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A B S T R A C T   

Passive acoustic techniques can be used to identify and quantify underwater gas release at natural sites, or at 
locations related to anthropogenic activities. There are still significant issues in extracting bubble signals from 
background noise, particularly for bubble counting and sizing techniques relying on inversion of the time- 
averaged acoustic spectrum. In this work we propose an adaptive single bubble identification technique, 
which incorporates bubble acoustic characteristics including pulsation time interval, frequency bandwidth and 
radiation strength. The method applies a cross-spectrogram, enabling an increase in signal-to-noise ratio 
resulting in a reduction of the false alarm rate on bubble identification. We demonstrate this technique using an 
array of hydrophones to determine the bubble size distribution and gas flux at a controlled CO2 release site, 4 m 
beneath the seabed, at 120 m water depth in the central North Sea. The results show that the bubble radius, as 
estimated using acoustics has a distribution with a peak in the 0.15–0.3 cm range, while an estimate based on 
optical method suggests a range of 0.2–0.5 cm. The gas flux is acoustically estimated as 32–88 kg/day in response 
to a known gas injection flow rate 143 kg/day, indicating 22–62% of the injected CO2 is emitted from the seabed 
in gaseous form, with the remainder being trapped, or dissolved.   

1. Introduction 

In recent years, carbon dioxide capture and storage (CCS) in the 
marine environment has been acknowledged as an important strategy to 
mitigate greenhouse gas emissions and slow down global temperature 
rises and ocean acidification (Pachauri et al., 2014; Roelofse et al., 2019; 
Caserini et al., 2017; Vielstädte et al., 2019). Proving the ability to 
demonstrate the integrity of a CCS reservoir is a vital element of 
assurance monitoring, e.g. developing in situ continuous and autono-
mous monitoring techniques (Loewen and Melville, 1991; Leighton and 
White, 2011; Blackford et al., 2015; Mabon et al., 2014; Hvidevold et al., 
2016; Bergès et al., 2015; Atamanchuk et al., 2015; Taylor et al., 2015; 
Cevatoglu et al., 2015; Shitashima et al., 2015; Kolster et al., 2018; Stork 
et al., 2018; Kita et al., 2015). Recent technology developments for such 
monitoring include innovative methods in terms of acoustics, optics, 
chemistry, biology and geophysics (Shitashima et al., 2015; Li et al., 
2019a, 2019b; Jenkins et al., 2012; Stalker et al., 2012; Zoback and 
Gorelick, 2012; Johnson et al., 2009; Roberts et al., 2017; Blackford 

et al., 2015). In acoustics, both active (Nikolovska et al., 2008; Leblond 
et al., 2014; Leifer and Tang, 2007; von Deimling et al., 2011; Sarıtaş 
et al., 2018; Rychert and Weber, 2020) and passive (Leighton and White, 
2011; Bergès et al., 2015; Li et al., 2019a; Dziak et al., 2018) methods 
have been applied to understand gas seeps within the water column; 
these techniques complement each other with active methods being 
most effective at localisation and imaging (von Deimling et al., 2010; 
Hovland and Sommerville, 1985), with passive techniques providing the 
ability for quantifying fluxes over extended time periods (Li et al., 
2019a). 

The effectiveness of passive acoustic monitoring techniques in the 
context of a controlled CO2 gas release experiment was demonstrated in 
the QICS (Quantifying and Monitoring Potential Ecosystem Impacts of 
Geological Carbon Storage) project conducted off the west coast of 
Scotland (Bergès et al., 2015). Further, it has been applied to the 
monitoring of natural gas seeps (Li et al., 2019a; Leifer and Tang, 2007). 
In previous studies a single hydrophone attached to an acoustic recorder 
has been used to measure the sounds of bubbles emerging from the 
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seabed. Leighton and White (2011) proposed the use of an inversion 
algorithm on the measured sound in a frequency range of interest to 
identify the CO2 gas release from seeps. In both the gas-controlled 
(Bergès et al., 2015; Blackford et al., 2014) and natural field experi-
ments (Li et al., 2019a; Li et al., 2020; Leifer and Tang, 2007), their 
passive acoustic technique has been demonstrated to be effective and 
economic for CCS leakage monitoring. 

There are two approaches to estimate the bubble size distribution 
using passive acoustic data. Firstly, when the rate of bubble generation is 
low, so that the sounds of individual bubbles formed do not overlap in 
time and frequency, then individual bubble formation events can be 
counted and the size of each bubble determined using the dominant 
frequency emitted (Leighton and Walton, 1987). This approach requires 
automatic detection of bubble signals from ambient background noise. 
The main challenge with this approach is the selection of a detection 
criterion which will inevitably involve a trade-off between avoiding 
false positives (mistaking noise for a bubble) and false negatives (failing 
to detect a bubble), especially in low signal-to-noise ratio (SNR) envi-
ronment. The second approach (Loewen and Melville, 1991; Leighton 
and White, 2011) is designed to operate in higher gas flux conditions, 
when bubble signatures overlap, so individual bubble emissions cannot 
be isolated. This technique is based on measurements across the fre-
quency band of interest, which is assumed to be dominance by the 
bubble sounds across the band of interest. An inversion method can be 
applied to the resulting spectrum for inferring the bubble size distribu-
tion. To realise this approach, the spectral method requires 

quantification of the average source level for a bubble emission as a 
function of bubble radius. This level is expected to vary with bottom 
type, water depths, trace element concentrations (e.g. surfactants) and 
leads to estimates with significant uncertainties. Ambient noise can be 
misinterpreted as sound arising from bubbles, which would inflate the 
estimated bubble size distribution. To reduce this uncertainty, the fre-
quency band over which bubble sounds dominate over the noise needs 
to be identified, and if necessary, the spectrum of the ambient noise 
needs to be subtracted from the measured signal spectrum. The fre-
quency band over which the bubble sounds dominants will reduce as the 
SNR reduces and that will restrict the range of bubble radii over which 
the bubble size distribution can be estimated. 

Combining the data from multiple hydrophones via beamforming 
can enhance the performance of both passive quantification methods. 
Beamforming produces an enhancement in SNR by creating a system 
with directivity, which rejects noise arriving from directions other than 
those associated with the known direction to the source. The SNR 
enhancement depends on the array elements and varies as a function of 
frequency. A conventional beamformer (CBF), sometimes called a delay 
and sum beamformer, provides a well-established and robust method for 
enhancing a spatially localised source such as a single stream of bubbles. 
However, when there is a distributed source of sound, for example an 
area with several seeps close together, the beamforming becomes 
problematic without using a sufficiently large array to resolve each of 
the seeps across the full frequency range. Specifically, in a scenario of 
closely spaced seeps, the energy from adjacent seeps may be detected 

Fig. 1. Mapped (plan view) gas seep locations when the CO2 release rate was 143 kg/day (50 L/min standard temperature and pressure (STP)) and hydrophone wall 
placement. The central dot is marked as the coordinate above the tip of the gas diffuser; stars represent eight observed gas seeps, and seep 6 is the one where the 
optical quantification is performed. The hydrophone wall was placed at 3.3 m east from the central point. Concentric dashed circles (magenta) show distances from 
experiment epicentre in metres. The inset map shows the location of the experiment in the North Sea. 
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and potentially misallocated to the seep being focused on. This misal-
location is a common problem affecting both passive acoustic methods, 
and is more likely to occur at lower frequencies where the beamformer 
has a lower directivity. 

In this paper, we propose an adaptive single bubble identification 
technique based on recordings from an array of hydrophones. Rather 
than applying a conventional beamformer, this work employs a method 
based on a cross-spectrogram. We demonstrate the technique with data 
collected from a controlled CO2 gas release experiment conducted as a 
part of the project STEMM-CCS (Strategies for Environmental Moni-
toring of Marine Carbon Capture and Storage) in the central North Sea at 
the depth of 120 m. In the experiment, we deployed a hydrophone array 
to collect the sound data associated with the bubble release, along with 
an optical frame to collect video data. Fig. 1 shows a plan view of the 
study area, where a buried pipe releases CO2 gas into the seabed (the 
pipe outlet being approximately 4 m under the seabed). The gas was 
observed to emerge from the seabed, and enter the water column at eight 
distinct locations when the continuous injection rate was 143 kg/day. 
Fig. 1 shows the actual location of these seeps with respect to the pipe 
and the hydrophone array, which consists of five hydrophones arranged 
in an X configuration. Field results are used to illustrate the potential of 
the identification technique applied to marine gas leakage monitoring 
(see Flohr et al., 2020b for a full description of the STEMM-CCS release 
experiment). 

This paper is organised as follows. We describe the theoretical 
framework in Section 2 and the proposed acoustic identification tech-
nique in Section 3. An optical bubble identification method used for 
comparison is presented in Section 4. The controlled STEMM-CCS gas 
release experiment and the deployment of an array of five hydrophones 
and an optical frame are detailed in Section 5, followed by investigation 
results of the proposed techniques applied on the data recorded from the 
experiment in Section 6. Finally, Section 7 draws some conclusions. 

2. Theoretical framework 

The processing of acoustic data from arrays of hydrophones is well- 
established (Van Trees, 2004; Li et al., 2016; Li, 2017; Li and Zakharov, 
2018). The most commonly considered approach is to use a CBF, defined 
as 

y(t) =
∑K

k=1
wkxk(t − vk), (1)  

where K is the number of hydrophones, wk are fixed weights used to 
shade the array, xk [μPa] are received acoustic signals by hydrophones, t 
[s] is the time instant, and vk are delays used to steer the array, i.e. 
control the direction in which the array “looks”. This creates a beam-
formed signal y(t) [μPa] which has directivity, in that sources in 
different locations make different contributions to this output. SNR can 
be increased by rejecting sounds from directions which are not associ-
ated with the source of interest. This directivity depends on the location 
of the sources and their frequency, and a CBF is less directional for low 
frequency sounds as compared to high frequencies. Defining the sound 
speed and the location of a seep relative to an array facilitates the tar-
geting of an individual seep by steering the array. 

We developed an alternative inversion approach to analyse the array 
of hydrophones deployed in the STEMM-CCS project. The inversion 
method only requires an estimate of the spectrum of the bubble signa-
ture, whereas the CBF constructs an estimate of the time series from a 
seep. 

To develop this method we consider an array of hydrophones, placed 
in the vicinity of a seep producing an acoustic signal β(t) [μPa] as 
measured at a distance of 1 m from the centre of the seep. Assuming 
spherical spreading and a constant sound speed c [m/s], then the bubble 
acoustic signal measured on the kth hydrophone, xk(t) [μPa], can be 
expressed as 

xk(t) =
β(t − τk)

Rk
+ nk(t), (2)  

where τk = Rk/c is the delay [s] from the bubble source due to acoustic 
propagation, Rk [m] is the distance from the seep to the kth hydrophone, 
and nk(t) [μPa] is the noise on the kth hydrophone involving any other 
acoustic contribution apart from the bubble signal. The range for each 
hydrophone is great enough that the amplitudes of the signals on each 
hydrophone are approximately equal. 

Fourier transforming (2), we obtain 

Xk(f ) = e− 2πifτk B(f ) + Nk(f ), (3)  

where f [Hz] represents frequency. The cross-spectrum, Skl(f), between 
the kth and lth hydrophone: 

Skl(f ) = E[Xk(f )*Xl(f )]
= E[(e− 2πifτk B(f ) + Nk(f ))*

(e− 2πifτl B(f ) + Nl(f ))]
= e− 2πif(τl − τk)E[|B(f )|2] + e2πifτk E[B(f )*Nl(f )] + e− 2πifτl E[B(f )Nk(f )*

]

+E[Nk(f )*Nl(f )], (4)  

where E[⋅] denotes the expectation operator, and {⋅}* denotes complex 
conjugation. Assuming the bubble signals and the background noise are 
uncorrelated, the second and the third terms in (4) are zero: 

E[B(f )*Nl(f )] = E[B(f )Nk(f )*
] = 0, (5)  

and we simplify the equation as 

Skl(f ) = e− 2πif(τl − τk)E[|B(f )|2] + E[Nk(f )*Nl(f )]. (6)  

If we assume the noise received by the two hydrophone elements are 
also uncorrelated, i.e. E[Nm(f)*Nn(f)] = 0, then we can further simplify 
the equation as 

Skl(f ) = e− 2πif(τl − τk)E[|B(f )|2], (7)  

and 

|Skl(f )| = E[|B(f )|2]. (8)  

In such case, the level of uncorrelated noise can be reduced from the 
operation. Therefore, the magnitude of the cross-correlation between 
two hydrophones is an estimate of the spectrum of the bubble signature. 
For an array with K hydrophone elements, there are K × (K − 1)/2 
unique hydrophone pairs, yielding K × (K − 1)/2 different estimates of 
the cross-correlation. Since each is an estimate of the bubble spectrum 
these can be averaged to further reduce the noise. 

3. Acoustical bubble identification 

At high flow rates, bubble formation creates sounds as a continuous 
stationary random process. Conversely, at low flow rates the sound is 
characterised by a sequence of distinct short duration transient events. 
These two conditions suggest different approaches for estimating the 
cross-spectra as defined in Loewen and Melville (4). In the case of high 
flow rates, the assumed stationarity of the processes can be explored 
using a direct or indirect approach to compute the cross-spectrum 
(Bendat and Piersol, 2011). At low flow rates, where the signal is 
non-stationary, adopting a methodology based on time-frequency 
analysis is an appropriate approach (Hammond and White, 1996). The 
data collected during the STEMM-CCS experiment contained distinct 
transients from each bubble release event that can be classified as a low 
flow rate process. 

3.1. Cross-spectrogram computation 

The signature of each bubble is a transient event typically lasting 
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about ten exponentially decaying sinusoid cycles of the bubble’s reso-
nant frequency (e.g. 5 ms for a bubble sound at 2 kHz). However, after 
some period of time, depending on the SNR, the bubble signal is 
swamped by the ambient non-bubble signals. This section considers the 
extension of the principles described in Section 2 to a time-frequency 
paradigm to develop a cross-spectrogram. 

The discrete time series of the received acoustic signals is firstly 
divided into overlapping segments xp,k(n), which represents the data in 
the pth segment on the kth hydrophone channel with 50% overlap. A 
windowing function, in our case a Hamming window, is applied to each 
segment before a fast Fourier transform (FFT) is used to compute the 
Fourier representation of the data Xp,k(f). If the length of the segment is 
Lp and the start of each segment is Sp samples after the preceding 
segment, then the pth segment starts at sample number p × Sp and the 
centre of the segment is pSp +

Lp
2 . The length of a segment Lp should be set 

to correspond to approximately 5 ms which represents a typical length of 
a bubble signature. In our case, the sample rate is 96 kHz, so that a 
segment length of 512 samples should be set to match approximately 
5 ms, representing typical duration of a bubble signature. 

The cross-spectrogram between the kth and lth channels for the pth 
segment can be computed as 

Ck,l(p, f ) = |Xp,k(f )*Xp,l(f )|, (9)  

where Xp,l(f) is the Fourier representation of data in the lth hydrophone 
channel. We are particularly interested in the centre frequency of the 
bubble sound, so the FFT was zero padded to give a higher density of 
frequency samples, specifically the spacing between frequency samples 
was 10 Hz. Following the principles in Section 2, the cross-spectrogram 
is averaged across all possible pairs of hydrophones in the array: 

C(p, f ) =
2

K(K − 1)
∑K− 1

k=1

∑K

l=k+1
Ck,l(p, f ). (10)  

The C(p, f) is an average cross-spectrogram for the pth segment at the 
frequency bin f . 

In order to detect the individual bubble signatures we compare the 
cross-spectrogram to a long-term median of C(p,f). For any length data, 
we perform the processing on data blocks of 5 s duration. We consider 
the background noise as stationary and estimate the noise in each block, 
so the system remains adaptive to changes in the noise spectrum. 
Consider a block of data containing P segments with each segment 5 ms. 
First, the cross-spectrogram is expressed on a logarithmic scale [dB re 
1 μPa2/Hz], CdB(p, f) = 10log10C(p, f), then the median across the block 
is computed: 

C(f ) =
1
P
∑P

p=1
CdB(p, f ). (11)  

This allows a normalised cross-spectrogram to be computed as 

Ĉ(p, f ) = CdB(p, f ) − C(f ), (12)  

which forms the basis of our bubble identification method. 

3.2. Bubble characteristics application 

After the computation of the normalised cross-spectrogram 
described in Section 3.1, individual bubble sounds are detected. To 
achieve this, an adaptive thresholding process is applied to the cross- 
spectrogram. The adaptive single bubble identification algorithm is 
shown in Appendix A. In the algorithm, we consider both the energy 
threshold and the frequency bandwidth threshold on the cross- 
spectrogram for identifying bubble pulses. 

3.2.1. Thresholding 
For each frequency, local peaks in the normalised cross-spectrogram 

are first identified and those above a defined energy threshold, Theng 

[dB], are retained. Once the peaks have been identified for each fre-
quency, then peaks which in adjacent bins are linked together to form 
patches. For each segment, the index of identified peaks are recorded in 
a vector Q. The difference in the minimum and maximum frequency in a 
patch is a measure of bandwidth and this must exceed some threshold 
denoted by Thband [Hz], in order to be recognised as the sound from a 
bubble. This eliminates isolated peaks generated from noise for example. 
For a damped oscillator, the number of radians required for the energy 
to decay by e− 1 defines the quality-factor (Leighton, 1994). The 
quality-factor is 18.5 for a resonance frequency at 1 kHz and 15.7 for a 
resonance frequency at 10 kHz on a bubble of CO2 at the depth of 120 m, 
based on Devin’s theory (Devin, 1959) and following the procedure in 
Leighton (1994). The predicted bandwidth of the bubbles from the 
calculated quality-factor is 54 Hz for 1 kHz and 640 Hz for 10 kHz. 
However, percentage differences between the measured quality-factor 
and the calculated quality-factor was investigated to 3.5–40% (Walton 
et al., 2005). Therefore, using the calculated lower bandwidth limit 
54 Hz as a reference value, we investigate the bandwidth threshold 
Thband in Section 6.2. 

Setting low thresholds will increase the probability of false alarming, 
i.e. noise pulses are identified as bubbles, whereas setting high thresh-
olds there will be fewer false alarms, i.e. removing more noise pulses, 
but may also reduce the probability of detecting a bubble and decrease 
the number of identified bubbles. A good detector uses a threshold that 
offers a low false alarm rate and a high probability of detecting a bubble. 
We will investigate the effect of the thresholds in Section 6. 

3.2.2. Bubble radius and gas flux computation 
Each patch in the cross-spectrogram is taken to correspond to the 

sound of an individual bubble formation event. The frequency bin 
containing most energy, fmax, is taken as a measure of the natural fre-
quency of the bubble and we can determine the corresponding radius R0 
[m] of the bubble using the Minnaert’s formula (Minnaert, 1933): 

R0 =
1

2πfmax

̅̅̅̅̅̅̅̅̅̅
3γPst

ρw

√

, (13)  

where γ is the polytropic index of the gas, and ρw is the seawater density 
[kg/m3]. The Pst [Pa] at depth d [m] is computed as (Leifer and Patro, 
2002) 

Pst = Patm + ρwg d + 2γ/r, (14)  

where Patm is the atmospheric pressure [Pa], and g is the acceleration due 
to gravity [m/s2] assuming a single density values for the seawater. 

Finally, assuming Nb bubbles are identified in total for a time interval 
of T, then the gas flux can be calculated by integrating the volume G [L/ 
min] of all bubbles as 

G =
1
T
∑Nb

nb=1

4
3

πR3
nb
, (15)  

where Rnb is the radius of the nth identified bubble in a time interval, 
with which a bubble size distribution can also be concluded. 

4. Optical bubble identification 

Here we present an optical method for determining the bubble size 
distribution to complement the acoustic method. The technique sub-
tracts a background image prior to tracking and measuring bubbles 
present. The optical data is analysed through two steps: a frame by frame 
image processing algorithm, and a multi-frame tracking algorithm. The 
frame by frame image processing algorithm takes a single colour image 

J. Li et al.                                                                                                                                                                                                                                         



International Journal of Greenhouse Gas Control 108 (2021) 103313

5

of bubbles in the water column as well as the background, and converts 
it to a binary image that shows positions of bubbles. 

4.1. Frame by frame image processing 

The calculation of bubble size through detection of the bubble wall 
and inferring volume, as here, is the most popular photography method 
for inferring a bubble size distribution (BSD), but it is not the only one. 
Leighton and Walton (1987) demonstrated how stroboscopic illumina-
tion of the flow could detect the rise time of many bubbles simulta-
neously, and from that infer their size if the water were still or its local 
flow speed know, and bubble-bubble-interactions (if they exist) are 
corrected for. 

The initial step is to calculate a background image by converting a 
large number of video frames to grey scale, summing the frames and 
dividing by the number used to determine the average frame. This grey 
scale background image with no bubbles present is then sharpened and 
edge detected using the absolute Sobel edge detection (Kittler, 1983) 
kernel to produce the image subsequently used to remove the back-
ground. Once the background is computed the frame by frame process is 
a sequential series of image processing algorithms: conversion to grey 
scale, application of the absolute Sobel edge detector (Kittler, 1983), 
subtraction of the previously calculated background image, application 
of Gaussian blur, image threshold, and then flood-filling the background 
to fill any gaps in the bubbles. The result of these steps is the desired 
binary frame that shows the shape and location of the bubbles within the 
water column. Next the tracking section of the algorithm uses these 
binary frames to estimate gas flux and bubble size distribution. 

4.2. Multi-frame tracking 

The tracking algorithm starts by scanning the bottom of a binary 
frame for bubbles and if detected their pixel and location information 
are recorded. In the next frame these identified bubbles are tracked by 
taking their previous positions and determining a new position based on 
a prior displacement per frame that is updated as a bubble travels 
through consecutive frames. To determine new position of these bub-
bles, coordinates from a Gaussian distribution are sampled. The bubbles 
are identified and tracked in every frame of the video until each bubble 
passes above a certain point in the frame. At this point the bubble’s 
estimated average volume and radius is saved and this output is used to 
produce bubble size distribution and gas flux estimates. 

A single scaling factor is used convert all bubble measurements from 
pixels to cm based on observations of a scale bar at the centre of the seep 
(28 pixels/cm) prior to recording. We assume that all bubbles remain 
within a 10 cm radius of this central point (and note that majority are far 
closer than this). A bubble 10 cm closer to the camera than this point will 
appear 32% larger than it truly is and a bubble 10 cm further away 
would appear 25% smaller than it truly is. While this may appear a 
significant error margin, assuming that the bubbles are equally distrib-
uted either side of this central point, with a great enough bubble pop-
ulation this effect is greatly reduced as the relative overestimations and 
underestimations cancel each other out. Due to the Gaussian blur bub-
bles smaller than 52 pixels cannot be detected meaning we do not expect 
to detect bubbles from the seep with an equilibrium radius smaller than 
0.07 cm. 

4.3. Volume estimate 

To estimate the average volume and radius of each bubble the hor-
izontal volume of revolution was calculated for each bubble in each 
frame. In general the shape of the bubbles as we observed them tended 
to be more closely resembling flat ellipsoids meaning that the horizontal 
volume calculation seemed more appropriate. Then the average volume 
is calculated by averaging over the frames it appears in. 

In the normal discrete volume of revolution calculation π|xi − x|δx2 

(where xi is the horizontal coordinate of the ith pixel, x is the mean 
horizontal coordinate of all the pixels and δx is the height and width of a 
single pixel) represents half the volume of a ring of radius |xi − x| and 
cross sectional area δx2. 

As measured from the field, the horizontal coordinate u is not in the 
correct units as it is in pixel number rather than cm. Thus in order to 
generate a volume of revolution it must be converted to cm. This means 
that u must be multiplied by δu (the width and height of a single pixel), 
which gives π|uiδu − uδu|δu2 then simplifies to π|ui − u|δu3. Therefore, 
the volume of revolution is calculated from the summation 

V =
∑N

i=1
π|ui − u|δu3, (16)  

where ui is the horizontal coordinate of the ith pixel in the bubble, u is 
the average horizontal coordinate of the pixels within the bubble and δu 
is the physical length of 1 pixel at the scale of the bubble. The horizontal 
coordinate u represents the horizontal position of the pixel in number of 
pixels from the left of the frame. It is essentially the index of the pixel 
within the array that makes up the frame. 

The physical length is normally done by placing an object of known 
size (such as a board with scale markings on it) in the position of the 
bubbles in view of the camera. Then we count the length of this known 
scale in pixels in the video and divide the true length of the object by the 
number of pixel lengths in the video to obtain an approximate scale 
factor for the bubbles in the plume. This scale can also be calculated 
based off of an object at a different distance from the bubbles in the 
frame and recalculated to the positions of the bubbles using 
trigonometry. 

This comes with the caveat that any bubbles not in the position 
where the scale measurement was taken will not be calculated to the 
right size but provided that the seep is roughly stationary then any de-
viations should cancel each other out. The equivalent radius of each 
individual bubbles is calculated as being the radius of a sphere that 
would have an equivalent volume to the bubble in question. This 
approach suits the shape of the bubbles that were being observed in the 
video. 

5. Experiment 

This paper reports the data collected from the STEMM-CCS gas 
release experiment conducted in the central North Sea in May 2019. This 
section describes the passive acoustic and optical packages of the 
experiment with the design and deployment of an array of five hydro-
phone elements and an optical frame. 

5.1. Controlled gas-release STEMM-CCS experiment in the North Sea 

The central North Sea has been identified as a potential CCS site 
(Strachan et al., 2011; Shell, 2017). The STEMM-CCS CO2 injection site 
was situated 1000 m south-east of the Goldeneye platform (Flohr et al., 
2020b), around 100 km east of Scotland (Fig. 1) at 120 m water depth. 
We conducted a controlled sub-seabed CO2 release experiment to 
replicate a realistic leakage scenario to test the applicability of a variety 
of leakage monitoring techniques. CO2 gas was injected into the un-
consolidated sediments 4 m beneath the seabed over a 5-week period, 
during which the flow rate was increased from 0 to 143 kg/day 
(50 L/min STP) (Flohr et al., 2020b). The temporal and spatial behav-
iour of gas seeps originating from the gas injection site (Fig. 1) was 
monitored using an array of hydrophones. 

Eight seeps with moderate and relatively high flow rates (Flohr et al., 
2020a) were visually observed (Fig. 1) and acoustically recorded by 
hydrophone array (Fig. 2(a)) in response to a known gas injection flow 
rate 143 kg/day (Fig. 1). The CO2 bubbles seeping from the seep 6 were 
optically recorded by a high-quality underwater video equipment 
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(SONY FDR-X3000 Action Camera, with UltraHD resolution 720p at 
30fps) fixed on a frame with a white board as the background shown in 
Fig. 2(b). In general, the migration pathways of injected gas can be 
complex within the subsurface sediment layers (Roche et al., 2020). 
Furthermore, they can be influenced by numerous chem-
ical/biological/physical factors. Consequently, it is possible for seeps to 
release gas into the water column intermittently or as time-varying flux 
in response to a known and relatively stable gas injection flow rate into 
the sediment. The hydrophone wall was positioned using a remotely 
operated underwater vehicle (ROV) at a distance of 3.3 m east from the 
central point directly above the end of the gas diffuser (Fig. 1). 

The data used here were collected when the gas injection flow rate 
was 143 kg/day between Greenwich Mean Time (GMT) 16:30 on 21st 
May 2019 and 04:30 on 22nd May 2019, during which time the research 
ship was stationed at a distance of 1 km from the experimental site. The 
seabed sediment types at the experiment location were mainly sand and 
mud as shown in Fig. 2(b), and the temperature of the North Sea bottom 
water was 7.7 ◦C. Visual observation of the eight small seeps showed 
that each seep hole had a radius between 1 cm and 10 cm. 

5.2. Hydrophone array deployment 

Fig. 3(a) shows the schematic drawing of the hydrophone wall. The 
five hydrophones (Geospectrum M36) were linked to the acoustic 
recorder (RS-ORCA), which was used to archive the sound of bubbles 
emerging from the seabed. This setup constitutes an hydrophone array 
as shown in Fig. 2(a) while a full diagram of the design is shown in Fig. 3. 
These hydrophone measurements were calibrated using manufacturer 
supplied receive sensitivity (− 164.5 dB re 1 V/μPa) over frequency 
range 30 Hz to 48 kHz with variation of ±3 dB. A gain of 15 dB was 
applied to each of the recording channels, and a sampling frequency of 
96 kHz was used. The RS-ORCA recorder and hydrophones were oper-
ated by internal and external batteries, supporting long-term de-
ployments. The hydrophones were programmed to record data at 
predetermined time intervals of 5 min on and 5 min off. 

5.3. Optical frame deployment 

The optical frame (Fig. 3(b)) was positioned over seep 6 (see Fig. 1) 
using an ROV so that the CO2 bubbles emerged between the camera and 
the illuminated whiteboard. The distance between the camera and the 
whiteboard was 1 m. 

6. Results and discussion 

In this section, we apply the proposed techniques to the experimental 
acoustic data to identify single bubbles from background noise, and 
investigate threshold criteria for the determination of bubble size dis-
tribution and gas flux. We also investigate the influence of tidal activity 
on ebullition, as previous studies have demonstrated an inverse corre-
lation (Blackford et al., 2014, 2015; Bergès et al., 2015). 

6.1. Identification of single bubble 

Fig. 4 shows the spectrogram and cross-spectrogram for four seconds 
of data recorded on 21st May, 2019. It is difficult to identify any bubbles 
from the spectrogram of this data recorded from a single hydrophone 
(Fig. 4(a)) as a consequence of the high level background noise. While it 
is easier to identify a few bubbles from the cross-spectrogram (Fig. 4(b)), 
as the noise level is reduced by the use of the cross-spectrogram. Nor-
malising the spectrogram and cross-spectrograms (12) makes the bubble 
signals more apparent (Fig. 4(c) and (d)), in these frames we only show 
the positive values for the two representations. Fig. 4(e) and (f) high-
lights the effect of thresholding on cross-spectrogram with 15 dB and 
25 dB energy thresholds applied. Energy thresholding improves bubble 
identification, and the frequency of bubble generated acoustic waves 
largely in the interval 1 kHz (1.2 cm radius bubbles at 120 m) to 11 kHz 
(0.09 cm radius bubbles at 120 m). Increasing the threshold suppresses 
noise much more than bubble sound, particularly for sound from small 
and quiet bubbles which is frequency-dependent. There are still some 
noise pulses which can be identified with the threshold Theng = 15 dB, 
this can be further reduced by adjusting the bandwidth threshold. The 
sounds are transients with finite bandwidth, which can be up to 1.5 kHz 
as shown in Fig. 4(e) and (f). The bandwidth of bubbles sounds is wider 
than individual peaks present within ambient noise (Fig. 8). Fig. 4(g) 
and (h) shows the identified “bubbles” with different bandwidth 
thresholds Thband = 0 Hz and 100 Hz. We can see that some identified 
“bubbles” at Thband = 0 Hz with small bandwidth are not identified by 
using Thband = 100 Hz. To choose appropriate thresholds, we need to 
investigate the distribution for all pulses. 

6.2. Detection threshold investigation 

This subsection evaluates the selection criteria of two detection 
thresholds used. Fig. 5 shows the energy distribution (i.e., normalised 
cross-spectrogram energy distribution) of “bubbles” identified in a 90 s 
section of data at various energy and frequency bandwidth thresholds. 
Fig. 5 highlights that the shape of the distribution is insensitive to the 

Fig. 2. Photographs showing (a) the hydrophone wall deployed on the seabed using an ROV; (b) CO2 bubbles escaping from the seep 6 (position shown in Fig. 1), 
recorded by a camera fixed on a frame. 
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choice of energy threshold (10 dB or 15 dB), whereas it is sensitive to the 
choice of bandwidth threshold. Increasing the bandwidth threshold re-
stricts the detection of low bandwidth signals which is more about noise 
impulses. 

Fig. 6 shows the frequency bandwidth distribution of “bubbles” 
identified in the same 90 s section of data at various energy thresholds. 
Fig. 6 highlights that more than 60% of the frequency bandwidths of the 
measured sounds are in the interval of [0, 160] Hz. Within this interval, 
two peak bars can be observed, which are the 2nd bar at bandwidth [30, 

50] Hz and the 4th bar at bandwidth [90, 110] Hz. At the thresholds of 
5 dB and 10 dB the 2nd bar is higher than the 4th bar; while at the 
thresholds of 15–20 dB the 2nd bar is lower than the 4th bar. This in-
dicates that the dominant contributor of the measured sound changes 
(from background noise to bubble sound) from the threshold 10 dB to 
15 dB. Further, the arrows in the interval [0, 160] dB reveal a trend 
change of the bandwidth distribution from the threshold 10 dB to 15 dB. 

Fig. 7 shows example waveforms that have been band-pass filtered at 
various frequencies ranging from 1 kHz to 10 kHz. Note that the 

Fig. 3. Plans of the acoustic and optical landers used to determine bubble size distributions. (a) The hydrophone wall, comprising five hydrophones and an acoustic 
recorder (RS-ORCA); the positions of them are shown. See in situ photograph in Fig. 2(a); (b) the optical frame, comprising video camera and whiteboard; the 
positions of them are shown. See in situ photograph in Fig. 2(b). 
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frequency shown here is the frequency where a bubble shows the highest 
energy in cross-spectrogram. This figure is obtained by performing a 
cross-spectrum analyses first (including 5 hydrophones) to determine 
bubble frequency ranges and then applying a band-pass filtering on 
identified bubble signals (15 ms) received by hydrophone 4. 

Based on the cross-spectrogram, the energy thresholds are investigated 
from 5 dB to 30 dB, and the frequency bandwidth thresholds are investi-
gated from 30 Hz to 70 Hz. This investigated interval covers the calculated 
lower bandwidth limit (54 Hz) from the quality-factor at 1 kHz (see Sec-
tion 3.2.1). Robust detection thresholds can be determined in comparison 

Fig. 4. Spectrogram and cross-spectrogram using short-time Fourier transforms; only positive values are shown. (a) Spectrogram of data from hydrophone 1; (b) 
cross-spectrogram of data from 5 hydrophones; (c) normalised spectrogram; (d) normalised cross-spectrogram; (e) Theng = 15 dB, Thband = 0 Hz; (f) Theng = 25 dB, 
Thband = 0 Hz, from which bubbles are clearly shown as yellow dots dominantly at frequency interval 1–11 kHz; (g) identified “bubbles” are shown in red rectangles 
with Theng = 20 dB and Thband = 0 Hz; (h) defining Theng = 20 dB, Thband = 100 Hz, single bubbles are easily identified from the cross-spectrogram as compared to the 
spectrogram analysis using single hydrophone. As shown in Fig. 8, the frequency bandwidths of bubble sounds are wider compared to ambient noise. 
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to ambient noise recorded prior to gas injection. We compare the acoustic 
data recorded at maximum flow rates of 143 kg/day (50 L/min STP) with 
that recorded prior to injection on 9th May 2019. Fig. 8 (a) shows the 
number of identified “bubbles” for different frequency bandwidth 
thresholds, as a function of the energy threshold Theng. The curves for 

different bandwidth thresholds broadly have the same shape. The number 
of “bubbles” is identified to about 100 in 5 min at the energy threshold of 
14 dB with the background data, revealing a negligible number of false 
detections with this choice of threshold. This provides a threshold with 
low level background noise for quantifying the gas flux. The number of 

Fig. 5. Energy distribution of detected “bubbles” at various energy and frequency bandwidth thresholds with 90 s data as an example; the % value on top of each bar 
shows the percentage of bubble number for each energy unit. (a) Theng = 10 dB, Thband = 0 Hz; (b) Theng = 15 dB, Thband = 0 Hz; (c) Theng = 10 dB, Thband = 30 Hz; (d) 
Theng = 15 dB, Thband = 30 Hz; (e) Theng = 10 dB, Thband = 70 Hz; (f) Theng = 15 dB, Thband = 70 Hz; (g) Theng = 10 dB, Thband = 100 Hz; (h) Theng = 15 dB, 
Thband = 100 Hz. Impulse noises dominantly possess low energy and bubbles possess relatively high energy. The distribution shapes are similar at the same Thband for 
different Theng, while the energy of dominant identified “bubbles” increases as Thband increases. 
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bubbles on “gas curves” changes from fast to slow in the energy threshold 
interval between 13 and 15 dB. 

Fig. 8(b) shows the average bandwidth (see Fig. 6 for bandwidth 
distribution at threshold Thband = 0 Hz) above the threshold, which 
highlights that these 143 kg/day (50 L/min STP) gas curves reach the 
highest level and tends to be stable starting from 13 dB at all bandwidth 
thresholds, revealing that gas bubbles dominate acoustic pulses at this 
threshold. This provides a lower energy threshold for quantifying the gas 
flux. With an increase of 40 Hz in the frequency bandwidth threshold 
from 30 Hz to 70 Hz, the average bandwidth changes 20–30 dB across all 
the energy thresholds, resulting in a Gaussian-like distribution of the 
frequency bandwidth of the bubble acoustic waves. We select the fre-
quency threshold (30–70 Hz) to be smaller than half of the highest value 
160–180 Hz at 143 kg/day, and larger than half of the highest value 
115 Hz at 0 kg/day. Fig. 8(c) shows the average energy where the rise of 
all the gas curves changes from fast to slow at the energy threshold in-
terval 13–15 dB, which shows the domination of gas bubbles. 

Furthermore, the average energy difference between 143 kg/day and 
the ambient sounds, when no injection was occurring, increases signif-
icantly after the threshold of 13 dB, which indicates more bubbles and 
less noises. This identified average energy provides a lower threshold. 

Based on this threshold investigation, we obtain that the gas flux for 
a 5 min data block is equivalent to 32–88 kg/day (0.9–2.5 L/min at 
seabed or 11–30 L/min STP) (Fig. 8(d)), with an average value of 60 kg/ 
d (1.7 L/min at seabed) at a tidal height 118.7 m (Fig. 10). 

6.3. Determination of bubble size and gas flux 

Fig. 9 compares the bubble size distributions based on acoustic and 
optical measurements. The result for the acoustics is obtained using the 
energy threshold (Theng) of 20 dB and the frequency bandwidth 
threshold (Thband) is set to 100 Hz. The acoustically derived modal 
bubble radius is 0.17 cm with most bubbles at radii between 0.15 and 
0.3 cm (Fig. 9(a)). 

Fig. 6. Frequency bandwidth distribution of detected “bubbles” at various energy thresholds with 90 s data as an example where Thband = 0 Hz; the % value on top of 
each bar shows the percentage of bubble number for each bandwidth unit. (a) Theng = 5 dB; (b) Theng = 10 dB; (c) Theng = 15 dB; (d) Theng = 20 dB; (e) Theng = 25 dB; 
(f) Theng = 30 dB. In the dominant bandwidth interval [0, 160] Hz, two substantial peak bars are observed, which are classified from two different impulse noises, 
here the background noise ([30, 50] Hz) and the bubble sound ([90, 110] Hz). The arrow on each figure shows the distribution difference in this bandwidth interval 
([0, 160] Hz) at thresholds 5–10 dB and thresholds 15–30 dB, indicating a dominant noise transition between thresholds 10 dB and 15 dB. 
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Fig. 7. Band-passed waveforms of identified bubbles recorded by hydrophone 4 at various frequencies from 1 kHz to 10 kHz. The duration of bubble generated 
signals can extend up to 15 ms with majority of peaks observed around 5 ms. 

Fig. 8. Investigation of the effect of the thresholds, Theng and Thband, based on two 5 min records, collected on 21st May 2019 (143 kg/day gas injection rate) and 9th 
May 2019 (0 kg/day injection rate, i.e. only background noise is measured). (a) The number of bubbles detected; from the background data (solid line) it can be seen 
that the choice of Theng = 15 dB corresponds to 100 bubbles being identified, presumably falsely, which is <1% of the number of bubbles detected on the 21st. (b) 
Average bandwidth of the bubbles detected for each choice of threshold (see Fig. 6 for bandwidth distribution). For larger choices of Thband the average bandwidth of 
bubbles detected at an energy threshold greater than 10 dB is reasonably constant, suggesting that the detect events have a consistent bandwidth. (c) Average energy 
of the bubbles detected with the different threshold choices; the background noise curve is approximately parallel to that of the data collected during the release, up 
to threshold of around 13 dB. This suggests that below 13 dB the detections are predominantly false alarms. (d) Estimated gas flux; from the identified threshold 
interval, the gas flux is estimated to 32–88 kg/day (0.9–2.5 L/min at seabed), with an average of 60 kg/day (1.7 L/min at seabed). Dashed rectangles show 13–15 dB 
horizontally on these curves. We only present ‘background noise’ curve up to Theng = 14 dB, as the number of identified “bubbles” is too small (less than 100) which 
does not hold statistical property. 
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The optical measurements were focussed on seep site 6 (Fig. 1) and 
analysis of the data shows most bubbles occurring at radii between 0.2 
and 0.5 cm, with a modal value of 0.3 cm (Fig. 9(b)). The optical mea-
surements are only for one seep, and small bubbles less than 0.2 cm were 
not reliably identified. This is because the optical determination is based 
on the optical scattering strength from bubbles, which is unable to detect 
most of the small bubbles due to strong optical penetration and atten-
uation as well as weak optical scattering of small bubbles. The optical 
method in the present study computes the bubble size distribution from 
a single seep for a short period of time. To compute the total flux, we 
assume all seeps emit bubbles with the same distribution and multiply 
by the number of seeps. Whereas the acoustic method provides long- 
term monitoring of all seeps. The optically estimated gas flux focusing 
on the single seep 6 is 8.2–13.0 kg/day (0.24–0.38 L/min at seabed). 

Fig. 10 shows variation of the acoustically estimated gas flux with 
tidal height for a period when background noise was a minimum. A 
broad negative correlation is observed where gas flux decreases as tidal 
height increases, with a Pearson cross-correlation coefficient (Benesty 
et al., 2009) of − 0.41. This negative correlation is due higher hydro-
static pressure during high tide suppressing gas emissions from the 
seabed. 

7. Conclusions and discussion 

In this paper, we developed and applied an adaptive acoustic single 
bubble identification technique, and compared it to an optical bubble 
identification method, using data collected during a controlled CO2 
release experiment (STEMM-CCS) in the central North Sea. The hydro-
phone array recorded signals from eight ebullition sites at the seabed, 

while the optical data was collected at a single seep site. The acoustic 
technique incorporates bubble acoustic characteristics from the time- 
domain and frequency domain, and pulsation strength. It is capable of 
identifying single bubbles in noisy environments and determining bub-
ble size distribution and gas flux. 

At 120 m water depth, the acoustically determined modal bubble 
radius is 0.17 cm, while the optically determined modal gas radius is 
0.3 cm. The optical method under measures smaller bubbles, which is 
why the modal gas radius is biased higher. Our acoustically determined 
gas flux across the seabed is 32–88 kg/day for a gas injection rate of 
143 kg/day, meaning 22–62% of the CO2 emerges from the seabed in 
gaseous form. 

The proposed single bubble identification technique is adaptive and 
can be performed automatically for any length of acoustic signals. This 
allows long-term underwater acoustic detection and quantification of 
gas leakage over marine carbon storage reservoirs across the world-wide 
ocean sub-seabed. This technique is applicable when bubbles are 
generated as a single stream or multiple streams. However, when the 
bubbles are generated as groups or plume rather than single stream, it is 
difficult for the technique to identify single bubbles, which may make 
the estimate results inaccurate and an alternative way would be the 
acoustic inversion method (Leighton and White, 2011). 

In practice, at carbon capture and storage sites, gas will be injected at 
much greater depth than that described in this paper. In the unlikely 
event of gas escaping, gas would be expected to seep over a much wider 
area of the seabed than that investigated at the STEMM-CCS experi-
mental site. In terms of acoustic monitoring, active acoustic monitoring 
using ship or AUV-mounted multibeam bathymetry or other sonar sys-
tems would be used first to detect any seepage site. Subsequently, the 
passive acoustic monitoring techniques described here, would be 
deployed for longer term monitoring, and quantification of any emis-
sions through the seabed. 

Author contributions 

Jianghui Li: Conceptualization, methodology, software, writing – 
original draft preparation. Paul R. White: Data curation, methodology, 
reviewing and editing. Ben Roche: Data curation. Jonathan M. Bull: Data 
curation, supervision, reviewing and editing. Timothy G. Leighton: 
Reviewing and editing. John W. Davis: Data curation. Joseph W. Fone: 
Methodology. 

Conflict of interest 

The authors declare that there is no conflict of interest. 

Fig. 9. Determined bubble size distribution; the % value on top of each bar 
shows the percentage of bubble number for each radius unit. (a) passive 
acoustics; the modal bubble radius is 0.17 cm, thresholds of Theng = 20 dB and 
Thband = 100 Hz were used. (b) optical methods applied to seep 6 (Fig. 1); the 
modal bubbles radius is 0.3 cm. The optical method is not sensitive to small 
bubbles (radii less than 0.2 cm) and underestimates their abundance. 

Fig. 10. Variation of acoustically quantified gas fluxes with tidal height for a 
period when background noise was a minimum. There is a broad inverse cor-
relation between gas flux and tidal height (Pearson cross-correlation coefficient 
of − 0.41). The thresholds for quantifying the gas flux are Theng = 14 dB 
and Thband = 50 Hz. 
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Appendix A. Single bubble identification algorithm 

Algorithm 1 details the algorithm for single bubble identification. 

Algorithm 1. Single bubble identification   

Require: Theng, Thband, Ĉ(p, f(b))
1: procedure 
2: for p = 2 : P − 1 do segments  
3: if Ĉ(p, f(b)) < Theng ▹ energy threshold then  
4: Ĉ(p, f(b)) = 0;  
5: end if 
6: for b = 1 : B do  
7: if Ĉ(p, f(b)) > Ĉ(p − 1, f(b)) & Ĉ(p, f(b)) > Ĉ(p + 1, f(b)) then  
8: save [p, f(b)]; ▹ save location of pulses for further process  
9: end if 
10: end for 
11: end for 
12: Nb = 0; ▹ initialize bubble number  
13: find repeated elements Q for the pth segment ▹ multiple bubbles may be at one segment  
14: for q = Q(1) : Q(end) do  
15: if q = Q(1) then  
16: Qstart = q; ▹ initial frequency for a bubble bandwidth  
17: else if q < Q(end) then  
18: if f(q) < f(q + 1) − 1 then  
19: Qend = q; ▹ the end frequency for a bubble bandwidth  
20: if f(Qend) − f(Qstart) >= Thband ▹ bandwidth threshold then  
21: save Qstart, Qend, maximum Ĉ(p, f(Qstart : f(Qend))); ▹ identified “bubble”  
22: Nb = Nb+ 1;  
23: Qstart = q+ 1;  
24: else 
25: Qstart = q+ 1;  
26: end if 
27: end if 
28: else if q = Q(end) ▹ final frequency for bubble at the pth segment then  
29: Qend = c;  
30: if f(Qend) − f(Qstart) >= Thband ▹ bandwidth threshold then  
31: save Qstart, Qend, maximum Ĉ(p, f(Qstart : f(Qend))); ▹ identified “bubble”  
32: Nb = Nb+ 1;  
33: end if 
34: end if 
35: end for 
36: end procedure  
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