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ABSTRACT

Device fabrication based on piezoelectric materials requires prior characterization of full matrix constants. For this, the Institute of Electrical
and Electronics Engineers standard on piezoelectricity suggests the use of ultrasonic pulse-echo and electric resonance methods. However,
these techniques tend to provide inconsistent characterization, because they require multiple samples with drastically different sizes.
Resonant ultrasound spectroscopy (RUS) is a promising alternative, because it uses only a single sample for characterization, thus ensuring
self-consistent results. The inverse problem of finding material constants from resonant frequencies is often solved using the nonlinear least
squares method despite its being a time-consuming algorithm. Herein, deep learning (DL) is introduced in the inversion procedure of RUS.
After the DL network is trained, the material constants are determined with high efficiency. The practicability and reliability of the combina-
tion of DL and RUS are demonstrated by characterizing the full tensor constants of LiNbO3 single crystals.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0086238

Piezoelectric materials, such as lead zirconate titanate (PZT),
have been widely used as sensors and actuators since the 1950s.1 Some
new piezoelectric materials, such as relaxor-based ferroelectric single
crystals, have also attracted extensive attention owing to their ultrahigh
piezoelectric properties.2,3 The design of sensors and actuators based
on piezoelectric materials requires prior characterization of their elas-
tic, piezoelectric, and dielectric constants. According to the Institute of
Electrical and Electronics Engineers piezoelectric standard,4 ultrasonic
pulse-echo (UPE) and electric resonance (ER) methods are the two
most widely used methods for determining the full matrix constants of
piezoelectric materials. However, multiple rectangular parallelepiped
samples with significantly different sizes must be used in these meth-
ods, which lead to inconsistent results. Moreover, preparing large and
high-quality piezoelectric crystals for some piezoelectric materials is
extremely difficult. For example, the maximum thickness of commer-
cial Bi4Ti3O12 (BIT) crystals produced by Fuji Ceramics Corporation

is only 2mm. The small size of the BIT sample limits the use of UPE
and ER in its characterization.

To overcome the drawbacks of the UPE and ER methods, techni-
ques that use only one sample to characterize the full matrix constants
of piezoelectric materials must be developed. Moreover, these methods
should be able to characterize small piezoelectric samples. Resonant
ultrasound spectroscopy (RUS) is one such method.5 In RUS, the reso-
nance frequencies of a piezoelectric sample depend on its geometric
and material constants, which can be determined if its resonance fre-
quencies can be precisely measured and its geometric size is known.

RUS was first introduced by Frazer and LeCraw to characterize
the elastic properties of a homogeneous sphere.5 Ohno was the first to
apply RUS to characterize the material constants of piezoelectric mate-
rials.6 Ogi et al.7–9 applied RUS to characterize the full tensor constants
of some piezoelectric materials with very high mechanical quality fac-
tors (QM) such as lithium niobate, a-quartz, and GaN. Tang et al.10
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characterized the temperature dependence of the full matrix material
constants of [001]c poled Mn-doped 0.24PIN-0.46PMN-0.30PT single
crystals using RUS. Zhuang et al.11 also extended RUS to the nonde-
structive evaluation of the homogeneity of piezoelectric materials.

Inversion is one of the core procedures in RUS wherein the fun-
damental material constants are obtained from the measured reso-
nance frequencies. The Levenberg–Marquardt (LM) algorithm, which
is a nonlinear least squares (NLS) optimization method, is often used
as the inversion algorithm in RUS. During the inversion, the calcula-
tion of resonance frequencies of the piezoelectric sample must be
repeated dozens of times. These resonance frequencies can also be cal-
culated using the finite element method or the Rayleigh–Ritz
method.12 However, these methods involve time-consuming calcula-
tions and a tedious code development process.

Deep learning (DL) has made remarkable breakthroughs in a
wide range of practical machine learning tasks such as computer vision
and natural language processing.13,14 An important problem in DL is
the implementation of a mapping to approximate a function. Based on
a given set of input–output value pairs, a neural network can be
learned to implement this through the backpropagation (BP) algo-
rithm.15 Hornik16 showed that a single hidden layer neural network
can effectively approximate continuous functions on bounded
domains arbitrary. Deep networks are better than shallow networks at
approximating functions, which can be expressed as a composition of
functions.17 In this Letter, we use DL to model the relationship
between the resonance frequencies and material constants of the pie-
zoelectric samples. We also aim to compare the material constant
characterization and computational time of the deep learning model
and the LM algorithm as inversion processes for RUS.

Hitherto, limited types of piezoelectric materials have been widely
used such as PZT, relaxor-based ferroelectric single crystals, and lead-
free piezoelectric materials. While most of these crystals are commonly
characterized, the constants of the same type of material may slightly
vary across manufacturers and production batches owing to different
manufacturing technologies and conditions. This is a common phe-
nomenon in relaxor-based ferroelectric single crystals. Consequently, a
large number of calculated training samples can be generated based on
known material constants. Therefore, RUS is a very good application
area for DL. Once successfully trained, DL is also far more efficient
than NLS as an inversion tool of RUS.

In this Letter, we demonstrate the practicability and reliability of
DL in RUS by characterizing the full tensor constants of LiNbO3 single
crystals. The crystallographic symmetry of the X/Y/Z cut LiNbO3 crys-
tal is 3m below its Curie point. The matrices of the elastic, piezoelec-
tric, and dielectric constants corresponding to crystals with a 3m
symmetry are

cE½ � ¼

cE11 cE12 cE13 cE14 0 0

cE12 cE11 cE13 �cE14 0 0

cE13 cE13 cE33 0 0 0

cE14 �cE14 0 cE44 0 0

0 0 0 0 cE44 cE14

0 0 0 0 cE14
1
2

cE11 � cE12
� �

2
666666666664

3
777777777775

; (1)

½e� ¼
0 0 0 0 e15 �e22
�e22 e22 0 e15 0 0

e31 e31 e33 0 0 0

2
664

3
775; (2)

and

eS½ � ¼
eS11 0 0

0 eS11 0

0 0 eS33

2
664

3
775; (3)

respectively.
The RUS experimental setup is the same as that presented in Ref.

13. The dimensions and density of the LiNbO3 sample were
5.055� 5.041� 5.033mm3 and 4633 kg/m3, respectively. During the
measurement of the resonant ultrasound spectra, the sample was
placed between the transmitting and receiving transducers with con-
tact only at the opposite corners. Because the sample position had a
significant influence on the measurement, some resonance modes
appeared in one measurement but disappeared in another. Multiple
measurements were necessary to reduce mode omission. As an exam-
ple, the red and blue lines in Fig. 1 are the results of two different mea-
surements. Each peak in Fig. 1 corresponds to the resonance
frequency. The third and sixth resonance modes can be easily identi-
fied from the red line, but they cannot be identified from the blue line.

FIG. 1. Measured resonant ultrasound
spectra from 200 to 1000 kHz correspond-
ing to the rectangular parallelepiped
LiNbO3 sample. The red and blue lines
are from two different measurements of
the same sample.
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However, the 14th resonance mode can be identified from the blue
line, but it cannot be identified from the red line. Table I lists the reso-
nance frequencies fmeas identified from the measured resonant ultra-
sound spectra.

The clamped dielectric constants eS11 and eS33 were obtained from
the high-frequency capacitance at 30MHz measured using an
HP4194A impedance analyzer with an HP16043E fixer. The relative
dielectric constants eS11=e0 and eS33=e0 of the sample were 45 and 26,

TABLE I. Measured and calculated resonance frequencies, where fmeas corresponds to measured frequencies and fLM and fDL correspond to frequencies calculated using the
constants determined by RUS using LM and DL, as shown in Table II.

fmeas fLM diff1
a fDL diff2

b fmeas fLM diff1
a fDL diff2

b

1 324.876 324.519 0.11 324.876 0.12 41 927.128 926.758 0.04 927.129 0.00
2 374.800 374.322 0.13 374.801 0.05 42 934.929 935.934 0.11 934.929 0.05
3 485.905 486.075 0.04 485.906 0.01 43 945.336 944.220 0.12 945.336 0.05
4 487.798 488.092 0.06 487.799 0.02 44 950.070 948.335 0.18 950.071 0.08
5 493.045 493.081 0.01 493.045 0.14 45 965.808 964.973 0.09 965.809 0.03
6 501.309 502.118 0.16 501.309 0.33 46 993.964 992.809 0.12 993.965 0.05
7 513.243 513.548 0.06 513.243 0.15 47 1011.58 1010.63 0.09 1011.58 0.12
8 545.489 546.768 0.23 545.489 0.39 48 1036.76 1036.94 0.02 1036.76 0.07
9 550.329 550.131 0.04 550.329 0.24 49 1044.51 1045.75 0.12 1044.51 0.18
10 564.444 565.051 0.11 564.444 0.03 50 1045.36 1046.44 0.10 1045.36 0.11
11 566.797 567.683 0.16 566.797 0.18 51 1050.27 1052.15 0.18 1050.27 0.19
12 568.238 568.413 0.03 568.238 0.04 52 1061.69 1062.00 0.03 1061.70 0.06
13 568.913 568.861 0.01 568.913 0.02 53 1064.15 1064.28 0.01 1064.15 0.08
14 582.445 582.854 0.07 582.445 0.04 54 1074.13 1075.52 0.13 1074.13 0.22
15 587.793 587.287 0.09 587.794 0.09 55 1076.31 1076.88 0.05 1076.31 0.10
16 601.832 602.905 0.18 601.832 0.39 56 1090.11 1090.53 0.04 1090.11 0.07
17 613.004 612.401 0.10 613.004 0.08 57 1098.52 1097.67 0.08 1098.52 0.07
18 638.324 638.470 0.02 638.324 0.02 58 1099.09 1099.83 0.07 1099.00 0.18
19 660.159 659.974 0.03 660.160 0.22 59 1106.97 1106.71 0.02 1106.97 0.04
20 669.544 669.554 0.00 669.544 0.06 60 1116.36 1116.40 0.00 1116.36 0.03
21 683.336 683.220 0.02 683.337 0.05 61 1120.33 1120.96 0.06 1120.60 0.03
22 698.218 697.922 0.04 698.218 0.08 62 1124.56 1124.53 0.00 1123.50 0.04
23 700.596 700.151 0.06 700.596 0.03 63 1126.35 1126.73 0.03 1126.35 0.02
24 714.062 713.115 0.13 714.062 0.15 64 1128.71 1128.52 0.02 1128.30 0.10
25 723.253 722.290 0.13 723.253 0.00 65 1138.27 1138.59 0.03 1138.27 0.00
26 730.803 731.770 0.13 730.803 0.24 66 1141.65 1141.60 0.00 1141.65 0.03
27 774.544 775.060 0.07 774.545 0.13 67 1146.92 1146.54 0.03 1146.92 0.00
28 795.046 796.131 0.14 795.046 0.16 68 1149.11 1148.87 0.02 1148.20 0.17
29 805.893 806.684 0.10 805.894 0.07 69 1154.10 1154.46 0.03 1154.10 0.04
30 813.045 812.809 0.03 813.045 0.06 70 1154.53 1155.30 0.07 1154.53 0.06
31 824.334 824.668 0.04 824.334 0.03 71 1159.17 1158.21 0.08 1159.17 0.08
32 830.003 830.370 0.04 830.003 0.02 72 1163.39 1163.20 0.02 1163.39 0.06
33 863.079 861.779 0.15 863.079 0.06 73 1165.69 1163.98 0.15 1165.69 0.13
34 869.594 869.603 0.00 869.595 0.04 74 1171.97 1171.27 0.06 1171.97 0.04
35 877.808 878.594 0.09 877.808 0.07 75 1188.04 1188.80 0.06 1188.04 0.12
36 883.723 883.249 0.05 883.724 0.02 76 1204.26 1202.13 0.18 1204.26 0.13
37 905.304 906.274 0.11 905.305 0.15 77 1216.26 1216.53 0.02 1216.26 0.08
38 911.298 912.688 0.15 911.299 0.18 78 1217.34 1217.96 0.05 1217.34 0.11
39 916.553 917.065 0.06 916.553 0.09 79 1227.94 1225.76 0.18 1227.94 0.06
40 922.652 922.654 0.00 922.652 0.06 80 1239.83 1241.40 0.13 1239.83 0.20

aDiff ¼ fmeas�fLM
ðfmeasþfLMÞ=2

���
���� 100.

bDiff ¼ fmeas�fDL
ðfmeasþfDLÞ=2

���
���� 100.
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respectively. NLS is generally used to perform the inversion in RUS,
the core of which is to find a local minimizer of the error function

F ¼ 1
2

XK
i¼1

wi f
ið Þ

cal � f ið Þ
meas

h i2
; (4)

where wi is the weighting factor for different modes and f ið Þ
meas and f ið Þ

cal
are the ith measured and calculated resonance frequencies,
respectively.

Table II presents the inversion results of the elastic constants cEij
and piezoelectric constants eij using LM and DL. The first 127 reso-
nance modes were used in the inversion. The elastic and piezoelectric
constants given in Ref. 7 were used by LM as the initial values. fLM in
Table I denotes the resonance frequencies calculated using the con-
stants determined by RUS using LM, as presented in Table II. The rel-
ative deviations between fmeas and fLM are listed in Table I. Except for
the eighth mode, all values are less than 0.2%, which indicate the pre-
ciseness of the inversion results.

We also investigated the sensitivity of the resonant frequencies to
different material constants to determine which constants can be accu-
rately determined using RUS. To investigate the influence of each
material constant on different modes, the resonant frequencies were
computed by changing the value of a particular constant with the other
constants fixed. The dimensions, density, and dielectric constants of
the sample used in the computation were the same as those stated
above. The elastic and piezoelectric constants listed in Table II were
used in the computations. Figure 2 shows the influence of the elastic
constants on the resonance frequencies. Figure 3 shows the influence
of the piezoelectric and dielectric constants on the resonance
frequencies.

Figures 2(a)–2(c), 2(e), and 2(f) show that there were several
modes that were sensitive to the elastic stiffness constants cE11, c

E
12, c

E
13,

cE33, and cE44. For example, modes 6, 16, 20, 21, and 24 were extremely
sensitive to cE11. As seen in Figs. 3(a) and 3(b), several modes were also
highly sensitive to the piezoelectric constants e15 and e22. For example,
modes 7, 8, 15, and 23 were very sensitive to e15. Compared with cE11,

TABLE II. Material constants cEij and eij determined by RUS using LM and DL.

Elastic stiffness constants (1010 N/m2) Piezoelectric stress constants (C/m2)

cE11 cE12 cE13 cE14 cE33 cE44 e15 e22 e31 e33

LM 19.94 5.53 6.88 0.774 23.63 6.03 3.56 2.36 0.218 1.70
DL 20.03 5.47 6.86 0.776 23.67 6.04 3.55 2.36 0.208 1.67
Relative deviation (%) 0.45 1.09 0.29 0.26 0.17 0.17 0.28 0.00 4.69 1.78

FIG. 2. Resonance frequencies as functions of elastic constants. (a) cE11, (b) c
E
12, (c) c

E
13, (d) c

E
14, (e) c

E
33, and (f) c

E
44.
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cE12, c
E
13, c

E
33, c

E
44, e15, and e22, most modes were less sensitive to cE14 and

e33. Compared with the constants that have a significant influence on
resonance frequencies, more resonance modes are needed to determine
a constant that has a weak influence on the resonance frequencies.
Therefore, more resonance frequencies are needed to precisely deter-
mine cE14 and e33 compared with cE11, c

E
12, c

E
13, c

E
33, c

E
44, e15, and e22.

Figures 3(c), 3(e), and 3(f) show that most modes were insensitive to the
piezoelectric constant e31 and dielectric constants eS11 and eS33. Thus, they
were difficult to determine using RUS. Fortunately, the values of eS11 and
eS33 can be obtained from the capacitance measurements.

A total of M piezoelectric samples with different elastic stiffness
constants and piezoelectric stress constants were randomly generated.

Assuming the value of one elastic stiffness constant is #, we set any elas-
tic stiffness constant of a piezoelectric sample to a value randomly gen-
erated from a continuous uniform distribution in the interval [a#, b#�.
In this study, a and b were set as 0.9 and 1.1, respectively. The same
process was used to randomly generate the piezoelectric stress con-
stants of the piezoelectric sample. The resonance frequencies of these
M piezoelectric samples were calculated using the Rayleigh–Ritz
method.

Figure 4 shows the deep network structure used to model the rela-
tionship between the normalized resonance frequencies and the normal-
ized material constants of the piezoelectric samples. The deep network
structure comprises three fully connected neural sub-networks G1

FIG. 3. Resonance frequencies as functions of piezoelectric and dielectric constants. (a) e15, (c) e22, (c) e31, (d) e33, (e) eS11, and (f) e
S
33.

FIG. 4. Deep network structure compris-
ing three deep neural sub-networks. The
output of G1 (�; h1) is the input of G2 (�; h3)
and G3 (�; h3).
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(�; h1), G2 (�; h2), and G3 (�; h3), where h1, h2, and h3 are the parameters
of the sub-networks. The output of G1 (�; h1) is the input of G2 (�; h2)
and G3 (�; h3). In the nth sub-network, the number of hidden layers is
Kn, the input layer is layer 0, the output layer is layer Kn þ 1, and Nn

i is
the number of neurons at layer i, i ¼ 0;…;Kn þ 1. We have N1

0 ¼ P,
N1
K1þ1 ¼ N2

0 ¼ N3
0 , N

2
K2þ1 ¼ 6, and N3

K3þ1 ¼ 4. Leaky rectified linear
units (ReLUs) were selected as the activation functions. Moreover, the
activation function was not applied to the output layers of G2 (�; h2) and
G3 (�; h3). The input of G1 (�; h1) is the normalized resonance frequency
vector. The outputs of G2 (�; h2) and G3 (�; h3) are the normalized elastic
and piezoelectric constants, respectively.

The number of resonance frequencies was 127. The three sub-
networks G1, G2, and G3 shown in Fig. 4 have three, five, and five hid-
den layers, respectively. The number of network neurons is set as fol-
lows: N1

1 ¼ N1
2 ¼ N1

3 ¼ N1
4 ¼ 256, N2

1 ¼ N2
2 ¼ 256, N2

3 ¼ N2
4 ¼ N2

5
¼ 128, N3

1 ¼ N3
2 ¼ 256, and N3

3 ¼ N3
4 ¼ N3

5 ¼ 128. A total of 82 600
piezoelectric samples were randomly generated to learn the model
parameters. Batch normalization was applied to accelerate deep net-
work training. The TensorFlow library was used to generate a deep
neural network structure. A fivefold validation procedure was applied
to assess the performance of the network. In this procedure, 80% of
the piezoelectric samples constituted a training dataset that was used
to tune the network parameters, and 20% constituted a testing dataset
that was used to test its performance.

The performance of the network structure was evaluated based
on the relative error between the true value # and estimated value #�

of the material constants

re #�; #ð Þ ¼ 100� #� � #j j
#

%: (5)

The proportion of samples with the relative errors of the material con-
stants at different intervals is presented in Table III. The relative error
between the true value and the estimated value of the material constant
e31 is significant, because most modes were insensitive to the piezoelec-
tric constant e31, as shown in Fig. 3(c).

Table II lists the elastic constants cEij and piezoelectric constants
eij determined using the trained network. fDL in Table I corresponds to
the resonance frequencies calculated using the constants determined
by the trained network. The relative errors between fmeas and fDL are
listed in Table I. All are less than 0.3%, except for the 8th and 16th
modes.

Here, 82 600 training samples were randomly generated, which
means that the calculation of resonance frequencies using the
Rayleigh–Ritz method should be repeated 82 600 times. Therefore, the
generation of training samples used in DL was time consuming.
Experiments were performed on a desktop computer with an Intel
i7–8565U CPU and 16 GB of RAM. The average training time of the
network was approximately 15min. However, the material constants
could be determined using the trained network with high efficiency
with the inversion procedure requiring only 150ms on average. On
the other hand, the inversion based on LM required tens of minutes or
even several hours. If there were l constants to be determined using
RUS, the calculation of the sample resonance frequencies had to be
repeated 2l times in each iterative step of LM to obtain the Jacobi
matrix, which is time consuming.

Except for cE12, e31, and e33, the relative deviations between all
material constants determined using LM and DL were less than 0.5%,
as presented in Table II. The piezoelectric constant e31 of the LiNbO3

single-crystal sample could not be precisely determined using LM or
DL, because most resonance modes were very insensitive to it, as
shown in Fig. 2. This led to a large relative deviation between the LM
and DL results corresponding to e31. The relative errors between fmeas

and fLM corresponding to most resonance modes were less than 0.2%,
whereas those between fmeas and fDL corresponding to most resonance
modes were less than 0.3%, as presented in Table I. In summary, the
precision of the results obtained using DL was comparable to that
obtained using LM. The time consumed in computing training sam-
ples was far more than that consumed in an inversion procedure based
on LM. However, for a piezoelectric material manufacturer, many pie-
zoelectric samples from different batches must be characterized. Once
the DL model has been trained successfully, it can be repeatedly used
with very high efficiency. Therefore, for commercial application, the
inversion method based DL is far more efficient than that based on
LM.
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TABLE III. Proportion of samples with relative error of material constants in different intervals.

Relative
error

Proportion of samples

cE11 cE12 cE13 cE14 cE33 cE44 e15 e22 e31 e33

<0.5% 89.04 61.03 68.68 43.54 72.44 81.55 65.60 52.47 5.67 36.68
0.5%–1% 9.51 25.13 25.37 28.70 22.66 14.29 25.55 31.80 5.94 27.72
1%–2% 1.45 9.96 5.79 19.64 4.74 2.94 7.95 14.76 11.16 25.95
2%–3% 0.01 2.69 0.16 5.28 0.15 0.74 0.88 0.94 11.48 7.15
3%–4% 0.00 0.94 0.00 1.84 0.02 0.35 0.03 0.01 11.00 1.71
4%–5% 0.00 0.22 0.00 0.57 0.00 0.11 0.00 0.00 10.69 0.56
>5% 0.00 0.04 0.00 0.42 0.00 0.01 0.00 0.00 44.06 0.22

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 120, 184101 (2022); doi: 10.1063/5.0086238 120, 184101-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/apl


AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

W.Y. and S.S. contributed equally to this work.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding authors upon reasonable request.

REFERENCES
1B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press,
1971).

2S. J. Zhang and F. Li, J. Appl. Phys. 111, 031301 (2012).
3E. W. Sun, R. Zhang, F. M. Wu, and W. W. Cao, J. Alloys Compd. 553, 267
(2013).

4IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176 (IEEE, 1987).
5D. B. Frazer and R. C. LeCraw, Rev. Sci. Instrum. 35, 1113 (1964).
6I. Ohno, Phys. Chem. Miner. 17, 371 (1990).
7H. Ogi, Y. Kawasaki, M. Hirao, and H. Ledbetter, J. Appl. Phys. 92, 2451
(2002).

8H. Ogi, T. Ohmori, N. Nakamura, and M. Hirao, J. Appl. Phys. 100, 053511
(2006).

9N. Nakamura, H. Ogi, and M. Hirao, J. Appl. Phys. 111, 013509 (2012).
10L. G. Tang, H. Tian, Y. Zhang, and W. W. Cao, Appl. Phys. Lett. 108, 082901
(2016).

11M. H. Zhuang, L. G. Tang, R. Zhu, and G. S. Xu, J. Phys. D: Appl. Phys. 53,
035303 (2020).

12R. Holland and E. P. Eer Nisse, IEEE Trans. Sonics Ultrason. SU-15, 119
(1968).

13A. Krizhevsky, I. Sutskever, and G. E. Hinton, Commun. ACM 60, 84
(2017).

14A. Graves, A. R. Mohamed, and G. Hinton, in 2013 ICASSP, 2013.
15D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Nature 323, 533 (1986).
16K. Hornik, Neural Netw. 4, 251 (1991).
17H. N. Mhaskar and T. Poggio, Anal. Appl. 14, 829 (2016).

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 120, 184101 (2022); doi: 10.1063/5.0086238 120, 184101-7

Published under an exclusive license by AIP Publishing

https://doi.org/10.1063/1.3679521
https://doi.org/10.1016/j.jallcom.2012.11.111
https://doi.org/10.1063/1.1718976
https://doi.org/10.1063/1.1497702
https://doi.org/10.1063/1.2335684
https://doi.org/10.1063/1.3674271
https://doi.org/10.1063/1.4942382
https://doi.org/10.1088/1361-6463/ab4e67
https://doi.org/10.1109/T-SU.1968.29457
https://doi.org/10.1145/3065386
https://doi.org/10.1038/323533a0
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1142/S0219530516400042
https://scitation.org/journal/apl

	d1
	d2
	d3
	t1
	t1n1
	t1n2
	d4
	t2
	f2
	f3
	d5
	t3
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17

