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ORIGINAL ARTICLE

Larval settlement and metamorphosis of the invasive biofouler,Mytilopsis sallei,
in response to ions and neuroactive compounds
Jian Hea, Jian Fei Qib, Yan Qiu Huanga, Yan Qing Shenga, Pei Sua,c, Dan Qing Fenga,c and Cai Huan Kea,c

aState-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University,
Xiamen, China; bDepartment of Aquaculture, Fisheries Research Institute of Fujian, Xiamen, China; cFujian Collaborative Innovation Center
for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, China

ABSTRACT
In this study, we investigated larval settlement and metamorphosis of the invasive fouler
Mytilopsis sallei exposed to ions, neurotransmitters and blockers inhibiting their respective
actions. Excess K+ effectively induced larval settlement and metamorphosis, while the
voltage-gated potassium channel blocker, TEA, significantly inhibited the K+ inducing effect,
suggesting that a voltage-gated potassium channel may play a role in M. sallei settlement
and metamorphosis. Excess Ca2+ did not induce larval settlement and metamorphosis, while
Mg2+ and NH+

4 inhibited both. Among the neurotransmitters, GABA did not induce M. sallei
larvae to settle and metamorphose at 10−6–10−4 M concentrations, while 5 × 10−5–10−4 M L-
DOPA (a dopamine precursor), 5 × 10−6–10−4 M dopamine (an epinephrine precursor) and
5 × 10−5–10−4 M epinephrine significantly induced larval settlement and metamorphosis,
indicating the presence of an epinephrine biosynthesis pathway in this species and its role in
the regulation of larval settlement and metamorphosis. Furthermore, the inducing effect of
dopamine on M. sallei settlement and metamorphosis was inhibited by SCH23390, a selective
D1 dopamine receptor antagonist. Similarly, the inducing effect of epinephrine was inhibited
by chlorpromazine, an α1-adrenergic antagonist, suggesting that the D1 dopamine receptor
and α1-adrenoceptor may play active roles in the processes of settlement and
metamorphosis of M. sallei larvae. Here, we have shown for the first time the responses of
larval settlement and metamorphosis of dreissenid mussels to pharmacologically active
compounds. The results provide new insights into the biochemical mechanisms underlying
larval settlement and metamorphosis of M. sallei, which may be useful to develop effective
strategies to control this invasive fouling organism.
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Introduction

Many marine invertebrate species have larvae that
remain planktonic for various durations ranging from
minutes to months. Then, they settle and metamor-
phose into benthic juveniles (Hadfield & Paul 2001;
Clare 2011). Larval settlement and metamorphosis are
not only critical for juvenile growth, but also for adult
reproduction (Pawlik 1992), affecting population and
community dynamics (Connell 1985). A number of
studies have shown that natural and artificial chemical
cues influence the larval settlement andmetamorphosis
of marine invertebrates (Crisp 1984; Pawlik 1992; Had-
field & Paul 2001; Prendergast 2010). However, only a
few natural chemical inducers that influence larval
settlement andmetamorphosis have been fully isolated
and chemically characterized (Yvin et al. 1985; Pawlik
1986; Tsukamoto et al. 1999; Swanson et al. 2004;
Dreanno et al. 2006; Tebben et al. 2011). Thus, further

understanding of the mechanisms that regulate larval
settlement and metamorphosis has been limited.
Alternatives to natural cues are pharmacological com-
pounds such as agonists and antagonists capable of
activating or blocking specific signal transduction path-
ways. Such studies could also help understanding of the
molecular mechanisms associated with larval settle-
ment and metamorphosis (Kimura et al. 2003; Yang
et al. 2008, 2011, 2013; Young et al. 2011, 2015; Gohad
et al. 2012; Wang et al. 2015). Furthermore, the infor-
mation is also important for identifying potential
inducers and inhibitors of larval settlement and meta-
morphosis for application in aquaculture (Young et al.
2011; Yang et al. 2013; Wang et al. 2015) and antifouling
(Qian et al. 2013; Almeida & Vasconcelos 2015).

A number of compounds have been found to
affect the settlement and metamorphosis of marine
invertebrates. These include catecholamine, choline

© 2017 Informa UK Limited, trading as Taylor & Francis Group

CONTACT Dan Qing Feng dqfeng@xmu.edu.cn State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of
Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
This article was originally published with an error. This version has been corrected. Please see Erratum (https://doi.org/10.1080/17451000.2017.1353325).

MARINE BIOLOGY RESEARCH, 2017
VOL. 13, NO. 6, 645–658
https://doi.org/10.1080/17451000.2016.1274826

D
ow

nl
oa

de
d 

by
 [

X
ia

m
en

 U
ni

ve
rs

ity
] 

at
 1

0:
44

 1
6 

N
ov

em
be

r 
20

17
 

http://crossmark.crossref.org/dialog/?doi=10.1080/17451000.2016.1274826&domain=pdf
mailto:dqfeng@xmu.edu.cn
https://doi.org/10.1080/17451000.2017.1353325
http://www.tandfonline.com/loi/smar20
http://www.tandfonline.com


derivatives, amino acids and derivatives, and inorganic
ions in bivalves (Yang et al. 2013, 2014; Wang et al.
2015; Young et al. 2015), barnacles (Gohad et al.
2012; Jin et al. 2014), bryozoans (Yu et al. 2007), poly-
chaetes (Jin & Qian 2004) and ascidians (Kimura
et al. 2003; Zega et al. 2005). However, the responses
of larvae to pharmacological compounds are highly
variable among species. For instance, γ-aminobutyric
acid (GABA) was shown to induce larval metamorpho-
sis in the mollusc Mytilus unguiculatus Valenciennes,
1885 (Yang et al. 2013), but had no significant
effect on the larval metamorphosis of Ostrea angasi
G.B. Sowerby II, 1871, another mollusc (O’Connor
et al. 2009).

Invasive dreissenid mussels are considered serious
pests because they have caused adverse ecological
impacts and economic problems by invading new
environments and fouling submerged structures
(Higgins & Zanden 2010; Kennedy 2011; Matthews
et al. 2014). It has been suggested that dreissenids
are transported on ship hulls where they attach or as
planktonic larvae in ballast water. When they are thus
introduced to new regions, they establish as fouling
organisms (Morton 1981; Johnson & Carlton 1996;
Chu et al. 1997). Therefore, it is critical to understand
the population recruitment of invasive dreissenids to
better control these nuisance mussels. However, thus
far, the effects of pharmacological compounds on the
larval settlement and metamorphosis of invasive dres-
senids have not been investigated.

The Caribbean false mussel Mytilopsis sallei (Récluz,
1849) is an invasive dreissenid species that was intro-
duced into the Pacific via the Panama Canal (Morton
1981). High-density populations of this species have
been found in Southeast Asia (Tan & Morton 2006;
Liao et al. 2010; Wong et al. 2011), including the south-
eastern coast of mainland China (Cai et al. 2006). This
dreissenid species has been reported to impact the
community structure of fouling macrofauna and
reduce species diversity during the summer periods
in Yundang Lagoon, Xiamen, China (Cai et al. 2014).
In this study, we examined the responses of larval
settlement and metamorphosis of M. sallei to inorganic
ions, neurotransmitters and blockers inhibiting their
respective actions.

Material and methods

Larval culture

Adults of Mytilopsis sallei were collected from the sub-
merged ropes of a fish farm in Maluan Bay, Xiamen,

China (24°33′N, 118°01′E). Spawning induction and
larval culture were carried out in the laboratory as
described by He et al. (2015). Briefly, mussels were
exposed to air overnight and then placed in warm fil-
tered seawater (UV-treated, temperature 32°C,
20 psu). The seawater was aerated vigorously during
spawning induction. Fertilized eggs were washed
through a 100-μm mesh net and subsequently a 30
μm mesh net to remove extraneous tissue and
excess sperm. Embryos and larvae were incubated
at a density of 3–5 individuals ml−1 in filtered sea-
water (FSW, 20 psu) at 27 ± 1°C. The water was
aerated gently and changed daily. After incubation
for 24 h, veliger larvae were obtained and fed with
Dicrateria zhanjiangensis Hu (Chrysophyta) at 0.5–1 ×
105 cells ml−1 day−1. After 6–8 days of incubation,
pediveliger larvae (Figure 1a) with a shell length of
232.8 ± 37.1 μm were harvested using a 200 µm
mesh net and used for the bioassays. Pediveliger
larvae of M. sallei were able to swim in the seawater
and crawl and explore on the substrate for short
intervals with competence to settle and metamor-
phose (He et al. 2015).

Treatment solutions

The alkali ions tested in the study included potassium,
calcium, magnesium and ammonium. The neurotrans-
mitters tested were GABA, L-3,4-dihydroxyphenylala-
nine (L-DOPA), dopamine and epinephrine, which
have been reported to affect larval settlement and
metamorphosis in many species of marine invert-
ebrates (Zega et al. 2005; Yu et al. 2007; Yang et al.
2013, 2014; Wang et al. 2015). The blockers used in
the study included tetraethylammonium (TEA)
that blocks the potassium channel, L-3,4-dihydroxyphe-
nylalanine R(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-
2,3,4,5-tetrahydro-1H-3-benzazepine (SCH23390) and
sulpiride that block dopamine receptors, and
chlorpromazine, yohimbine, atenolol and butoxamine
that block epinephrine receptors. The names, manu-
facturers, stock concentrations and test concentrations
of the compounds are shown in Table I. Stock solutions
of alkali ions, TEA, dopamine hydrochloride, GABA,
yohimbine hydrochloride and chlorpromazine hydro-
chloride were prepared by directly dissolving them in
FSW (20 psu), while stock solutions of L-DOPA, epi-
nephrine, SCH23390, sulpiride, atenolol and butoxa-
mine were prepared by dissolving them in FSW with
0.1 ml of 1 M HCl. For each compound, stock solution
and test solutions were freshly prepared prior to the
experiments. Test solutions were prepared by dilution
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of stock solutions with FSW to achieve the desired con-
centrations (Table I).

Bioassays of larval settlement and
metamorphosis

The bioassays were conducted in sterile six-well poly-
styrene petri plates. Three replicates were set up for
each treatment. In each replicate, 30–40 pediveliger
larvae of Mytilopsis sallei were added per well contain-
ing 10 ml of a test solution. A previous pilot study had
shown that larval density in the range of 1–6 larvae
ml−1 had no significant effect on larval settlement,
metamorphosis and mortality in M. sallei. Petri plates
were maintained at 27°C in the dark during the exper-
iments. A schematic presentation of the experimental
design is shown in Figure 2.

To bioassay alkali ions, pediveligers were continu-
ously exposed to the test solutions of alkali ions
throughout the experimental period. Controls (10 ml
FSW) were used in all bioassays. To understand the
effects of KCl on settlement and metamorphosis of
M. sallei larvae, the larval response to TEA, a potassium
channel inhibitor, was investigated. The pediveliger
larvae were placed in FSW containing 9 mM KCl and
TEA at different concentrations. In the control, larvae
were exposed to FSW containing only 9 mM KCl. In
the experiments with alkali ions and TEA, larval settle-
ment, metamorphosis and mortality were observed
after 24, 48 and 72 h of exposure through a Leica
microscope (DM IL LED) to test solutions.

In the bioassays of neurotransmitters (including
GABA, L-DOPA, dopamine and epinephrine), pediveli-
gers were exposed to the test solutions of neuroactive

compounds for 2 h, then rinsed three times with FSW
and finally transferred to wells containing 10 ml FSW
each. After 12, 24 and 48 h of incubation, larval settle-
ment, metamorphosis and mortality were observed.
Control larvae exposed to 10 ml FSW throughout the
experiment were also observed at the same time points.

To explore the involvement of dopamine receptors
and adenoreceptors in M. sallei larval settlement and
metamorphosis, larval responses to two dopamine
receptor antagonists (SCH23390 and sulpiride) and
four adrenergic antagonists (yohimbine, chlorproma-
zine, atenolol and butoxamine) were also investigated.
In each treatment, larvae were first incubated in 9 ml
antagonist solutions for 15 min. Then, 1 ml dopamine
stock solution (10−3 M) was added to each solution
with dopamine receptor antagonists, and 1 ml epi-
nephrine stock solution (10−3 M) was added to each
of the adrenergic antagonists solutions so that the
final concentration of both compounds was 10−4 M.
After a 2 h exposure, larvae were rinsed three times
in FSW and transferred to wells containing 10 ml
FSW. Control larvae were exposed to 10−4 M dopamine
or epinephrine for 2 h and then transferred to FSW.
After 12, 24 and 48 h of incubation, larval settlement,
metamorphosis and mortality were observed.

According to the descriptions in the relevant litera-
ture (Bonar et al. 1990; Ke et al. 1994; Beiras &
Widdows 1995; García-Lavandeira et al. 2005; Grant
et al. 2013), larval settlement was confirmed by crawling
with an extended foot or attaching by byssus while the
velum is absorbed (Figure 1b,c); larval metamorphosis
was confirmed by loss of the velum, the appearance of
mature gill filaments and the appearance of a shell mor-
phologically similar to that of adult mussels (Figure 1d,

Figure 1. Mytilopsis sallei pediveligers that were swimming (a, competent to settle and metamorphose), settled (b, vertical view; c,
lateral view), metamorphosed (metamorphosed into plantigrade: d, vertical view; e, lateral view) and dead (f). Abbreviations: b,
byssus; f, foot; v, velum. Arrows indicate gill filaments. Scale bar: 100 μm.
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e); larvae that showed no signs of movement of the
velum, foot, or gut while the tissue inside the shell
became ulcerated were considered dead (Figure 1f).

Statistical analysis

Results were analysed with SPSS 17.0 software. Percen-
tages of larval settlement, metamorphosis and mor-
tality were arcsine-transformed prior to analysis by a
one-way analysis of variance (ANOVA) with Tukey’s
HSD. The significance level was set at P < 0.05.

Results

Larval settlement and metamorphosis in
response to alkali ions

The effects of alkali ions on larval settlement and meta-
morphosis of Mytilopsis sallei are shown in Figure 3.
Larval settlement was significantly induced by 6 and
9 mM K+ after a 72 h exposure. The treatments at 6–
12 mM K+ concentrations also exhibited significantly
higher percentages of larval metamorphosis than the
control after 24, 48 and 72 h. However, when the K+

concentration was as high as 15 mM, larval settlement
was inhibited after a 72 h exposure (30% vs. 47.8% in

the control). In each Ca2+ treatment (10–25 mM), the
percentages of larval settlement and metamorphosis
did not significantly differ from the control. Mg2+ inhib-
ited settlement and metamorphosis of M. sallei larvae
at concentrations of 30 and 50 mM. The inhibitive
effects on larval settlement and metamorphosis were
also observed for NH+

4 with concentrations above
10 mM. Meanwhile, exposure to NH+

4 higher than
10 mM caused a significant increase in mortality, indi-
cating that NH+

4 inhibited M. sallei settlement and
metamorphosis through acute toxicity.

Larval settlement and metamorphosis responses to
the voltage-gated potassium channel inhibitor, TEA,
are shown in Figure 4. Compared to the control (FSW
containing only 9 mM KCl), treatments of 5 × 10−5

and 10−4 M TEA (both mixed with 9 mM KCl) signifi-
cantly decreased the percentages of larval settlement
and metamorphosis, suggesting that the inducing
effects of excess K+ could be inhibited by TEA concen-
trations above 5 × 10−5 M concentrations.

Larval settlement and metamorphosis in
response to neuroactive compounds

The effects of neurotransmitters including GABA,
L-DOPA, dopamine and epinephrine on larval

Table I. Stock and test concentrations of the chemical compounds assayed.
Chemical compound Manufacturer Stock concentration (M) Test concentration (M)

KCl SCRC 0.15 0.003 0.006 0.009
(Shanghai, China) 0.012 0.015

CaCl2 SCRC 0.25 0.01 0.015 0.02
(Shanghai, China) 0.025

MgCl2 SCRC 0.5 0.001 0.01 0.03
(Shanghai, China) 0.05

NH4Cl SCRC 0.5 5 × 10−4 1 × 10−3 1 × 10−2

(Shanghai, China) 5 × 10−2

TEA Sigma 10−3 1 × 10−5 5 × 10−5 1 × 10−4

(St Louis, MO, USA)
Epinephrine Sigma 10−3 1 × 10−6 5 × 10−6 1 × 10−5

(St Louis, MO, USA) 5 × 10−5 1 × 10−4

Dopamine Sigma 10−3 1 × 10−6 5 × 10−6 1 × 10−5

hydrochloride (St Louis, MO, USA) 5 × 10−5 1 × 10−4

L-DOPA Sigma 10−3 1 × 10−6 5 × 10−6 1 × 10−5

(St Louis, MO, USA) 5 × 10−5 1 × 10−4

GABA Sigma 10−3 1 × 10−6 5 × 10−6 1 × 10−5

(St Louis, MO, USA) 5 × 10−5 1 × 10−4

SCH23390 Sigma 10−3 1 × 10−6 5 × 10−6 1 × 10−5

(St Louis, MO, USA) 5 × 10−5 1 × 10−4

Sulpiride TCI 10−3 1 × 10−6 5 × 10−6 1 × 10−5

(Toshima, Japan) 5 × 10−5 1 × 10−4

Yohimbine Sigma 10−3 1 × 10−6 5 × 10−6 1 × 10−5

hydrochloride (St Louis, MO, USA) 5 × 10−5 1 × 10−4

Chlorpromazine Sigma 10−3 1 × 10−6 5 × 10−6 1 × 10−5

hydrochloride (St Louis, MO, USA) 5 × 10−5 1 × 10−4

Atenolol Sigma 10−3 1 × 10−6 5 × 10−6 1 × 10−5

(St Louis, MO, USA) 5 × 10−5 1 × 10−4

Butoxamine Sigma 10−3 1 × 10−6 5 × 10−6 1 × 10−5

(St Louis, MO, USA) 5 × 10−5 1 × 10−4

TEA, tetraethylammonium; L-DOPA, L-3,4-dihydroxyphenylalanine; GABA, γ-aminobutyric acid; SCH23390, R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,
4,5-tetrahydro-1H-3-benzazepine; SCRC, Sinopharm Chemical Reagent Co. (Shanghai, China); Sigma, Sigma Chemical Co. (St Louis, MO); TCI, Tokyo Chemical
Industry Co. (Toshima, Japan).
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settlement and metamorphosis of Mytilopsis sallei are
shown in Figure 5. When treated with 10−6–5 ×
10−5 M GABA, larval settlement and metamorphosis
did not differ significantly from the control.
However, at a higher concentration of 10−4 M, GABA
inhibited larval settlement and metamorphosis and
displayed lethal toxicity. At 5 × 10−5 and 10−4 M L-
DOPA, larval settlement and metamorphosis were sig-
nificantly higher when compared to the control. Fur-
thermore, treatment with 10−5 M L-DOPA increased
larval settlement when compared to the control at
48 h, suggesting inductive effects of L-DOPA on
M. sallei settlement and metamorphosis. For dopa-
mine, significant inducing effects on settlement and
metamorphosis of M. sallei larvae were found at con-
centrations from 10−5 to 10−4 M. In the case of epi-
nephrine, treatments at 5 × 10−5 and 10−4 M
concentrations induced larval settlement and

metamorphosis significantly. Moreover, treatments of
5 × 10−6 and 10−5 M epinephrine also significantly
induced larval metamorphosis at 48 h.

Larval settlement and metamorphosis in response
to two dopamine receptor antagonists (SCH23390
and sulpiride) in the presence of 10−4 M dopamine
are shown in Figure 6. When compared to the
control, significantly lower percentages of larval settle-
ment and metamorphosis were observed after treat-
ments with SCH23390 at concentrations ranging from
10−5 to 10−4 M, indicating that the inducing effects of
10−4 M dopamine could be inhibited by SCH23390. In
the case of sulpiride, no significant differences in the
percentages of settlement and metamorphosis were
evident between each treatment with sulpiride and
the control, suggesting that sulpiride did not inhibit
the inducing effects of dopamine on M. sallei settle-
ment and metamorphosis.

Figure 2. Schematic presentation of experimental design.
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Figure 3. Percentages of settlement, metamorphosis and mortality of Mytilopsis sallei larvae after exposure to various concen-
trations of alkali ions for 24, 48 and 72 h. Control larvae were exposed to filtered seawater. Data are mean values of three replicates
with standard deviations indicated by vertical bars. * denotes significant difference from the control (P < 0.05, one-way ANOVA).
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Larval settlement and metamorphosis in response
to four adrenergic antagonists (chlorpromazine, yohim-
bine, atenolol and butoxamine) in the presence of
10−4 M epinephrine are shown in Figure 7. When
treated with chlorpromazine at 10−5–10−4 M concen-
trations, the percentages of settlement and metamor-
phosis decreased significantly when compared to the
control. Furthermore, the treatment of larvae with
5 × 10−6 M chlorpromazine significantly lowered the
percentage of settlement when compared to the
control at 48 h. It should be noted that when the con-
centration of chlorpromazine reached above 5 ×

10−5 M, acute toxicity was observed on M. sallei
larvae. It was evident that the inducing effect of
10−4 M epinephrine on larval settlement and metamor-
phosis could be inhibited by chlorpromazine at non-
toxic concentrations such as 5 × 10−6 and 10−5 M.
Treatments with yohimbine, atenolol and butoxamine
did not significantly affect larval settlement and meta-
morphosis when compared to the control, indicating
that these three adrenergic antagonists did not
inhibit the inducing effects of epinephrine on M. sallei
settlement and metamorphosis.

Discussion

Investigations on the effects of pharmacological sub-
stances on the settlement and metamorphosis of
marine invertebrates are helpful to understand the bio-
chemical pathways involved in these processes (Bonar
et al. 1990; Pawlik 1990; Young 2009; Wang et al. 2015).
In this study, we investigated the responses of Mytilop-
sis sallei larval settlement and metamorphosis to alkali
ions and neuroactive compounds. The effects of
these compounds are summarized in Table II. This is
the first study to show the responses of larval settle-
ment and metamorphosis of dreissenid mussels to
pharmacological compounds.

Potassium has been shown to induce larval settle-
ment and metamorphosis in many marine invert-
ebrates in a dose-dependent and species-specific
manner (Yool et al. 1986; Young 2009; Wang et al.
2015). For example, Wang et al. (2015) found that
while 10 mM excess K+ significantly promoted the
settlement of oyster, Crassostrea gigas (Thunberg,

Figure 4. Percentages of settlement, metamorphosis and mortality of Mytilopsis sallei larvae after exposure to a mixture of tetra-
ethylammonium (varying concentrations) and KCl (9 mM) for 24, 48 and 72 h. Control larvae were exposed to filtered seawater
containing only 9 mM KCl. Data are mean values of three replicates with standard deviations indicated by vertical bars.
* denotes significant difference from the control (P < 0.05, one-way ANOVA).

Table II. Effects of listed chemical compounds on larval
settlement and metamorphosis of Mytilopsis sallei.
Chemical compoundsa Inductive Inhibitive No effect

Alkali ions
KCl √
CaCl2 √
MgCl2 √
NH4Cl √

Neurotransmitters
GABA √
L-DOPA √
Dopamine √
Epinephrine √

Blockers
TEAb √
SCH23390c √
Sulpiridec √
Chlorpromazined √
Yohimbined √
Atenolold √
Butoxamined √

aAbbreviations for GABA, L-DOPA, TEA and SCH23390 are described in
Table I.

bLarvae were exposed to the compound in presence of 9 mM KCl.
cLarvae were exposed to the compound in presence of 10−4 M dopamine.
dLarvae were exposed to the compound in presence of 10−4 M
epinephrine.
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Figure 5. Percentage of settlement, metamorphosis and mortality inMytilopsis sallei larvae after exposure to varying concentrations
of neuroactive compounds for 2 h followed by incubation in filtered seawater for 12, 24 and 48 h. Control larvae were exposed to
filtered seawater throughout the experiment. Data are mean values of three replicates with standard deviations indicated by ver-
tical bars. * denotes significant difference from the control (P < 0.05, one-way ANOVA).
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1793), concentrations higher than 15 mM K+ inhibited
larval settlement. Moreover, treatment with 5–15 mM
excess K+ significantly increased larval settlement of
the green mussel, Perna canaliculus (Gmelin, 1791)
(Young 2009), while excess K+ at concentrations of 5–
40 mM had no significant effect on larval settlement
in the blue mussel Mytilus edulis Linnaeus, 1758
(Eyster & Pechenik 1988; Dobretsov & Qian 2003). In
the present study, M. sallei larvae were induced to
settle by 6–9 mM excess K+ and to metamorphose by
6–12 mM excess K+. Potassium has been suggested
to induce larval settlement and metamorphosis of
marine invertebrates by depolarizing externally acces-
sible and excitable cells involved in the larval percep-
tion of inducers (Baloun & Morse 1984; Yool et al.
1986). Furthermore, a few studies reported that TEA
significantly inhibited the inducing effects of K+ on
larval settlement and metamorphosis (Ke et al. 1998;
Yang et al. 2011; Wang et al. 2015), suggesting that a
voltage-gated potassium channel played an important
role in the processes. Our results were consistent with

these studies and indicated that the voltage-gated pot-
assium channel could be involved in the settlement
and metamorphosis of M. sallei larvae.

Calcium has also been reported as an inducer of
larval settlement and metamorphosis in some invert-
ebrate species (Yool et al. 1986; Zhao et al. 2003;
Amador-Cano et al. 2006; Yang et al. 2013). However,
we found no significant effects of Ca2+ on M. sallei
larval settlement and metamorphosis, suggesting that
calcium may not be involved in the signal transduction
pathways of these processes in M. sallei. Increasing
Ca2+ levels also did not induce larval metamorphosis
of the bivalves M. unguiculatus (Yang et al. 2013) and
Perna viridis (Linnaeus, 1758) (Ke et al. 1998).

Compared to potassium and calcium, magnesium
has received less attention for its effects on the larval
settlement and metamorphosis of marine invert-
ebrates. Excess Mg2+ showed no inducing effect in
the pearl oyster Pinctada fucata martensii (Dunker,
1872) (Yu et al. 2008) and the green mussel P. viridis
(Ke et al. 1998). However, Yu et al. (2007) found that

Figure 6. Percentages of settlement, metamorphosis and mortality of Mytilopsis sallei larvae after exposure to dopamine receptor
antagonists for 15 min, followed by a mixture of antagonists and 10−4 M dopamine for 2 h, and incubated in filtered seawater for
12, 24 and 48 h. Control larvae were exposed to 10−4 M dopamine for 2 h and then transferred to filtered seawater. Data are mean
values of three replicates with standard deviations indicated by vertical bars. * denotes significant difference from the control (P <
0.05, one-way ANOVA).
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Figure 7. Percentage of settlement, metamorphosis and mortality of Mytilopsis sallei larvae after exposure to adrenergic antagon-
ists for 15 min, followed by a mixture of antagonists and 10−4 M epinephrine for 2 h, and then incubated in filtered seawater for 12,
24 and 48 h. Control larvae were exposed to 10−4 M epinephrine for 2 h and then transferred to filtered seawater. Data are
mean values of three replicates with standard deviations indicated by vertical bars. * denotes significant difference from the
control (P < 0.05, one-way ANOVA).
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increasing Mg2+ inhibited larval settlement and meta-
morphosis of the bryozoan Bugula neritina (Linnaeus,
1758). In this study, we found that Mg2+ had an inhibi-
tory effect on M. sallei larvae.

Ammonium was found to be an effective inducer of
larval settlement behaviour in the oysters C. gigas
(Coon et al. 1990) and C. virginica (Gmelin, 1791) (Fitt
& Coon 1992). Furthermore, Coon et al. (1990)
suggested that it was actually NH3, not NH+

4 , in the sol-
utions that induced settlement behaviour, and NH3

acted by increasing intracellular pH. However, in the
pearl oyster, P. maxima (Jameson, 1901) (Zhao et al.
2003), ammonium did not induce larval settlement,
which is consistent with our findings for M. sallei.

The inducing effects of GABA on the larval settle-
ment and metamorphosis of marine invertebrates was
first demonstrated in the gastropod Haliotis rufescens
Swainson, 1822 (Morse et al. 1979). It was suggested
that GABA’s inducing effects could most likely be due
to its close structural resemblance to a natural
inducer, which was isolated from Lithothamnium and
Porphyra, and probably contains a conjugated GABA-
like moiety (δ-aminolevulinic acid) (Morse et al. 1984;
Morse & Morse 1984; Morse 1985). Thus far, GABA has
been reported to induce larval settlement in several
bivalve species (García-Lavandeira et al. 2005; Alfaro
et al. 2011; Mesías-Gansbiller et al. 2013; Yang et al.
2013). In the present work, GABA did not induce the
larval settlement and metamorphosis of M. sallei, indi-
cating that it is unlikely to be a natural inducer or func-
tional analogue for this species. Similarly, other mussels,
such as M. edulis (Dobretsov & Qian 2003) and
P. canaliculus (Young et al. 2011), also showed no indu-
cing response to GABA.

Many researchers have shown that catechol-
amines (such as dopamine and epinephrine) and L-
DOPA are especially important for modulating the
larval settlement and metamorphosis of marine
invertebrates, including bivalves (Teh et al. 2012;
Yang et al. 2014; Young et al. 2015), bryozoans (Yu
et al. 2007) and ascidians (Kimura et al. 2003; Zega
et al. 2005). It has been suggested that L-DOPA is
one of the intermediates in the biosynthesis of
endogenous dopamine, which can be further con-
verted to epinephrine (Young et al. 2015). In addition,
Bonar et al. (1990) proposed that exogenous L-DOPA
could be decarboxylated to dopamine within the
oyster larvae and could act through dopaminergic
receptors. Our results showed that L-DOPA, dopa-
mine and epinephrine effectively induced larval
settlement and metamorphosis in M. sallei, indicating
that the epinephrine biosynthesis pathway may be
present in this species and may be involved in the

regulation of larval settlement and metamorphosis.
The endogenous regulation of larval settlement by
a catecholaminergic mechanism was also suggested
for P. canaliculus by Young et al. (2015), who investi-
gated larval settlement responses after exposure to
catecholamines and their precursor metabolites.
Further evidence for endogenous regulation by cat-
echolamines was provided by Yang et al. (2012),
who cloned the adrenergic-like receptor gene
(ARcga) from C. angulata (Lamarck, 1819), and pro-
posed that ARcga might play a considerable role in
signal transduction during larval metamorphosis.

Furthermore, our results showed that the inducing
effects of dopamine on M. sallei settlement and meta-
morphosis could be inhibited by SCH23390 (a selective
D1 dopamine receptor antagonist), although sulpiride
(a selective D2 dopamine receptor antagonist) exhib-
ited no inhibiting activity, suggesting that the D1 dopa-
mine receptor may play an important role in the
settlement andmetamorphosis ofM. sallei larvae. More-
over, the inducing effects of epinephrine on M. sallei
settlement andmetamorphosis were found to be inhib-
ited by chlorpromazine (α1-adrenergic antagonist), but
not by the other three adrenergic antagonists tested
(yohimbine (α2-adrenergic antagonist), atenolol (β1-
adrenergic antagonist) and butoxamine (β2-adrenergic
antagonist)). This indicates that an α1-adrenoceptor
may be involved in the larval settlement and metamor-
phosis of M. sallei, these findings being consistent with
previous reports on C. gigas (Coon & Bonar 1987),
M. galloprovincialis Lamarck, 1819 (Yang et al. 2011)
and M. unguiculatus (Yang et al. 2014).

In conclusion, the bioassays of M. sallei larval settle-
ment and metamorphosis reported here for the first
time showed that larvae exhibited various responses
to different pharmacological compounds. Based on
the results, we suggest that the voltage-gated potass-
ium channel, D1 dopamine receptor and the α1-adre-
noceptor may be involved in the settlement and
metamorphosis of M. sallei larvae. The findings of this
study provide new insights on the biochemical mech-
anisms of larval settlement and metamorphosis in
dreissenid mussels, which may have useful implications
for their control.
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