68.50% 93.87% 
PA 84.15% 86.59% 78.50% 48.05% 
F1 Score 0.89 0.90 0.73 0.64  

Fig. 6. Distribution of tidal wetlands along the coasts of East Asia in 2020. Four panels show the distribution of tidal wetlands in (a) the Bohai Sea and the northern 
Yellow Sea, (b) the southern Yellow Sea and the East China Sea, (c) the Taiwan Strait and the northern South China Sea, and (d) the South China Sea and the Beibu 
Gulf. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 5 
Regional areas and percentages of tidal wetlands.   

Mangroves (ha) Salt marshes (ha) Tidal flats (ha) Tidal wetlands (ha) 

Korean Peninsula 0 0% 12,991.3 3.62% 345,856.5 96.38% 358,847.8 
China 19,510.5 2.06% 109,850.7 11.57% 820,031.8 86.37% 949,393.0 

Liaoning 0 0% 3319.3 3.90% 81,710.8 96.10% 85,030.1 
Hebei 0 0% 162.0 0.44% 36,305.3 99.56% 36,467.3 
Tianjin 0 0% 87.7 2.15% 3997.6 97.85% 4085.3 
Shandong 0 0% 20,759.8 14.88% 118,714.8 85.12% 139,474.6 
Jiangsu 0 0% 22,373.6 8.16% 251,858.8 91.84% 274,232.4 
Shanghai 0 0% 31,449.1 49.80% 31,707.1 50.20% 63,156.2 
Zhejiang 30.8 0.03% 20,782.0 20.97% 78,302.6 79.00% 99,115.4 

Fujian 738.3 0.75% 8643.4 8.73% 89,679.2 90.53% 99,060.9 
Guangdong 8854.4 12.13% 418.0 0.57% 63,716.5 87.30% 72,988.9 
Guangxi 6828.9 12.12% 1855.8 3.29% 47,665.4 84.59% 56,350.1 
Hainan 3058.1 15.74% 0 0.00% 16,373.7 84.26% 19,431.8 

Total 19,510.5 1.49% 122,842.0 9.39% 1,165,888.3 89.12% 1,308,240.8  
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had the greatest extent of salt marshes, accounting for 29% of China's 
salt marshes, almost double the area of the salt marshes on the Korean 
Peninsula. More than 85% of China's salt marshes occurred in warm 
temperate or northern subtropical regions such as Shanghai, Jiangsu, 
Shandong, and Zhejiang. In geographically tropical areas (south of 
Tropic of Cancer), salt marshes were replaced by mangroves in the 

intertidal environment (Fig. 7g and i), such as in Guangdong, Guangxi, 
and Hainan (Table 5). 

3.3. Comparison of different classification methods 

We found statistically significant variation in accuracy among 

Fig. 7. Tidal wetland maps overlaid on the LETC images (R: band8, G: band11, B: band4) for nine locations: (a) Sinan County in South Korea; (b) Estuary of Taeryong 
River in North Korea; (c) Estuary of Liao River in Liaoning, China; (d) Yellow River Delta in Shandong, China; (e) Jiuduansha in Shanghai, China; (f) Estuary of 
Jiulong River in Fujian, China; (g) Shenzhen Bay in Guangdong, China; (h) Dandou Sea in Guangxi, China; (i) Maowei Sea in Guangxi, China. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Classification accuracies of five classification strategies for mapping (a) mangroves and (b) salt marshes. The violins show the probability density distribution 
of the accuracy. White points within the violins mark the median. Error bar within the violins represents ±1 standard deviation of the mean. Different letters indicate 
significant differences between classification strategies (one-way ANOVA, Tukey HSD post-hoc test, p < 0.05). 
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classification methods in mapping both mangroves (F = 102.85, p <
0.001) and salt marshes (F = 380.25, p < 0.001). Of the features 
investigated, classification without tide-level or phenological features 
indicated the poorest performance in mapping both mangroves and salt 
marshes revealed by the Tukey HSD post-hoc test (Fig. 8). It failed to 
properly distinguish tidal wetlands from terrestrial landscape, especially 
for salt marshes (Fig. 9b1). Introducing tide level feature in the classi
fication significantly improved the accuracy by separating tidal wet
lands from inland areas, but some confusion between mangroves and 
salt marshes remained, which mainly occurred in the mangrove seed
lings and mangrove edges (Fig. 9b2). The use of phenological features 
reduced the proportion of mangrove seedlings classified as salt marshes, 
but the inland errors reappeared (Fig. 9b3). Compared to only using tide 
level or phenological features, integrating tide-level and phenological 
features had a statistically significant accuracy improvement of 
0.05–0.07 (F1 score) in mapping mangroves and salt marshes (Fig. 8; 
Fig. 9b4). In the case of using both tide-level and phenological features, 
the original S2 image just achieved a slightly higher F1 score (~0.01) in 
mapping both mangrove forests and salt marshes than composite images 
(Fig. 8; Fig. 9c), suggesting that composite images could achieve com
parable accuracy with original high-quality images. 

3.4. Sensitivity to training sample size 

With the increase of training samples, the OA and F1 score of each 
class increased at first and then saturated (Fig. 10). The standard devi
ation of accuracy significantly decreased with the increases of sample 
size, suggesting that using a large sample size could achieve stable 
performance. Even with a very limited sample size (10 training pixels for 
each class), MTWM-TP still performed well, with OA of 84% and F1 
scores over 0.8 for each tidal wetland. Tidal flats had the highest F1 
score across all sample sizes, especially when the sample size was 
limited. The accuracy of each wetland class got closer as the sample size 
increases. 

4. Discussion 

This study presents a novel classification algorithm for mapping TWC 
based on multi-spectral time series, which uses spectral differences of 
tidal wetlands between high- and low-tide levels to separate them from 
adjoining terrestrial landscapes and uses spectral characteristics of 
growing and dormant seasons to distinguish mangroves and salt 
marshes. The derived 10-m resolution map of TWC for EA proves its 
great potential for large-scale applications. 

4.1. Composite images with different tide levels and phenological stages 

High-quality image composites are critical for a variety of applica
tions (Roberts et al., 2017). For remote sensing of coastal environment 
and vegetation, a major challenge lies in generating noise-free com
posite images with different tide levels and phenological stages. Instead 
of compositing all the available images, as performed by previous 
studies (Jia et al., 2021; Murray et al., 2019; Zhao et al., 2020), this 
study developed a new method compositing automatically identified 
images acquired during high- and low-tide levels and during growing 
and dormant seasons (see Section 2.3.2 and 2.3.3). 

Compositing the entire time-series stack of optical imagery without 
any filter is particularly sensitive to clouds or other noise. Although 
commonly used optical imagery (e.g., MODIS, Landsat, and Sentinel-2) 
mostly provides cloud mask bands, some thin clouds on coastal areas 
remain due to their poor performance and variations among data 
sources. For instance, the S2 cloud mask has many cloud detection 
omissions due to the lack of a thermal infrared band, introducing noise 
into S2 composites (Coluzzi et al., 2018). Even for cloud cover free 
Synthetic Aperture Radar data, compositing all available images would 
still reduce the quality of the composited image due to accumulated 
speckle noise (Lopez-Martinez and Fabregas, 2003), which affects the 
classification results to a certain extent. To alleviate the influence of 
image noise, we performed the MaxVC algorithm on the selected low- 
tide/high-tide images to obtain the noise-free LETC/HETC images. 
Using the selected image instead of all images reduces the probability of 

Fig. 9. Classification results for BH with the same training samples overlaid on (a) the median composite image (R: band8, G: band11, B: band4) by using (b1) usual 
spectral bands without considering either tide level or phenology, (b2) tide level, (b3) phenology, (b4) both tide level and phenology from composite image, and (c) 
both tide level and phenology from original S2 images (see Table S1 for the specific images). The number in brackets of legend indicates the standard deviation of 
accuracy for each type determined using the modified 5-fold cross-validation. Dashed boxes mark some obvious classification errors. 
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image noise occurrence while ensuring the capture of the fully tidal flats, 
as shown in Fig. 11. The high quality of composite image benefits the 
classification and help achieve similar performance compared with 
classification on the clear-sky original images, which are almost un
available in practice (Figs. 8–9). 

Our proposed method of generating CFGC and CFSC images is in
dependent of investigating the exact dates of growing and dormant 
seasons. We used the median of VIs instead of the maximum value to 
composite the time-series stack of images for generating the CFGC and 
CFSC images because the maximum value reduces the inter-class 
greenness difference. For example, dense salt marshes may have 
similar greenness as mangrove seedlings during their peak growth 
period. In contrast, the median value (calculated over time) can capture 
the difference in greenness between deciduous marshes and evergreen 
mangroves, whatever the canopy density. We have not used the 
phenological parameters (such as the start of season (SOS) and end of 
season) as classification variables to classify wetland vegetations, as 
performed by Sun et al. (2021), because several factors need to be 

considered. First, determining phenological parameters requires enough 
cloud-free and low-tide observations to reconstruct the full life cycle of 
vegetation greenness, limiting its application in cloudy areas such as 
tropical intertidal zones (Zeng et al., 2020). Besides, extracting pheno
logical parameters is highly sensitive to curve fitting methods. Previous 
studies have reported that the difference in SOS derived by different 
curve fitting methods can exceed 60 days (White et al., 2009). Thus, any 
errors in phenological parameter extracting would introduce uncer
tainty into the final classification results. Furthermore, extracting 
phenological parameters for evergreen vegetation (Caparros-Santiago 
et al., 2021) such as mangroves is expected to be invalid due to insig
nificant greenness seasonality. In contrast, our method using the spectral 
bands during different phenological periods to amplify spectral sepa
ration between evergreen mangroves and deciduous salt marshes, which 
is robust to missing data and eliminates uncertainty caused by curve 
fitting methods. 

Another major flaw of phenological parameter methods is their 
inability in large-scale applications. Since phenological parameters 

Fig. 10. Sensitivity of the accuracy to training pixel size. (a) Variations in OA; (b) Variations in F1 score of three tidal wetland classes. The shaded areas refer to ±1 
standard deviation. 

Fig. 11. Comparison of LETC images generated using (a) all S2 observations and (b) automatically selected low-tide observations with the same cloud masking 
procedure (Fmask algorithm) at Yangtze River Estuary. 
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(such as SOS) vary with climate and latitude (Caparros-Santiago et al., 
2021), their use in classification can be highly uncertain and requires a 
comprehensive sample set to take such phenology differences into ac
count. To examine the generality of our phenology method, we con
ducted an additional experiment that compared the key phenology dates 
and spectral characteristics during growing seasons for salt marshes in 
two local sites with distinctly different climates and latitudes (Fig. 9b). 
We observed that the growing season of salt marshes in the high-latitude 
Taeryong River Estuary was delayed by 15 to 20 days compared to low- 
latitude BH in 2020 (Fig. 12a). In contrast, the spectral characteristics of 
salt marshes during growing seasons in these two sites were similar, 
suggesting the same vegetation type at different places have similar 
spectral characteristics during their respective phenological stages. 
Consequently, using the spectral characteristics of different phenolog
ical stages instead of specific phenology dates has great potential in 
large-scale mapping or simultaneous classification for two places with 
different latitudes or climates. 

4.2. Advantages of MTWM compared to existing products 

Visual comparisons between MTWM and existing tidal wetland 
products are shown in Fig. 13. The difference in the total area of tidal 
flats between MTWM and Murray_TF was more than 360,000 ha 
(Table 6). Such a huge difference is mainly caused by different consid
erations of tide-level information. Murray_TF used quantile composites 
of water indices as predictor variables in the RF classifier to account for 
tidal dynamics for each pixel. However, as aquaculture ponds and some 
inland lakes have dry periods (Pekel et al., 2016), the underlying soils 
would be exposed and thus be incorrectly detected as tidal flats by the 
quantile composite of the water indices. Additionally, large areas of salt 
marshes were misclassified as tidal flats in Murray_TF due to their low 
greenness and similar inundation frequency to tidal flats. Moreover, 
since the lowest tide image was not used, a lot of lower tidal flats were 
not captured in Murray_TF (Fig. 13a). In contrast, inland pixels were 
masked out in MTWM by using the MSE, and all lower tidal flats 
observed by satellites were captured using 10-times independent RF 
classification on LETC images. 

The mangrove area derived from MTWM is lower than that of 
Chen_MG but higher than that of Hu_MG (Table 6). Both Chen_MG and 
HU_MG represent the year of 2015 while the MTWM product is for 2020, 
so some differences in the area were expected. However, the visual 
comparison shows that these differences are unlikely to be attributed to 
actual changes but rather due to classification errors in the products 

(Fig. 13b). Mangroves in Chen_MG were mapped by identifying ever
green pixels with a dense canopy and tidal inundation. This approach 
could detect periodically flooded low-stand mangroves, as these man
groves are unique evergreen woody vegetation in the intertidal envi
ronment which would be submerged by high tide. However, for high- 
stand mangroves that are not fully submerged by tides, their similar 
greenness frequencies and canopy cover with inland evergreen cause 
significant omission errors (Table 4). For example, a part of high-stand 
fringing mangroves that occur along the upper tidal channel were 
omitted in Chen_MG (Fig. 13b). In contrast, MTWM could detect these 
high-stand mangroves by combining spectral characteristics under 
different tide levels instead of directly recognizing the submerged state 
of mangrove canopies. Hu_MG used the quantile composites of spectral 
reflectance to separate mangroves from other vegetation types such as 
cropland and terrestrial forests. We observed obvious errors of omission 
for high-stand mangroves in Hu_MG (Fig. 13b). This is likely due to the 
similar spectral quantile between mangroves and other evergreen forest 
types. Quantile composites, used in Hu_MG, cannot detect the pheno
logical difference between similar landscape such as mangroves and 
inland evergreen forests because these landscapes have similar SI 
quantiles (e.g., maximum value and median value) over a year, but the 
date of reaching the specific greenness (e.g., the peak) is different. The 
quantile composite method cannot reflect this temporal information and 
therefore confuses phenologically similar vegetation types. In this re
gard, phenological information used in our method was based on 
automatically selected images of growing and dormant seasons. It also 
should be noted that both Chen_MG and Hu_MG were mapped using 
Landsat imagery with 30-m spatial resolution, which is too coarse to 
capture the detailed feature of mangrove forests, such as tidal channels 
and canopy gaps (Fig. 13b). 

Larger tidal wetland areas were detected by our map than Globe30 
(Table 6). The difference is primarily due to methodological approaches 
such as the use of LETC images. Although including the wetland layer, 
Globe30 has not subdivided the wetland category into specific types 
such as mangroves, salt marshes and tidal flats (Fig. 13c). Global land- 
cover products tend to lack specific design for intertidal environments 
and thus limit to detection of large areas of submerged salt marshes, low- 
stand mangroves and tidal flats. By overlaying Chen_MG and Murray_TF, 
we observed that some pixels were classified as multiple categories, 
illustrating errors presented in each map would be compounded in the 
final multi-class maps if overlaying multi-source wetland datasets. As 
such, mapping tidal wetland composition is necessary for practical 
applications. 

Fig. 12. Comparison of phenology features between Beihai, China (21.6◦N) and Taeryong River Estuary, North Korea (39.6◦N). (a) Temporal profiles of NIRv in 2020 
from 100 random-collected salt marshes samples for Beihai and Taeryong River Estuary. Each profile was obtained by applying Savitzky-Golay smooth technology for 
showing phenological dynamics. The shaded area refers to ±1 standard deviation. Detected starts and ends of the growing seasons using the 20% thresholding 
method are shown as the points. (b) Spectral characteristics of salt marshes during the detected growing seasons. The reflectance values were calculated from the 
median composite images of original Sentinel-2 images with NIRv value larger than top the 20% thresholds. The violins show the probability density distribution of 
the spectral reflectance. Horizontal lines within the violins indicate the mean spectral reflectance. 
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4.3. Potential application and future work 

Our results provide a tidal wetland composition map at 10-m spatial 
resolution for EA. The multiple classes and high resolution, together 
with the sub-continental extent of our maps, makes it useful for planners 
and policymakers undertaking coastal natural resources surveys and for 
ecologists requiring prompt and accurate information on multi-class 
tidal wetland cover as inputs into studies spanning a wide range of 
purposes, including biological invasion, coastal biogeography, biodi
versity, migratory bird habitats, and blue carbon. In addition, the tem
perature, precipitation, and latitudinal gradients within the study area 
provide a natural laboratory (Frenne et al., 2013) for further studies on 
understanding the response of tidal wetlands to macroclimate change. 

There are some potential applications of our methods in relevant 
studies. First, tidal extent and shorelines with different tide levels could 
be estimated using our image compositing methods. Similar to the 
extraction of the highest shoreline (i.e., MSE), we can also delineate the 
median high tide level, median tide level, median low tide level and 
lowest tide level to monitor tidal dynamics by separating water and land 
from MHTC, MLTC, median composite image and LETC images 
(Fig. 14a). Besides this, the stable statistical relationships between SIs 
(NDWI and NDVI) of tidal flats and actual tidal height shown in Fig. 3, 
combined with the delineated multiple shorelines discussed above, 
imply using the SIs of the tidal flats as a variable could help retrieve the 
intertidal topography. Additionally, although our image compositing 
methods were originally conceived for S2 data, they can also be used for 
other multi-spectral satellite data, such as Landsat and MODIS data, and 
thus can monitor the long-term trajectory of the sea level. 

Second, the high-stand and low-stand mangroves could be separated 
based on the spectral difference. Because the spectral reflectance of 
high-stand mangroves is less affected by tides than those of low-stand 
mangroves (Fig. S2), we can input tide level features to the RF classi
fier to divide mangroves into high-stand and low-stand mangrove types. 
A straightforward way is to overlap the MSE on the vegetated wetland 
maps to detect which mangroves would be submerged by the highest 
tide level (Fig. 14b). This may be important for ecological researches, as 
the physiological traits of mangroves are highly regulated by tidal 

Fig. 13. Comparison of tidal wetland maps for three locations. (a) Yancheng in Jiangsu, China; (b) Dongzhai Harbor in Hainan, China; (c) Zhangjiang Estuary in 
Fujian, China. The yellow lines in each panel are the extracted wetland boundary of corresponding data, overlaid on a standard false colour of LETC. The background 
images in (b) are visualized using NIR, SWIR and Red as RGB for better visualization of mangroves. Background images in Murray_TF, Hu_MG and Chen_MG are 
Landsat LETC images in 2015 for matching the period of these wetland maps. Chen_Murray represents the combination of Chen_MG and Murray_TF. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 6 
Area comparisons between our tidal wetland map and publicly available data.   

MTWM Hu_MG Chen_MG Murray_TF Globe30 

Mangrove 
area (ha) 

19,510.5 18,091.2 21,854.2   

Tidal flat 
area (ha) 

1,165,888.3   1,531,069.6  

Tidal 
wetland 
area (ha) 

1,308,240.8    716,140.6  
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flushing patterns. 
The third potential application lies in applying our methods to other 

land-cover types. The method to composite images with different tide 
levels provided in this study can be extended to inland water bodies with 
dynamic water levels like seasonal lakes, ponds, and reservoirs. Like
wise, CFGC and CFSC may also be helpful in distinguishing other 
vegetation types such as evergreen forests and deciduous forests, as well 
as croplands and grasslands. 

Due to the supervised way, the main limitation in this study was the 
collection process of training samples. While the sensitivity test in
dicates MTWM-TP still performs well even with limited training sam
ples, the hand-collecting process is still time-consuming for such a sub- 
continental-scale work. Recently, increasing studies (e.g., Lu and Wang, 
2021; Yan and Niu, 2021) have explored automatic methods to collect 
training samples, but they require existing products as a reference and 
thus cannot be applied to land-cover types without specific existing 
products. Future research efforts should focus on developing fully 
automatic methods to collect and expand training samples. Transferring 
training samples from one period to another to track the temporal 
changes of tidal wetlands also deserves to be further explored. Addi
tionally, MTWM-TP could be further enhanced by using start-of-the-art 
deep learning classifiers such as U-Net (e.g., Konapala et al., 2021) and 
Stacked AutoEncoder (e.g., Tian et al., 2020). 

5. Conclusion 

This study proposed a robust, accurate and general classification 
algorithm — Multi-class Tidal wetland Mapping by integrating Tide- 
level and Phenological features (MTWM-TP) — to overcome the chal
lenges of tide fluctuance, cloud contamination, and spectral similarity in 
satellite remote sensing of tidal wetlands, demonstrating the advantage 
of integrating tide-level and phenological features in mapping tidal 
wetland composition. MTWM-TP excluded inland areas and distin
guished deciduous salt marshes and evergreen mangroves by using a 
developed image compositing method that generates noise-free images 
with different tide levels and phenological stages without dependence 
on prior knowledge. The robustness and generality of MTWM-TP were 
validated across the entire coastal zone of East Asia using time-series 
Sentinel-2 scenes, demonstrating its ability in large-scale applications. 
The derived 10-m resolution multi-class tidal wetland map provides the 
first spatially explicit estimate of tidal wetland composition (mangroves, 
salt marshes, and tidal flats) for East Asia. Both quantitative accuracy 
assessment and visual comparisons to existing products suggest that this 
sub-continental-scale tidal wetland extent data achieves superior accu
racy and therefore serves as an essential reference for coastal studies 
such as coastal ecosystem management, blue carbon restoration, and 
biodiversity protection. Running MTWM-TP for a long-term monitor 
project to detect spatiotemporal trajectory of tidal wetland composition 

is planned for the next step. 
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