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Underwater acoustic sensor networks (UASNs) provide temporary links, which is of great significance
when it comes to dealing with abnormal situations or emergencies in Internet of underwater things
(IoUT). However, UASNs are susceptible to changes and uncertainties in network topology, channel con-
ditions, etc., which can easily lead to frequent link interruptions. In this paper, we introduce a link failure
prediction mechanism and an autonomous underwater vehicle (AUV)-assisted routing holes repairing
mechanism for routing design of UASNs in uncertain ocean environments, to save system energy con-
sumption and improve network connectivity. The proposed link failure prediction mechanism takes into
account residual energy of sensor nodes, node drifting information, and uncertain ocean ambient noise.
When the energy of multiple sensor nodes is exhausted, the particle swarm optimization algorithm (PSO)
is adopted to calculate the optimal repair location, and an AUV is used for fixed point repairing. The pro-
posed method can effectively reduce the energy consumption of sensor nodes, increase the packet deliv-
ery ratio, and extend the life of entire network of UASNs.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The underwater acoustic sensor networks (UASNs) can provide
temporary links between underwater sensor nodes, which is par-
ticularly important when it comes to dealing with abnormal situa-
tions or emergencies on Internet of underwater things (IoUT), and
is widely used in civil and military applications [1,2]. The UASN is
susceptible to problems such as network topology changes and
channel conditions due to ocean currents, resulting in frequent link
interruptions. Network interruption will significantly affect net-
work performance, and invalid data transmission will increase sen-
sor node energy consumption and reduce packet delivery ratio. An
effective link prediction strategy between underwater sensor
nodes can reduce invalid data transmission [2], which is of great
significance.

As of now, much work has focused on predicting link failures in
terrestrial wireless communication networks, which mainly solve
the problems of bandwidth, energy consumption, and packet deliv-
ery ratio. In [3], N. Desai et al. proposed a comprehensive mecha-
nism for intelligent configuration based on machine learning. The
mechanism can increase bandwidth utilization by copying frames
only when the link has a high tendency to fail. In [4], E. Van den
Berg et al. proposed a flexible and modular architecture that com-
bines various link state-related measurements and prediction algo-
rithms to accurately predict link failures of networks. This scheme
has lower bandwidth and energy overhead. In [5], R. Kumar et al.
discussed frequent link failures and limited resources in the mobile
software-defined Internet of Things (SDWM-IoT). They proposed
an active optimization strategy update mechanism, which is
expressed in a promising algebraic modeling language (AMPL)
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and solved by the well-known algebraic solver (CPLEX). It helps to
increase the packet sending rate and reduce the average delay. In
[6], zone-based route discovery mechanism (ZRDM) and link fail-
ure prediction mechanism (LFPM), are proposed to enhance the
on-demand source routing protocol. The goal of ZRDM is to control
the flood of routing requests, and the goal of LFPM is to avoid rout-
ing damage caused by node movement. This scheme has better
performance in terms of average end-to-end delay and packet
delivery ratio.

The underwater uncertain topology and the complexity of the
underwater acoustic channels require link failure prediction to
reduce invalid data transmission. There are few related litera-
tures on the research of failure prediction mechanisms for UASN.
In [7], W. Cheng et al. proposed an eco-friendly underwater com-
munication framework and introduced applicable prediction
techniques to realize the idea of environmentally friendly under-
water acoustic communications, with the ultimate goal of avoid-
ing interference caused by man-made noise to marine mammals.
In [8], J. Chen et al. proposed a model that uses historical link
information and the channel state, obtained by periodic detec-
tion, to predict link and routing interruptions. The model opti-
mizes routing through hop-by-hop decomposition and
reorganization. Reselection ensures the reliable transmission of
data, but the prediction mechanism cannot function well in
uncertain network topology.

When designing the optimal routing for an UASN, energy con-
sumption is a key indicator to consider. The optimal routing
ensures the lowest energy consumption of a single data transmis-
sion path from the source node to the destination node. In the pre-
vious work [9], we proposed an ACOA-AFSA integrated dynamic
coded cooperation (DCC) routing algorithm, renamed as the AAD
routing algorithm for short in this paper. The AAD algorithm can
obtain performance gain from both intelligent algorithm and coop-
erative communication. However, the routing principle with the
lowest energy consumption for a single path makes certain nodes
are frequently used, and their energy is easily exhausted prema-
turely. This leads to the energy holes problem in some areas of
the UASN, and a network failure may occur because of this.

There has been much work in solving the energy holes problem
of UASNs. In [10], W. L Rodolfo et al. proposed a topology control
algorithm for adjusting the depth of nodes to establish the connec-
tivity of the energy holes region. In [11], M. Ismail et al. proposed a
routing design algorithm considering the depth, the energy of the
current forwarding, and the average energy of the next expected
forwarding area to solve the energy holes problem and improve
the packet delivery ratio. In [12], I. Azam et al. proposed a balanced
load distribution (BLOAD) scheme to avoid energy holes in UASNs
due to unbalanced energy consumption. In the BLOAD scheme,
data of the underwater sensor node is divided into components,
which logically adjusts the transmission range of each sensor node
to evenly distribute the data fractions among the next-hop neigh-
bor nodes. This solution prolongs the stability and service life of
the UASNs.

In recent years, due to the advancement in rechargeable and
autonomous operations, autonomous underwater vehicles (AUVs)
are widely adopted to perform tasks in UASNs. The AUV-based
new sensor nodes have become a new research hotspot, and AUVs
have been used to assist UASNs in underwater data collection to
achieve more efficient energy consumption. In [13], an AUV-
assisted UASN was introduced to balance energy consumption
and network throughput. This algorithm has good application pro-
spects in an UASN with large-scale communication, large system
capacity, long-term monitoring, and high data traffic load. In
[14], R. Duan et al. established a real model to characterize the
environment of underwater robots and sensor nodes. AUV is used
as the mobile collector, and the value of information (VoI) is used
2

as the main indicator to measure the quality of information (QoI)
to build a reliable hierarchical information collection system. Due
to the movement of underwater robots, the changes of the network
structure have brought new problems. In [15], J. Zhou et al. estab-
lished an AUV underwater position prediction model based on
time delay for the dynamic time slot MAC protocol, because time
delay is the main factor of time slot length. The simulation results
show that the dynamic time slot MAC protocol improves the net-
work throughput, compared with the fixed time slot MAC protocol.
In terms of solving the routing/energy holes problem, one solution
is to use AUV to repair the relay function of a node in the area
where the energy hole occurs. In [16], Z. Jin et al. proposed a rout-
ing void prediction and repair (RVPR) algorithm in an AUV-assisted
UASN, which utilizes AUV to carry sensor nodes to repair the rout-
ing voids according to the results of energy holes prediction. The
RVPR applies an energy-saving interaction mechanism between
the sensor node and the AUV to ensure the reliable operation of
the algorithm. However, when predicting link failure, the RVPR in
[16] only considers the residual energy of sensor nodes and does
not consider the actual complex uncertain ocean environments
such as drifting of sensor nodes and changes of ocean ambient
noise. Hence inaccurate prediction will cause the AUV to carry
out unnecessary repair.

To address the drawback of the RVPR, based on our previous
work of the AAD algorithm in [9], we propose a link failure predic-
tion mechanism and an AUV-assisted void repair routing algo-
rithm, named as AAD-FPVR routing algorithm. For the UASNs in
uncertain ocean environments, the proposed scheme can improve
link failure prediction accuracy and reduce unnecessary repair,
thus reducing energy consumption and improving the energy effi-
ciency of entire UASNs, while ensuring the reliability of
transmissions.

The main contributions of this work are as follows:

1. In order to describe the drifting of underwater sensor nodes, we
introduce a near shore shallow water flow model [17] to make
the simulation environments more consistent with actual sea
conditions. This is critical because the knowledge of the influ-
ence of uncertain ocean environments is the premise of accu-
rate prediction of routing holes.

2. In the proposed link failure prediction mechanism of AAD-FPVR
routing algorithm, the residual energy of the sensor node, node
drifting information, and uncertain ocean ambient noise are
considered to calculate the probability of successful link trans-
mission. In addition, in order to simulate the ocean ambient
noise under different sea conditions, we propose to adopt vary-
ing noise [18,19] to make the link failure prediction mechanism
more accurate.

3. After a route is determined by the ADD routing algorithm, the
link failure prediction mechanism will be used to predict the
link failure of the selected route. If the prediction result shows
that the link fails, our proposed scheme will save the collected
data in the node and wait for the next prediction result to show
that link is effective and the data can be sent, so as to avoid the
waste of node energy caused by unnecessary data transmission.
When the energy of multiple nodes is exhausted, the particle
swarm optimization (PSO) algorithm is used to calculate the
optimal repair position, and the AUV is used for fixed-point
repair.

Note that, although uncertain ocean environment will affect the
motion and positioning of AUV, in this paper we mainly consider
the influence of uncertain ocean environment from the perspective
of underwater acoustic communications. For more work on the
relationship between uncertain ocean environment and AUV,
please refer to [20–23], where reinforcement learning has been



Y. Chen, J. Zhu, L. Wan et al. Applied Acoustics 186 (2022) 108479
adopted to learn from both human rewards and environmental
rewards at the same time.

The remainder of this paper is organized as follows. Section II
presents the system model, node drifting model of UASNs and
ocean noise model. The proposed AAD-FPVR routing algorithm
for UASNs is detailed in Section III. The numerical results are pre-
sented and discussed in Section IV. Section V concludes the paper.
2. System model

As shown in Fig. 1, from the source node S to the destination
node D, the AAD routing algorithm is adopted for routing design,
where the S-D routing is optimally planned in a cooperative trans-
mission method based on the principle of the lowest energy con-
sumption. The ocean ambient noise is one of the main factors
affecting underwater acoustic transmission. If the ocean ambient
noise is too large, the underwater acoustic modem cannot decode
the data with low signal-to-noise ratio (SNR), resulting in invalid
data transmission and energy waste of underwater sensor nodes.
In the meantime, the nodes can move with the water flow, the net-
work’s topology is dynamically changing and uncertain, and the
link that can successfully transmit data at the previous moment
may be disconnected at the next moment, resulting in uncertain
data packet loss. The link failure prediction mechanism can effec-
tively solve the above concerns.

After transmitting a certain number of packets in accordance
with the routing design of AAD, the frequently used sensor nodes
will cause the nodes to run out of energy prematurely, as shown
in nodes a and b in Fig. 1, and then an energy hole will appear in
the red circled area in Fig. 1. We propose to apply AUVs to assist
in repairing routing nodes, to solve the issue of energy holes.
2.1. A. Node drifting model of underwater sensor nodes

Data transmission quality of underwater sensor nodes is closely
related to connectivity, coverage and deployment of the network.
At present, most of the node deployments are static in existing
UASNs routing protocols, but the actual situation is that underwa-
ter sensor nodes can move with the flow of water. In a node drift-
ing UASN, when the node moves, the connection and coverage of
the network will be different. Hence it is necessary to introduce
a water flow model to conform to reality. This section introduces
the meandering current mobility (MCM) model proposed in [17]
as the water flow model.

Although there are other models such as active Lagrangian par-
ticle swarm (ALPS) [24] to describe the node drift, the MCM model
is typically applied in large coastal areas, which provides a good
accuracy in simulating the near shore and shallow ocean current
movement. The MCM model considers that the drifting of under-
Fig. 1. Application scenario of an AUV-assisted UASN.
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water nodes is affected by undercurrents and eddies, which is sim-
ilar to the application scenario studied in this paper, and is suitable
for simulating the drifting of underwater sensor nodes. The MCM
model employs two-dimensional flow kinematics in fluid dynam-
ics to describe the node drifting. It is assumed that all underwater
sensor nodes move on the horizontal plane and their vertical dis-
placements are ignored. This is because, in the shallow sea envi-
ronments, two-dimensional model is usually considered in the
simulation.

Any incompressible two-dimensional flow can be described by
the flow function w; hence the MCM model uses the flow function
w to describe the trajectory of underwater sensor nodes. Assuming
that the initial position of an underwater sensor node is (x, y), the
moving distance of the node at time t can be calculated as

_x ¼ � @w x; y; tð Þ
@y

ð1Þ

_y ¼ @w x; y; tð Þ
@x

ð2Þ

where _x and _y respectively represent the zonal (eastward) compo-
nent and meridional (northward) component of the velocity field
at time t, and the unit is km. The flow function w can be expressed
as:

w x; y; tð Þ ¼ �tanh � y� B tð Þ sin k x� ctð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2B2 tð Þ cos2 k x� ctð Þð Þ

q
2
64

3
75 ð3Þ

BðtÞ ¼ B0 þ e cos ðftÞ ð4Þ
where k is the current wave number, c is the phase velocity, and B(t)
represents the current amplitude function. In the current amplitude
function, B0 represents the average width of the current in km; e
represents the modulation amplitude in km; f represents the mod-
ulation frequency. In the simulation analysis, the parameter settings
of the MCM water flow model are shown in Table 1.

2.2. B. Ocean ambient noise model

The successful transmission of a data packet depends on the
received signal strength, the interference caused by the transmit-
ting node, and the level of ambient noise. Ocean ambient noise is
the main factor that affects underwater acoustic transmission.
The strength of ocean ambient noise is related to sea location,
working frequency f and weather conditions, which will directly
affect the received SNR of the signal via [19]

SNR ¼ Ptðd; f Þ
Aðd; f ÞNLðf ÞDf ð5Þ

where Pt(d,f) is the transmitting power, A(d,f) is the transmission
loss of the underwater acoustic signal with frequency f at distance
d, NL is the ambient noise power spectral density (PSD), and Df is
receiver noise bandwidth (a narrow band around the frequency f).

Generally, ocean ambient noise can be modeled by four sources:
turbulence, shipping, ocean waves, and thermal noise. Since most
Table 1
MCM parameters setting.

MCM Parameters Value

Water wave number k 2p/7.5
Phase velocity c 0.12
Average width of water flow B0 1.2 km
Modulation amplitude e 0.3
Modulation frequency f 0.4
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ambient noise sources can be described by Gaussian statistics and
continuous PSD, the following empirical formula gives the contin-
uous PSD of the four noise components, which is a function of fre-
quency f in dB relPa and the unit of frequency f is kHz [25]:

10 log Nt fð Þ ¼ 17� 30 log f ð6Þ

10 log Ns fð Þ ¼ 40þ 20 s� 0:5ð Þ þ 26 log f � 60 log f þ 0:03ð Þ
ð7Þ

10 log Nw fð Þ ¼ 50þ 7:5
ffiffiffiffi
w

p þ 20 log f � 40 log f þ 0:4ð Þ ð8Þ
Fig. 2. Power spectral density
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10 log Nth fð Þ ¼ �15þ 20 log f ð9Þ

NL fð Þ ¼ 10 log Nt fð Þ þ Ns fð Þ þ Nw fð Þ þ Nth fð Þð Þ ð10Þ
where Nt is turbulence noise, which usually only affects the extre-
mely low frequency, i.e., f <10 Hz; Ns is shipping noise and long-
distance shipping noise is dominant in the frequency range of
10 Hz-100 Hz, which can be modeled by the shipping activity factor
s, and the value of s is between 0 and 1; Nw is sea surface noise,
which is mainly affected by wind, and the frequency affected is
100 Hz-100 kHz, wherew is wind speed in m/s; Nth is thermal noise,
mainly affecting the frequency greater than 100 kHz; NL is the sum
of ocean ambient noise.
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of the above-mentioned various ambient noises. Considering the
application scenarios of UASNs, shipping noise and sea surface noise
are the main factors affecting transmission frequency.

With shipping factors and wind speed as variables, Fig. 2 shows
the corresponding total noise PSD. It can be observed that different
shipping densities and different wind speeds have a great influence
on ocean ambient noise, and the influence of uncertain noise must
be taken into account in the prediction of underwater acoustic
transmission quality.
Fig. 3. AAD-FPVR algori
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3. AAD-FPVR routing algorithm for UASNs

This section introduces the proposed AAD-FPVR routing algo-
rithm for cooperative UASNs with link failure prediction and
AUV-assisted repair. The AAD-FPVR routing algorithm includes
three components: the AAD routing algorithm, link failure predic-
tion, and AUV-assisted routing repair. The entire algorithm’s flow
chart is shown in Fig. 3.

The key idea of the AAD algorithm is to use the advantages of
the ACOA-AFSA algorithm in global optimization and DCC
thm flow diagram.
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algorithm in enhancing bandwidth utilization of underwater
acoustic channels to find an optimal route based on the principle
of minimum energy consumption. Since the AAD algorithm has
been introduced in our previous work [9], we will directly intro-
duce the next two steps here. More information about AAD routing
algorithm can be found in [9].
Fig. 4. When Fr1 = 1, the impact of changes in Fr2 and Fr3 on LSP.
3.1. A. Link failure prediction mechanism

The drifting of sensor nodes, the received SNR of the signal, and
the residual energy of the sensor nodes all affect the packet deliv-
ery ratio of data transmission to a certain extent. Therefore, in our
proposed model, the drifting information of node, the received SNR
of the signal, and the residual energy of node are all used to calcu-
late the link success probability (LSP) of a specific hop, and to
determine when a packet can be sent to the destination node of
this hop.

We use link stability (LS) to represent the time that a connec-
tion between two connected sensor nodes can continue without
interruption. Therefore, the LS between two sensor nodes is pro-
portional to the LSP value. The form of LSP can be given as follows
[6,26]:

LSP ¼ 1� eLP�LS ð11Þ

where LP is a constant, which can be adjusted to optimize the value
of LSP for better predictions.

Inspired by Eq. (11), we use the transmission distance d
between two nodes to describe the link stability, that is, if the
actual transmission distance between two nodes exceeds the max-
imum transmission distance r of the two nodes, the link is discon-
nected. Therefore, LSP is inversely proportional to d. In a
dimensionless form, we can use d divided by r to represent the per-
centage of distance between two connected nodes in the maxi-
mum transmission distance of the transmitting node, denoted as
Fr3, i.e.,

Fr3 ¼ d
r

ð12Þ

The larger the Fr3, the smaller the LSP, then the relationship
between LSP and Fr3 is as follows:

LSP ¼ 1� e
LP
Fr3 ð13Þ

In the same way, let us consider the influences of the residual
energy information of a node and the SNR of the signal to the
LSP, denoted as Fr1 and Fr2 respectively, then we have:

Fr1 ¼ Eres

Eini
ð14Þ
Fr2 ¼ SNRrec

SNRmin
ð15Þ

where Eres represents the residual energy of a node, Eini represents
the initial energy of a node, SNRrec represents the actual SNR of the
signal received, and SNRmin represents the minimum SNR required
for successful decoding. The larger Fr1 is, the larger the LSP is,
and the larger Fr2 is, the larger the LSP is. Then the LSP is updated
as follows:

LSP ¼ 1 - e
Fr1�Fr2�LP

Fr3 ð16Þ
The value of LSP ranges from 0 to 1. Let LSPth be the link success

threshold. When LSP is greater than LSPth, the packets can be suc-
cessfully decoded. Therefore, a larger LSP means a higher packet
delivery ratio, thus reducing retransmission and saving energy
6

consumption. An effective LSP prediction can suspend the sending
of packets when a transmission failure is predicted, thus avoiding
unnecessary retransmission and saving system energy.

From Eq. (16), it can be seen that Fr1 reveals the impact of resid-
ual energy of nodes, Fr2 reveals the impact of uncertain ocean
ambient noise on SNR, and Fr3 reveals the impact of transmission
distance between nodes caused by node drifting with ocean cur-
rent. Fig. 4 shows the impact of changes in Fr2 and Fr3 on LSP when
Fr1 = 1. It can be observed that LSP increases as Fr2 increases, and
LSP decreases as Fr3 increases.

3.2. B. AUV-Assisted routing repair

Assume that there are Nauv AUVs that can be used to fix routing
holes, which is much smaller than the number of sensor nodes
Nnode in the UASN.

When one sensor node dies, the node will send a repair request
message to AUVs, which only save the request message received
first. This can ensure that AUVs can repair the route to the nearest
area as soon as possible.

For the case that an AUV received only one repair request from
the sensor node, the repair location is the coordinate of the dead
node. For the case that an AUV received multiple repair requests
from the sensor nodes, the AUV needs to calculate the best repair
location that it needs to reach to ensure the effective repair of mul-
tiple requests of routing holes repair. The objective function for
solving the optimal repair position is to restore as many links as
possible and minimize the moving distance of the AUV. As the par-
ticle swarm optimization (PSO) algorithm is a parallel algorithm
with fast convergence speed, we adopt PSO algorithm to solve
the optimal repair position. Suppose there are Ndead dead nodes,
the dead nodes’ coordinates are Pi (i = 1,2,. . .,Ndead), the repair posi-
tion coordinate is Prepair, and the initial position of AUV is PAUV.
According to PSO algorithm, the distance between all dead nodes
and the repair position must be less than the maximum transmis-
sion distance of a node r, which can be expressed as

k Prepair � Pi k < r ð17Þ
When Eq. (17) is met, the travelling distance of AUV will be mini-
mized next, which is taken as the fitness function of PSO algorithm
Fparticle. When Fparticle converges to the minimum value, the corre-
sponding position coordinate Prepair is the optimal repair position
of AUV. Therefore, the objective function of PSO is to minimize
the distance between the repair location and the AUV’s initial loca-
tion, as shown below:



Fig. 5. Flow chart of PSO algorithm.
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Fparticle ¼ mink Prepair � PAUV k ð18Þ
The flow chart of the PSO algorithm is shown in Fig. 5, and fur-

ther details can be found in [16].
4. Simulation results and analysis

4.1. Simulation setup

The simulation is performed on the MATLAB software platform,
the computer operating system is Windows 10 (64-bit), the CPU is
i5-8400, and the RAM is 8 GB.

To study the performance of UASN with different network
scales, the number of underwater sensor nodes is set as 50, 80,
and 100, respectively. All the nodes have the same initial energy
and maximum transmission distance for each hop. The initial
energy of each node is 5000 kJ. All the sensor nodes are randomly
deployed in an area of 3.5 km �12.5 km. Taking 50 nodes as an
example, the deployment situation is shown in Fig. 6. The MCM
model is applied to simulate the underwater node movement with
the ocean current, and Fig. 7 shows the change process of the posi-
tions of underwater sensor nodes over time. The shipping activity
factor s is set as 0.5. According to our sea trial experience, the wind
speed w is mostly below 5 m/s, Hence the wind speed value in the
simulation is set to follow uniform distribution between 0 and 5,
and then the sea surface noise is calculated according to Eq. (8).
7

In order to overcome the unreliability of the underwater channels
and ensure the reliable transmission of data, the node adopts the
DCC transmission method proposed in [9]. Assuming that the min-
imum received power required for a node to be able to decode
without error is 1 W, the optimal operating power of the transmit-
ting node can be calculated according to the transmission distance
and operating frequency [9,27].

In this section, we will verify the feasibility and effectiveness of
the link failure prediction mechanism and AUV-assisted repair
routing for UASNs routing algorithm in uncertain ocean environ-
ments. According to [16], we assume there are Nauv = 4 AUVs
around the sensor nodes, and the initial positions of AUVs are
(1.5, 4.2), (4.5, 4.2), (7.5, 4.2), and (10.5 4.2), respectively. The
change of the initial AUVs positions does not affect the application
of the PSO algorithm for repairing. After a large number of simula-
tion tests, the parameters for PSO algorithm are similar to [16], that
is, the number of particles Nparticle is 20, the learning factor is 1, the
inertia factor is 0.6, the maximum flight speed of the particles is 1,
and the maximum number of iterations Niter_p is 100.

4.2. Simulation results

Fig. 8 shows how the AUV assists in repairing routing holes after
a dead node appears in the UASN. The red asterisk in the figure is
the initial positions of AUVs, the red circles represent the dead
nodes, the green dashed lines represent the travel path of AUVs
during the repair task, and the green circles represent the optimal
positions of AUVs for the repair. It can be observed from Fig. 8 that
when there is only one dead node in an area, the optimal position
for AUV to repair is the position of the dead node. When there are
two or more dead nodes in an area, the optimal repair position of
the AUV needs to be recalculated to restore as many links as pos-
sible. The PSO algorithm is used to calculate the optimal repair
position. When the fitness value Fparticle converges to the mini-
mum, the corresponding Prepair is the optimal repair position. The
change of the fitness value Fparticle with the number of PSO itera-
tions is shown in Fig. 9. It can be observed from Fig. 9 that the fit-
ness value Fparticle decreases as the number of iterations increases.
The value converges when the number of iterations reaches 30,
which takes only 0.1946 s in our simulation platform. Therefore,
the optimal repair position can be calculated in a short time, which
means the AUVs can quickly perform repair tasks.

In the following, the effectiveness of the prediction mechanism
and the repair mechanism will be evaluated from the aspects of
packet delivery ratio and energy consumption.

It can be seen from Fig. 10 that before the routing repair, the
introduction of the link failure prediction mechanism consumes
less energy than the original AAD algorithm, which can save the
system energy consumption, and as the number of nodes increases,
the energy saved will further increase. This is because, after the
introduction of the link failure prediction mechanism, if the predic-
tion result is that the link transmission success rate is lower than
the threshold (that is, the link fails), the packet enters the waiting
state. The packet will not be transmitted until the link transmission
success rate is higher than the threshold, which can reduce invalid
transmission of packets, thereby saving the system energy con-
sumption. Moreover, as the number of nodes increases, the total
energy of the system increases, and more packets can be transmit-
ted before repairing, leading to consuming more energy of the sys-
tem. For the network size of 100 nodes, in the case of link failure, as
the number of packets transmitted increases, the energy saved
increases owing to introducing the link failure prediction mecha-
nism. As shown in Fig. 10, it can save more than 50% of the system’s
energy by introducing the link failure prediction mechanism.

Fig. 11 shows the comparison of the number of packets delivered
by the AAD algorithm integrated into the link failure prediction



Fig. 6. Network topology of an UASN with 50-node.

Fig. 7. The change process of the position of the underwater sensor node over time.
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mechanism and the original AAD algorithm. It can be seen from the
figure that compared with the original AAD algorithm, the intro-
duction of a link failure prediction mechanism can effectively save
system energy, thereby increasing the number of packets delivered
by the system.
8

It can be seen from the comparison between Fig. 10 and Fig. 11
that when the number of network nodes is 50, before the dead
node appears, the original AAD algorithm can successfully deliver
24 packets, and the energy consumption is 9.22�107 J. After intro-
ducing the prediction mechanism, 28 packets can be successfully



Fig. 8. Network topology after AUV-assisted repair.

Fig. 9. The fitness value changes with the number of iterations of PSO algorithm.

Y. Chen, J. Zhu, L. Wan et al. Applied Acoustics 186 (2022) 108479
delivered, and the energy consumption is 4.75�107 J. Therefore,
the routing algorithm after the introduction of the prediction
mechanism can successfully deliver more packets while consum-
ing less energy and the same trend appears when the number of
network nodes is 80 and 100.

Fig. 12 shows the comparison of the number of packets that can
be successfully received at the receiver node between the algo-
rithm that introduces the link prediction and repair mechanism
and the original AAD algorithm when trying to transmit 80 pack-
ets. It can be seen from the figure that on the basis of the link fail-
9

ure prediction mechanism, the further introduction of a routing
repair mechanism can effectively increase the number of packets
delivered, and the number of effectively transmitted packets
increases as the number of nodes increases. This is because AUV-
assisted routing repair can effectively repair the network energy
holes problem, thereby increasing the connectivity of the link.
When the number of nodes is 50, the number of successfully deliv-
ered packets with the original AAD algorithm is 24. After the pre-
diction mechanism is introduced, the number of packets
successfully delivered is 28, and the number of packets success-



Fig. 10. Comparison of energy consumption between the original AAD algorithm and the AAD algorithm incorporating link failure prediction mechanism.

Fig. 11. Comparison of the number of packets successfully delivered by the original AAD algorithm and the AAD algorithm incorporating link failure prediction mechanism.
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fully delivered after repairing by the AUVs is 42. Compared with
the original AAD algorithm, the packet delivery ratio has increased
by 25%. When the number of sensor nodes is 80, the packet deliv-
ery ratio increases by 23.5%. When the number of sensor nodes is
100, the packet delivery ratio increases by 36.8%.
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Fig. 13 shows the comparison of the average residual energy of
the two algorithm nodes when trying to transmit 80 packets. It can
be seen from the figure that the introduction of the link failure pre-
diction mechanism and the repair mechanism, the average residual
energy of the sensor node is higher than that of the original AAD



Fig. 12. Comparison of the number of packets successfully delivered between the
algorithm with the repair mechanism and the original ADD algorithm.

Fig. 13. Comparison of average residual energy of nodes between AAD-FPVR
algorithm and the original AAD algorithm.
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algorithm, which means that the proposed ADD-FPVR algorithm
can effectively extend the lifetime of the network.

4.3. C. Complexity analysis of AAD-FPVR routing algorithm

The proposed AAD-FPVR routing algorithm includes three
steps: AAD algorithm routing, link failure prediction, and AUV-
assisted routing repair. Therefore, it should be analyzed for its
complexity for reference in practical applications. We next analyze
the complexity of AAD-FPVR routing algorithm, mainly the running
time of the algorithm.

1) AAD algorithm: The original AAD algorithm is used for opti-
mal routing design. First, the artificial fish school algorithm
(AFSA) is used for global selection, and then the ant colony
algorithm (ACOA) is used for local optimization to obtain
the global energy optimal routing. If the number of artificial
fish is Nfish, the number of ants is Nant, and the AAD algo-
rithm converges in Niter iterations, then the running time
of the AAD algorithm is O(NfishNantNiter).

2) Link failure prediction: If the number of routing hops
designed by AAD algorithm is Nhop, then failure prediction
is performed for each hop after the routing path is deter-
mined, and the total running time is O(Nhop).
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3) AUV-assisted routing repair: After completing a certain
packet transmission, the proposed algorithm uses AUVs to
perform auxiliary repair after the death of a node, and use
the PSO algorithm to calculate the optimal repair position.
If the number of particles is Nparticle, and the number of iter-
ations required for the convergence of PSO algorithm is
Niter_p, then the running time is O(NparticleNiter_p).

In summary, it can be obtained that running time of the AAD-
FPVR routing algorithm is O(NfishNantNiter + Nhop + NparticleNiter_p).
However, the AUV-assisted routing repair step is needed when
the dead node appears. O(NparticleNiter_p) is much less than O(Nfish-
NantNiter) or O(Nhop), hence can be ignored. Therefore, the running
time of the AAD-FPVR routing algorithm can be recorded as O(Nfish-
NantNiter + Nhop), which does not significantly increase the complex-
ity Compared with the original AAD algorithm.

5. Conclusion

Based on the AAD algorithm, we introduce the link failure pre-
diction mechanism and the AUV-assisted routing repair mecha-
nism, which is called the AAD-FPVR routing algorithm. The
proposed algorithm considers node drifting information, uncertain
ocean ambient noise, and node residual energy to predict link fail-
ure. When a certain number of packets are transmitted, and some
nodes die and cause energy holes, AUVs are used to assist in repair-
ing. The simulation results show that compared with the existing
algorithms, the proposed scheme can further effectively increase
the number of packets delivered, save system energy consumption,
and extend network lifetime of UASNs.
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