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Abstract

Chinese mangroves have been recovered in area over the past two decades from

previous declining trend, and about half of existing mangroves are still in their

young growth stage. This provides a unique opportunity to assess mangrove

conservation by examining the growth dynamics of young mangroves over dif-

ferent conservation periods. However, we are currently short of effective assess-

ment tools for spatially explicit quantification of mangrove conservation effects.

To fill up this gap, we proposed a novel remote sensing approach using readily

available unmanned aerial vehicle (UAV) and Landsat enhanced vegetation

index (EVI) data to assess the spatial evolution of aboveground biomass (AGB)

of young mangroves. With the space-for-time hypothesis, the approach imple-

mented with an empirical EVI-height-AGB equation was tested in four subtrop-

ical estuarine mangroves in the southeastern coast of China. The results

indicated: (a) the UAV-based Structure from Motion (SfM) technology served

as an effective and low-cost means for capturing the spatial heterogeneity of

mangrove canopy heights; (b) a maximum stand age of 15 years could be used

to define the young growth stage of mangroves, for which the EVI-height rela-

tionships could be described by exponential equations without suffering signifi-

cant spectral saturation effects; (c) mangrove forests had overall faster annual

AGB accumulation during the young growth stage over the post-2000 versus

pre-2000 conservation period. This study is one of the first attempts to develop

a remote sensing approach for quantifying spatially explicit AGB accumulation

rates of young mangroves. It highlights the practicability and advantage of the

UAV-SfM technology and confirms that stronger conservation efforts promote

mangrove AGB accumulation over the past two decades. The developed EVI-

height-AGB framework fueled with readily available UAV and Landsat data

provides a unique tool for assessing mangrove conservation effects from land-

scape to regional scales.

Introduction

Mangrove forests, one of the most productive ecosystems,

are distributed in the tropical and subtropical coasts

(Alongi, 2009; Giri et al., 2011). Mangrove forests have

far-ranging environmental services and critical ecological

functions including provisional, regulating, cultural, sup-

porting aspects (Barbier, 2016; Ferreira et al., 2015; James

et al., 2013; Uddin et al., 2015). For example, as one of

the most carbon-rich ecosystems (Donato et al., 2011),

mangroves export 10% of the terrestrial dissolved organic

carbon to the ocean (Dittmar et al., 2006) with covering
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only 0.1% of the earth’s continental surface. Organic car-

bon in mangrove areas is mainly stored in biomass and

sediments (Kauffman et al., 2014), and management

actions including conservation and restoration can reduce

the loss of carbon stocks in mangroves (Vanderklift

et al., 2019). To better implement these management

actions, fundamental knowledge and scientific guidance

are crucially significant (Farzanmanesh et al., 2021). As

one of the most important indicators of mangrove biotic

and abiotic processes such as productivity, carbon burials,

sediment trapping, bio-geomorphological feedbacks,

aboveground biomass (AGB) has received much more

attentions (Kirwan & Megonigal, 2013; Klemas, 2013;

Pham et al., 2019). Therefore, many studies have quanti-

fied mangrove AGB, based on field inventory or remote

sensing approaches, to assess the role of mangroves in the

global carbon cycle (Castillo et al., 2017; Doughty

et al., 2021; Hu et al., 2020; Lu, 2005; Navarro et al., 2020;

Salum et al., 2020; Wang et al., 2020a).

More than half of Chinese mangroves have been lost by

the early 1990s, after which Chinese government has made

much greater efforts on mangrove conservation and restora-

tion (Chen et al., 2009; Hu et al., 2018; Jia et al., 2018; Jia

et al., 2021). As a consequence, the areal extent of Chinese

mangroves stopped declining and began to increase from ca.

2000 (Jia et al., 2018; Jia et al., 2021; Wang et al., 2020b). It

was reported that young mangroves accounted for ca. 50%

of the existing mangrove area in China (Hu et al., 2018; Jia

et al., 2018). Most of the previous remote sensing-based

mangrove studies examine mangrove extent and species

across temporal and spatial scales (Hu et al., 2018; Jia

et al., 2018; Wang et al., 2019; Zhao & Qin, 2020), but less

focus on mapping and assessing the spatio-temporal

dynamics of young mangroves in particular for AGB (Wang

et al., 2018; Wang et al., 2021). This can be partially

explained by the lack of effective and low-cost remote sens-

ing assessment tools, representing a critical knowledge gap

in terms of evaluating the effects of mangrove conservation

and restoration.

In comparison with field inventory on mangroves, remote

sensing techniques with satellite and aerial platforms are

more cost-effective and efficient in collecting mangrove

data, especially at large spatial or long temporal scales (Jones

et al., 2020; Navarro et al., 2020). Readily available satellite

data such as Landsat imagery have been widely used for spa-

tially explicit assessments of mangrove AGB (Hickey

et al., 2018; Pflugmacher et al., 2014), but these applications

could suffer from large uncertainty since satellite data often

fail to acquire canopy structure information that is key for

mangrove AGB retrievals. To improve the estimation of

mangrove AGB, recent studies have integrated point cloud

data from aerial LiDAR system (ALS) with field inventory

and satellite imagery, but high costs of ALS campaigns

prohibit extensive applications (Doughty et al., 2021; Zhu

et al., 2019). Over the past decade, the Structure-from-

Motion (SfM) method with unmanned aerial vehicle (UAV)

flights has been widely used for retrieving canopy structure

information like canopy height models (CHM) in various

ecosystems including mangrove forests (Lucas et al., 2020;

Navarro et al., 2020; Otero et al., 2018). For example, Otero

et al. (2018) suggested the SfM method was very useful for

retrieving CHM and AGB of mangrove forests with a single

dominant layer. The SfM method has the potential to

improve the efficiency of collecting spatial data (Dandois &

Ellis, 2013; Messinger et al., 2016), acquire a finer spatial

resolution than satellite data (Navarro et al., 2020) and pro-

vide a low-cost alternative option of ALS with comparable

accuracy (Sankey et al., 2017).

The synergetic changes in canopy structure parameters

and remote sensing vegetation indices with stand age lay a

foundation for deriving mangrove canopy structures from

vegetation indices (Lee, 2008; Thi Kim Cuc & Thi

Hien, 2021). Normalized difference vegetation index

(NDVI) and enhanced vegetation index (EVI) are often used

in remote sensing studies on biomass estimations (Doughty

et al., 2021; Wang et al., 2020a), while EVI could be more

sensitive to AGB variation in particular for high-biomass

ecosystems since it is less affected by the spectral saturation

effect (Huete et al., 2002). It is reported that canopy height

is closely correlated with both EVI and AGB (Saenger & Sne-

daker, 1993; Waring et al., 2006), and thus canopy height

could serve as a bridge for retrieving AGB from EVI. There-

fore, the combination of readily available Landsat EVI and

SfM-based canopy heights could provide a novel remote

sensing approach for assessing long-term evolution of man-

grove AGB on the decadal time scale.

As far as we know, there is no such study focusing on

decade-scale AGB dynamics of young mangroves in a spa-

tially explicit manner. A remote sensing reconstruction of

the historical evolution of mangrove AGB could help

close this knowledge gap. In this study, we aim to exam-

ine the benefits of mangrove conservation in terms of

AGB accumulation rates for both pre-2000 and post-2000

periods. The specific objectives of this study are (1) to

demonstrate the practicability of the SfM method in esti-

mating mangrove canopy heights; (2) to develop an

empirical EVI-height-AGB relationship to map annual

mangrove AGB; and (3) to assess spatial and temporal

evolutions of mangrove AGB accumulation rates.

Materials and Methods

Overview

To conduct spatially explicit assessments of mangrove

AGB accumulation, we developed a remote sensing

2 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Stronger Conservation Promotes Mangrove Biomass Z. Zhu et al.



estimation approach for AGB of young mangroves using

readily available Landsat and UAV imagery (Fig. 1). By

assuming an exponential EVI-height relationship and a

linear height-AGB relationship, we generated an empirical

EVI-height-AGB equation to assess AGB accumulation of

young mangroves using Landsat EVI data only. To reduce

the impact of spectral saturation effect on the EVI-height

relationship, we limited the analyses to the young growth

stage of mangroves. The age threshold used for differenti-

ating young from the mature stage was determined by the

age-height growth curve based on a space-for-time or

chronosequence analysis, where stand age was derived

from time series Landsat imagery and canopy height was

estimated by SfM-based CHM. The widely used space-

for-time analysis in ecological studies assumes that spatial

phenomena can be used to model temporal processes that

are unobservable (Blois et al., 2013), and the analysis has

often been applied in mangrove studies to examine the

relationships between biomass and stand age (Thi Kim

Cuc & Thi Hien, 2021; Walcker et al., 2018) and between

growth and environmental factors (Azman et al., 2021).

Mangrove study sites

The remote sensing approach for estimating AGB was

tested in four estuarine mangrove sites in the southern

coast of Fujian province, China, located in (from south to

north) Zhangjiang Estuary (ZJE), Jiulong River Estuary

(JRE), Xiamen Bay (XMB) and Quanzhou Bay (QZB)

(Fig. 2). The mangrove area of these four sites accounts

for >90% of the total mangrove area of Fujian province.

These mangrove forests are located near the northern

border of their natural distribution in China and mainly

comprised of Kandelia obovata, Avicennia marina and

Aegiceras corniculatum. Three of these sites are located

within national (ZJE) or provincial (JRE and QZB) nature

reserves and another one (XMB) is located within a

restored mangrove wetland park. With longer conserva-

tion history, mangrove forests in ZJE and JRE are gener-

ally older and more structurally complex than those in

XMB and QZB. The stand age of mangrove forests is

related with the conservation history: JRE and QZB are

provincial nature reserves established in 1988 and 2003,

respectively, while ZJE was first established as a provincial

nature reserve in 1990 and then promoted to a national

one in 2003. As a result, many of mangrove forests are

older than 35 years old in ZJE and JRE (Fig. 2C-D) and

younger than 19 years old in QZB (Fig. 2F), while XMB,

a restored wetland since 2010, has the youngest mangrove

forests (<7 years old) among these four sites (Fig. 2E).

These mangrove sites experience semi-diurnal tides and a

subtropical monsoon climate with a wet season over April

~ September and a dry season over October ~ March.

Mangrove stand age and canopy height

Time series of 30-m Landsat surface reflectance data were

used to generate annual EVI and resultant stand age of

mangrove forests by 2020. All available Landsat surface

reflectance (ρ) data from USGS Landsat Level-1 Tier 1

data products were used to calculate EVI (Huete

et al., 2002):

EVI ¼ 2:5� ρnir−ρred
ρnir þ 6� ρred−7:5� ρblue þ 1

(1)

The Tier 1 data products are considered suitable for time

series pixel-level analysis since the data have well-

characterized radiometry and are inter-calibrated across

different Landsat instruments. To ensure high-quality sur-

face reflectance data, a series of quality control procedures

were applied including atmospheric correction and pixel

removals contaminated by cloud or shadow (Foga

et al., 2017; Masek et al., 2006; Vermote et al., 2016). Fol-

lowing previous studies (Berveglieri et al., 2021; Potapov

et al., 2012; Younes et al., 2020), we used the median of

all quality-controlled EVI values within a year to repre-

sent annual EVI, aiming to reduce the disturbances from

atmospheric, tidal and seasonal variations. A summary of

the acquisition dates and number of all available EVI

images for each wetland can be found in Figure S3. The

EVI calculation and quality control procedures were

implemented using Google Earth Engine.

Annual EVI data were used to map the distribution of

mangrove stand age. Following Chen et al. (2017) and

their mangrove map as spatial constraints, a threshold

Figure 1. Overview of the remote sensing-based approach for

modeling and assessing AGB accumulation rates of young mangroves.

Solid boxes denote data sources and derived products, while dashed

boxes denote empirical functions used for retrieving AGB.
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criterion of EVI >0.2 was used to map mangrove pixels

annually from 1986 to 2020. For each mangrove pixel in

2020, its stand age was calculated as the number of years

since the earliest year labeled as mangrove for this pixel.

The resultant stand age of mangrove pixels ranged from

1 year (i.e. 2020 as the first year labeled as mangrove) to

35 years (labeled as mangrove for all the years). Note that

mangrove pixels of 35 years or older were not differenti-

ated in this study due to the lack of sufficient data in

prior to 1986.

Mangrove canopy heights used in this study were derived

from two data sources including the ALS-based CHM for

ZJE and the SfM-based CHMs for all sites. The ALS-based

CHM, well-recognized high-accuracy canopy height data

(Hickey et al., 2018; Lu et al., 2012; Salum et al., 2020),

was treated as “true” values used for assessing the accuracy

of SfM-based CHMs for ZJE, while the SfM-based CHM

was used to formulate the age-height and EVI-height rela-

tionships for all sites. The ALS-based CHM was calculated

as the difference between digital surface model (DSM) and

digital terrain model (DTM) derived from LiDAR point

cloud of ZJE acquired in 2017 at a point density of ca. 100

points/m2 (Zhu et al., 2019). For each site, UAV (model:

Phantom 4-RTK; DJI Technology, Shenzhen, China) flights

at a height of ca. 200 m during low-tide periods were con-

ducted to acquire a set of RGB images with high position-

ing accuracy over mangrove forests. Then, RGB images

were mosaiced in Photoscan software (Agisoft LLC, St.

Petersburg, Russia) to generate a high-resolution ortho-

photo (Fig. 2C-F) and a DSM based on the SfM algorithm,

which is a widely used and effective 3-D reconstruction

workflow that automatically identifies and ties common

points on overlapping 2-D images to produce a 3-D point

cloud (Schonberger & Frahm, 2016; Warfield & Leon,

2019). The CHM was derived from the DSM by subtracting

a fixed base height through visually inspecting open bare

mudflat (Lucas et al., 2020; Otero et al., 2018). All these

CHMs from different data sources were spatially aligned

and averaged to generate mean canopy height at the same

spatial resolution as Landsat data. More information on

ALS, UAV and Landsat data used in this study can be found

in supplementary materials.

Estimating above ground biomass (AGB)

Annual mangrove AGB maps were derived from Landsat

EVI based on an empirical EVI-height-AGB equation,

developed by fusing height-AGB and EVI-height

relationships. Following previous remote sensing studies

on mangrove AGB (Fatoyinbo & Simard, 2013; Hickey

et al., 2018), the linear height-AGB relationship from

Saenger and Snedaker (1993) was applied to estimate

mangrove AGB (Mg DW ha−1) from canopy height (H;

m):

AGB ¼ 10:8�Hþ 34:9 (2)

The EVI-height relationship was developed by fitting an

exponential equation using the SfM-based CHM and EVI:

H ¼ a� eb�EVI (3)

where a and b are curve fitting parameters. To limit the EVI-

height relationship into the young growth stage of man-

groves, a threshold of maximum stand age was determined

from the age-height growth curve using the space-for-time

method. The logistic function was used to describe the

increasing canopy height with stand age (year):

H ¼ Hm= 1þ k0 � e−r�AGE
� �

(4)

where Hm, k0 and r are curve fitting parameters, esti-

mated by fitting the equation with the SfM-based CHM

and EVI-derived stand age. The first (i.e. the beginning of

the linear growth stage; AGEt1) and second (i.e. the end-

ing of the linear growth stage; AGEt2) inflexion points of

the growth curve were calculated following Gregorczyk

(1991), and AGEt2 was used as the threshold of maximum

stand age:

AGEt1 ¼ ln k0ð Þ−1:318ð Þ=r (5)

AGEt2 ¼ ln k0ð Þ þ 1:318ð Þ=r (6)

Assessing AGB accumulation rates

Annual maps of mangrove AGB estimations for four man-

grove sites were used to compare AGB accumulation rates

between two conservation periods. With more extensive

mangrove protections and establishments of natural

reserves, the areal extent of mangroves in China overall

changed from a declining period to an increasing period in

ca. 2000 (Hu et al., 2018; Jia et al., 2018; Jia et al., 2021).

Therefore, in this study, we divided the study period of

1986–2020 into pre-2000 and post-2000 conservation peri-

ods, and conducted spatially explicit comparisons of man-

grove AGB accumulation rates during the young growth

stage between these two periods. Specifically, for each

Figure 2. Locations of four mangrove sites (A) and their Landsat-based mapping of stand age by 2020 (C: Zhangjiang Estuary (ZJE), D: Jiulong

River Estuary (JRE), E: Xiamen Bay (XMB), F: Quanzhou Bay (QZB)). UAV imagery acquired in 2020 or 2021 is used as the base map for each

mangrove site, inset with the histogram of stand age. The canopy height model derived from airborne LIDAR system (ALS-based CHM) is also

shown for ZJE (B).
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mangrove pixel of stand age ≤ 20 years by 2020 (post-2000

period), linear regression was applied to annual AGB time

series over the linear growth stage (AGEt1 ≤ AGE ≤ AGEt2)

to calculate a mean annual mangrove AGB accumulation

rate; for each mangrove pixel of stand age >20 years by

2020 (pre-2000 period), linear regression was applied to

annual AGB time series over the linear growth stage before

2000.

Results

Mangrove stand age and canopy height
maps

Mangrove stand age by 2020 was mapped for four man-

grove sites (Fig. 2C-F). The exact stand age of mangroves

≥ 35 years old in ZJE and JRE cannot be identified and

was thus simply labeled as ≥ 35 years. Mangroves of

stand age ≥ 35 years accounted for 37% and 17% in ZJE

and JRE, respectively. Among four mangrove sites, man-

groves in ZJE had a more uniform distribution of stand

age from 2 to 35 years. For JRE, mangroves of stand age

between 14 and 22 years had larger proportions than

other ages. As recently restored wetlands, mangroves in

both XMB and QZB were much younger. Mangroves in

XMB were younger than 8 years old, while the distribu-

tion of mangrove stand ages in QZB, varying from 4 to

19 years old, had two peaks centered at 7 and 14 years

old. The SfM-based CHM of mangrove pixels (y) were

closely correlated with the ALS-based CHM (x; “true”

canopy heights) in ZJE (y = 1.04 x – 0.12, R2 = 0.67,

P < 0.01; Fig. 3A). A cross-section through the ALS-based

and SfM-based point clouds along a given mangrove tran-

sect (Fig. 3B) also confirmed that the two sets of CHM

overall matched each other, with slight overestimation at

the northern part of the transect (Fig. 3C).

Mangrove stand age-height and EVI-height
relationships

The space-for-time analyses indicated that spatially-

mean mangrove canopy heights increased with stand

Figure 3. Comparison of mean canopy heights of 30-m mangrove pixels over the Zhangjiang Estuary between ALS-based CHM (Oct., 2017) and

SfM-based CHM (Jan., 2019), with linear regression and one-to-one reference lines indicated by solid and dashed lines, respectively (A). The UAV

imagery of the Zhangjiang Estuary overlaid by the grid cells of all these 30-m mangrove pixels is shown (B). A cross-section through the ALS-

based and SfM-based point clouds is also shown for comparing the difference in CHM along the given transect running through main part of

mangrove forests (the red arrow in (B)) (C).
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age in four sites, but they differed in temporal evolu-

tion of the growth dynamics (Fig. 4). Although both

ZJE and JRE had a similar variation range in stand age

(data points of stand age ≥ 35 years were excluded in

Fig. 4), JRE had the highest maximum canopy height

up to 10 m (ca. 4 m higher than ZJE). Despite younger

stand age < 20 years, mangrove canopy heights in QZB

(4 ~ 7 m) were similar to ZJE. As a recently restored

mangrove wetland, XMB had both the youngest stand

ages and the lowest canopy heights (2 ~ 5 m). Spatial

variations of mangrove canopy heights (overall < 2 m

in terms of standard error) also changed with stand

age in four sites. The logistic growth curves were fitted

using spatially-mean canopy height and stand age. To

ensure the performance, we only applied the logistic

curves to formulate mangrove canopy height as a func-

tion of stand age for ZJE and JRE, which had enough

variation ranges of stand age (Fig. 4A-B). The two

inflexion points indicating the beginning and ending of

the linear growth stage were estimated as 5 and

13 years for ZJE (Fig. 4A) and 3 and 17 years for JRE

(Fig. 4B). In this study, we used the averages of each

inflexion point (4 and 15 years) at these two sites to

define the linear growth stage, and mangroves of stand

age < 4 years and > 15 years were excluded in further

analyses on AGB accumulation rates. For young man-

groves with stand age < 15 years in four mangrove

sites, mangrove canopy heights were positively corre-

lated with Landsat EVI and their empirical relationships

could be described by exponential equations (Fig. 5A-

D). The performances of exponential equations differed

among four sites with higher R2 in younger sites of

QZB (0.57) and XMB (0.36) than older sites of ZJE

(0.22) and JRE (0.13). Taking four sites together, a

uniform empirical relationship between mangrove

canopy height (H) and EVI was formulated (Fig. 5E;

H ¼ 1:75� e1:91�EVI , R2 = 0.27, P < 0.01) and used for

further mappings of annual mangrove AGB.

Figure 4. Spatially mean mangrove canopy height as a function of stand age in four mangrove sites (A–D). For each site, mangrove pixels were

grouped by every stand age with solid dot and error bar, respectively, representing mean canopy height and standard error of pixels in each

group. The logistic growth curves were used to fit empirical relationships between mean canopy height and stand age for ZJE and JRE with

enough variation ranges of stand age. The beginning (AGEt1) and ending (AGEt2) points of the linear growth stage were also marked with circles

for each fitted growth curve.
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Mangrove AGB accumulation rates

Annual maps of mangrove AGB were derived from Land-

sat EVI based on the uniform EVI-height-AGB empirical

equation parameterized for these mangrove sites

(AGB ¼ 18:9� e1:91�EVI þ 34:9). Although four mangrove

sites had different forest growth histories and spatial dis-

tributions of stand age (Fig. 2), they shared a similar

magnitude of spatially mean AGB in 2020 varying from

80.70 � 3.50 Mg DW ha−1 in JRE to 85.30 � 7.42 Mg

DW ha−1 in QZB. For mangrove pixels established after

2000 only, four mangrove sites had overall similar

increasing trends in spatially-mean mangrove AGB by

2020 (an increase of ca. 20 Mg DW ha−1; green lines in

Fig. 6). For mangrove pixels established before 2000 only,

inter-annual variation in spatially mean mangrove AGB

over 1986–2020 differed between ZJE and JRE, with the

former showing a more stable increasing trend (red lines

in Fig. 6). Although these two groups of mangrove pixels

had different initial levels of AGB (lower for the post-

2000 group), both of them increased up to a similar level

by 2020. Annual mangrove AGB accumulation rates in

four sites during the young growth stage were mapped

for the pre-2000 and post-2000 conservation periods

(Fig. 7). For ZJE and JRE covering both periods, man-

grove pixels established after 2000 only were mainly dis-

tributed in the seaward region. Although annual AGB

accumulation rates in both periods had spatial

heterogeneity, the spatially mean value of annual rates

over the post-2000 period (1.83 and 0.96 Mg DW ha−1 y−1

for ZJE and JRE, respectively) were overall higher than

those over the pre-2000 period (1.18 and 0.33 Mg DW

ha−1 y−1). In comparison, younger XMB and QZB sites

had obviously higher spatially mean annual AGB accu-

mulation rates of 3.97 and 2.48 Mg DW ha−1 y−1, respec-

tively.

Discussion

The application of SfM-based CHM for estimating man-

grove canopy heights is unique, more effective, time sav-

ing and low cost (Dandois & Ellis, 2010; Navarro

et al., 2020; Zarco-Tejada et al., 2014). First, in compar-

ison with traditional field inventory, this method has the

advantage to produce canopy height maps that are

required for spatially explicit analyses. This uniqueness is

highly necessary for capturing the spatial heterogeneity of

canopy heights even within a single mangrove wetland

(Zhu et al., 2019). Second, the comparison of perfor-

mance in approximating ALS-based canopy heights by

SfM-based CHMs confirms that the SfM method can well

capture the spatial variation of mangrove canopy height.

Third, only a few hours are needed by a single person to

conduct field UAV flights and post-image processing (e.g.

<4 hours required for covering a 50-ha mangrove wet-

land in ZJE), while it may cost much longer time and

Figure 5. Relationships between SfM-based CHMs and Landsat EVI for young mangrove pixels (stand age < 15 years) in four sites (A-D) and all

sites (E), fitted by the exponential EVI-height curves.
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more persons to finish field inventory. Fourth, although

the SfM-based CHM may bias from actual canopy heights

due to the inability of the method to accurately character-

ize understory topography in particular for closed canopy,

it costs much less than the ALS-based method and is

thus more suitable for extensive applications (Lechner

et al., 2020; Lucas et al., 2020; Otero et al., 2018).

The analyses of stand age-height relationships with the

space-for-time method suggest that the threshold of max-

imum stand age can be used to differentiate young from

mature stage of mangroves. With longer history of man-

grove forests in ZJE and JRE (as natural reserves estab-

lished in 1992 and 1988, respectively), mangroves in these

two sites are more diverse in canopy structure and stand

age. The estimated inflexion points of the logistic growth

curves of these two sites indicate that canopy height

increases with stand age before the first 15 years and then

enters into mature stage with stable height. This stand age

threshold is overall comparable with previous studies on

mangrove growth dynamics with regards to stand age.

Aksornkoae (1982) found mangroves took 15 years to

reach the equilibrium of biomass in Thailand. Thi Kim

Cuc and Thi Hien (2021) found that K. obvata might be

still in the development stage at a 20-year stand age in

northern Viet Nam. Mangroves in south Florida were

found to reach their mature growth stage in 20–35 years

(Davis, 1940). The difference among these stand age

thresholds is likely caused by site-dependent habitat and

environmental conditions that determine the carrying

capacity of mangroves (Shinozaki, 1961; Thi Kim Cuc &

Thi Hien, 2021).

The exponential equations are found to well describe

the EVI-height relationships during the young growth

stage of mangroves, but the performance of the fitting

curves differs among four sites. The lower performances

in ZJE and JRE are mainly due to more uneven composi-

tion of mangrove stand age in these two older sites.

Although these EVI-height relationships tend to be site-

dependent, for the purpose of generality a uniform equa-

tion is applied to map annual mangrove AGB for all sites.

The estimated AGB in these four mangrove sites are com-

parable with other estimations of subtropical mangrove

forests ranging from 70.0 to 90.3 Mg DW ha−1 y−1

(Azman et al., 2021; Hickey et al., 2018; Khan

et al., 2009; Komiyama et al., 2008), but overall lower

than reported AGB in tropical mangroves ranging from

116.0 to 246.9 Mg DW ha−1 y−1 (Fatoyinbo &

Simard, 2013; Otero et al., 2018; Salum et al., 2020; Tang

et al., 2016). Although the dissimilarity among these man-

grove AGB is caused by a number of biotic and abiotic

factors instead of any single factor, previous studies have

highlighted the important role of several factors including

latitude/temperature (Saenger & Snedaker, 1993), species

types (Azman et al., 2021) and stand age (Lucas

Figure 6. Temporal changes in spatially mean annual mangrove AGB (dots) and standard error (error bars) in four mangrove sties (A–D). The
green lines for all sites denote annual time series of mangrove pixels established after 2000 only. The red lines (for ZJE and JRE only) denote

annual time series of mangrove pixels established before 2000 only. The blue lines (for ZJE and JRE only) denote annual time series of all

mangrove pixels over 2000–2020.
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et al., 2020) in determining the spatial and temporal vari-

ations in mangrove AGB.

The magnitudes of annual AGB accumulation rates

during the young growth stage of mangroves over the

pre-2000 and post-2000 conservation periods in these

four sites are comparable with those in previous studies

ranging from 2.48 to 6.16 Mg DW ha−1 y−1 (Thi Kim

Cuc & Thi Hien, 2021); Castañeda-Moya et al. (2013)

The reasons why annual accumulation rates of mangrove

AGB are higher over the post-2000 period than the pre-

2000 period are multifaceted but at least related to the

following aspects. First, the Chinese government has made

great efforts to establish mangrove natural reserves and

special laws to protect mangrove ecosystems (Chen

et al., 2009; Jia et al., 2018). In fact, stronger mangrove

conservation and restoration efforts have been put into

Figure 7. Spatial distributions of annual AGB accumulation rates (Mg DW ha−1 y−1) during the young growth stage of mangroves in four sites:

(A) ZJE, (B) JRE, (C) XMB and (D) QZB. Annual accumulation rates were mapped for the pre-2000 (for ZJE and JRE only) and post-2000

conservation periods. The histograms of annual accumulation rates were also shown with horizontal color bars and corresponding variation

ranges matching the maps. Mangrove pixels with stand age < 35 years and annual accumulation rates statistically significant (P < 0.05) were

shown only.
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effect since 2000 along the coast of China, and thus the

area of mangrove forests recovers rapidly in the past two

decades (Hu et al., 2018; Jia et al., 2018; Wang

et al., 2020b). Among the four mangrove sites in this

study, in 2003, QZB was set as a provincial nature reserve

and ZJE was promoted from a provincial to the national

nature reserve. Second, mangrove restorations in China

are often implemented by planting mangrove seedlings

consisted of single or just a few species, which may relieve

the early growth stage of young mangroves from species

competition (Azman et al., 2021; Jia et al., 2018). Third,

monoculture mangroves from restoration tend to have

spatially even stand age and thus may have low self-

thinning effect during the young growth stage (Azman

et al., 2021).

The developed remote sensing approach for mapping

annual mangrove AGB from Landsat EVI makes it possi-

ble to conduct spatially explicit analyses of AGB accumu-

lation. The assessments of mangrove conservation effects

from these analyses suffer from several uncertainties. First,

although the uniform exponential equation is used to

describe the relationship between Landsat EVI and canopy

height, this remote sensing equation only partially

explains the variability. Further improvement of this

equation is needed in future studies possibly by incorpo-

rating other remote sensing-derived impact factors such

as species composition (Zhu et al., 2019), forest gap (Liu

et al., 2017) and tidal regime (Xia et al., 2020). Second,

the linear height-AGB equation is used for formulating

the remote sensing approach of AGB estimations in this

study, but the uncertainty in applying this simple allomet-

ric equation should be further assessed with more avail-

able field data in the future (Fatoyinbo & Simard, 2013).

Third, although these four mangrove sites have similar

species compositions with relatively low spatial hetero-

geneity, the inconsistency in the spatial resolution of dif-

ferent data (Landsat and UAV) and the mixed pixel issue

within the Landsat footprint also lead to uncertainty in

the assessments. Lastly, the applicability of space-for-time

method in these mangrove sites is an essential prerequi-

site for estimating mangrove AGB, but the space-for-time

method may also lead to the misinterpretation of tempo-

ral dynamics (Walcker et al., 2018; Walker et al., 2010).

Future studies with independent data on the long-term

growth dynamics of mangrove forests are needed to fur-

ther confirm the reliability of the empirical growth

curves.

Conclusions

A novel remote sensing approach using readily available

UAV and Landsat data is proposed in this study to assess

the spatial evolution of AGB accumulation of young

mangroves. The approach applies an empirical EVI-

height-AGB equation to conduct spatially explicit assess-

ments of mangrove conservation effects in terms of AGB

accumulation for four subtropical estuarine mangroves in

the southeastern coast of China. The main findings are

summarized as follows. (1) The UAV-SfM technology

serves as an effective and low-cost means for capturing

the spatial heterogeneity of mangrove canopy heights. (2)

The space-for-time analyses confirms that a maximum

stand age of 15 years can be used to define the young

growth stage of mangroves, for which the EVI-height rela-

tionships can be described by exponential equations with-

out suffering significant spectral saturation effects. (3)

Mangrove forests have overall faster annual AGB accumu-

lation during the young growth stage over the post-2000

versus pre-2000 conservation period.

This is one of the first attempts to develop a remote

sensing approach for analyzing decade-scale AGB accu-

mulations of young mangroves in a spatially explicit man-

ner. This study highlights the practicability and advantage

of the UAV-SfM technology and confirms that stronger

conservation efforts promote mangrove AGB accumula-

tion in the past two decades. The EVI-height-AGB frame-

work fueled with readily available UAV and Landsat data

provides a unique tool for assessing mangrove conserva-

tion effects from landscape to regional scales.
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