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Abstract: The photochemical reflectance index (PRI) has been often used as a physiology-based
remote sensing indicator of ecosystem carbon fluxes. However, the assessments of PRI in tracking
long-term carbon fluxes with climatic anomalies in mangroves are very limited. In this study,
four-year (2017–2020) continuous time series measurements from tower-based eddy covariance and
spectral systems in a subtropical mangrove were used to explore the ability of PRI in tracking the
response of mangrove carbon fluxes to climate fluctuations and drought stress. The results showed
that the temporal dynamics of daily PRI and carbon fluxes shared similar variation patterns over the
study period, experiencing simultaneously decreasing trends under drought stress. Compared with
the first three years, annual mean values of NEE in 2020 decreased by 10.7% and PRI decreased by
29.0%, correspondingly. PRI and carbon fluxes were significantly correlated across diurnal, seasonal,
and annual time scales with better fitness under drought stress. Dark-state PRI (PRI0), the constitutive
component of PRI variation due to seasonally changing pigment pool size, showed similar temporal
variation as PRI in response to drought stress, while delta PRI (∆PRI), the facultative component
of PRI variation due to diurnal xanthophyll cycle, showed no response to drought stress. This
study confirms the ability of PRI to track temporal dynamics of mangrove carbon fluxes on both
short-term and long-term scales, with the temporal variation of PRI largely affected by the long-term
constitutive pigment pool size. This study highlights the potential of PRI to serve as an early and
readily detectable indicator to track the response of the mangrove carbon cycle to climatic anomalies
such as drought stress.

Keywords: photochemical reflectance index; mangrove; carbon cycle; drought; eddy covariance

1. Introduction

Mangrove wetland is one of the most important coastal ecosystems in the world, well
known for its high carbon assimilation rates and strong carbon sink potential [1–4]. With
high gross ecosystem production and a low respiration rate, mangrove forests can sequester
more carbon than nearby terrestrial forests [5]. The net primary production of mangrove
forests was conservatively estimated to be ~218 ± 72 TgC year−1 [2]. Although mangrove
forests play an important role in the global carbon cycle [6], they are disappearing at a rate
roughly equivalent to the declining rate of tropical rainforests [7]. The carbon sink strength
of mangrove wetland could reduce in response to global warming in the future through
the temperature-carbon cycle feedback [8]. Therefore, more research is needed to better
understand the response of the mangrove carbon cycle to global climate change.

Mangrove forests are mainly distributed along the coast in tropical and subtropical
zones [5], and they are experiencing various environmental stresses such as high salinity [9],
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tidal inundation [4], and drought stress [10]. Among these, drought stress is one of the
major chronic environmental stresses that adversely affect mangrove growth [11]. Drought
stress due to reductions in rainfall can result in a decline in mangrove productivity or
even an exacerbation of mangrove loss [10,12–14]. The decline of freshwater inputs and
increasing evapotranspiration with drought stress can pose unfavorable salinity conditions
for mangroves [15,16], and thus mangrove carbon assimilation rates might decrease dramat-
ically during dry seasons [17]. Compared with mangroves experiencing adequate rainfall,
mangroves in drier areas tend to be shorter [18]. Annual rainfall has been identified as a
good predictor of mangrove ecosystem carbon stocks [19]. In addition, many studies have
emphasized the necessity for considering the lag or cumulative effects of environmental
factors that might be more important than their direct effects on mangrove growth [20–22].

To track the response of mangrove forests to drought stress in the context of climate
change, there is a pressing need for continuous monitoring of mangrove carbon dynam-
ics, which are highly heterogeneous with strong temporal and spatial variations [23,24].
The Eddy covariance (EC) technique [25] is typically applied to measure ecosystem gas
exchange across various ecosystems at a high temporal resolution, but spatially extensive
applications of the EC technique are often limited by its high instrument and infrastructure
costs. To overcome this limitation, tower-based optical remote sensing measurements
within the flux tower footprint are being conducted aiming to seek the linkage between
optical remote sensing and ecosystem carbon dynamics. The light use efficiency (LUE)
model is one of the widely used frameworks for integrating optical sampling and flux
measurements. One of the established optical sampling methods within this framework
is the photochemical reflectance index (PRI), which has been proved to be able to reflect
the physiological regulations of the plants [26,27]. This physiology-based vegetation index
reflects the decline of reflectance at 531 nm due to the xanthophyll cycle triggered by the
photo-protective mechanism of plants when receiving excessive radiation. It has been
proved to be closely related to the LUE of evergreens at leaf and canopy scales [28–31].
The increasing number of applications of PRI have greatly improved the accuracy of gross
primary production (GPP) estimation using remote sensing approaches [32].

The response of PRI to environmental stresses can reflect important characteristics
of the status of plants. Numerous studies focus on the relationships between PRI and
environmental stresses, including water stress [33] and salinity stress [34]. Over the diurnal
scale, PRI variations indicate the pigment interconversion via the xanthophyll cycle in
response to excessive light [26]. Over longer time scales, the variations of pigment pool
size in response to various environmental stresses could be the primary causes of PRI
variations [35]. Physiological mechanisms driving PRI variations are not straightforward,
and it is important to disentangle the effects of diurnal variation in the xanthophyll cycle
(facultative component) and seasonal variation in pigment pool size (constitutive compo-
nent). To further quantify the contribution of these two components on PRI variations,
many PRI-relevant formulations have been proposed. Gamon and Berry [36] proposed
that the confounding contributions of these two effects (constitutive and facultative) could
be isolated using dark-adapted leaves as a baseline for PRI measurements, where the
dark-state PRI was defined as “PRI0”. They found that most of the PRI variations were
due to the changes in constitutive pigment pool size associated with species and canopy
position. Magney et al. [37] proposed a delta PRI (∆PRI) by subtracting the midday PRI
from the early morning PRI (PRI0) to represent the diurnal magnitude of xanthophyll
pigment interconversion in response to changing environmental conditions. To date, the
physiological controls on PRI variations in mangroves have not been well understood.
Empirical studies are needed to explore the complex mechanisms underlying PRI variation
across different time scales in mangrove forests.

The introduction of PRI has greatly improved the assessments of photosynthetic
activity in evergreen ecosystems, while most of these ecosystems experience boreal climate
conditions [38,39]. The ability of PRI to track the ecosystem carbon dynamics of mangrove
forests has not been fully explored. Compared to boreal evergreen ecosystems, mangrove
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forests in subtropical and tropical zones experience much smaller seasonal variation in
temperature, and the driving factors of PRI variations may be different. In addition, the
photosynthesis rates of mangroves tend to be saturated at relatively lower light levels
due to their lower stomatal conductance and intercellular CO2 concentrations [5]. Given
these special characteristics, it is unclear whether PRI can track the long-term temporal
variations of mangrove carbon fluxes. Although some attempts have been made to focus
on this issue [40,41], most lack long-term continuous measurements that are necessary
for clarifying the relationship between PRI and mangrove carbon fluxes at both seasonal
and inter-annual time scales. Zhu et al. [42] explored the link between PRI and mangrove
carbon dynamics at a seasonal scale but they were not able to reveal any inter-annual
variation pattern. Here, based on four-years of continuous measurement of mangrove
PRI and EC-based ecosystem carbon fluxes, the purposes of this study are (1) to analyze
the response of mangrove carbon fluxes to climate fluctuations and drought stress, (2) to
examine the ability of PRI to track the response of the mangrove carbon cycle to climatic
anomalies, and (3) to explore the complex mechanisms underlying PRI variations across
different time scales.

2. Materials and Methods
2.1. Study Area

Long-term continuous measurements from EC and spectral systems were conducted
at a mangrove flux tower (23.9240◦N, 117.4147◦E) of ChinaFLUX and USCCC networks,
located in an estuarine wetland of Southeast China (Figure 1). The study area has a
subtropical monsoon climate, with an average annual temperature of 21.2 ◦C, and average
annual precipitation of 1714.5 mm. The dominant species of the mangrove forests consist
of Kandelia obovate, Avicennia marina, and Aegiceras corniculatum, with an average leaf area
index of 1.7 m2/m2 and average canopy height of 4 m [43]. The wetland is inundated by
irregular tides twice a day, with the salinity of tidal surface water varying from 0 to 15 PSU.
All the field measurements were permitted by Zhangjiang Estuary Mangrove National
Nature Reserve, China. More details on this study area can be found in our previous
studies [44,45].
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2.2. Environmental Measurements

All the meteorological data including photosynthetically active radiation (PAR), air
temperature, vapor pressure deficit (VPD), and rainfall were recorded in a CR1000 data-
logger (Campbell Scientific, Inc., Logan, UT, USA). PAR was measured using the PQS1
PAR Quantum sensor (Kipp & Zonen, Delft, The Netherlands) installed at ~12 m above
the ground, where the CNR4 Net Radiometer (Kipp & Zonen, Delft, The Netherlands)
was also installed to measure incoming shortwave radiation (SWin) and outcoming short-
wave radiation (SWout). Air temperature and relative humidity were measured by the
HMP155A sensor (Vaisala, Helsinki, Finland) mounted at ~9 m, and VPD was estimated
from them [46]. Rainfall was measured using the TE525MM Rain Gage (Campbell Scientific,
Inc., Logan, UT, USA) on the top of the flux tower. Tidal measurements including surface
water level (HOBO U20L-04 Water Level Logger, Onset, Bourne, MA, USA) and salinity
(U24-002-C Conductivity Logger, Onset, Bourne, MA, USA) were deployed above the
sediment surface near the flux tower.

2.3. Flux Data and LUE Calculation

Four-year continuous 10-Hz time series raw data were measured using an EC system
and recorded in a CR3000 datalogger (Campbell Scientific, Inc., Logan, UT, USA). The
EC system included a three-axis sonic anemometer (CSAT-3, Campbell Scientific, Inc.,
Logan, UT, USA) and an open path infrared gas analyzer (LI-7500, Li-COR Inc., Lincoln,
NE, USA). Net ecosystem exchange (NEE) was calculated through flux corrections and
quality control procedures [44] (including axis rotation, ultrasonic correction, frequency
response correction, steady-state test, turbulent conditions test, statistical test, absolute
limits test, and rain test) mainly using the EddyPro6.1 software (Li-COR Inc., Lincoln,
NE, USA). Daytime Re (ecosystem respiration) was estimated from daytime temperature
based on the fitted nighttime temperature-respiration exponential regression model [44]
and then GPP was calculated as the value of daytime Re minus NEE (Equation (1)). LUE
was computed as the ratio of GPP and APAR (Equation (2)), where APAR was the product
of PAR and fAPAR (fraction of absorbed PAR) (Equation (3)). fAPAR was derived from SWin
(incoming shortwave radiation) and SWout (outgoing shortwave radiation) (Equation (4)).
The calculation of LUE was based on half-hour data of GPP and APAR and then converted
to daily mean values. In this study, the downward (from the atmosphere to mangroves)
and upward carbon fluxes were represented by positive and negative values, respectively.

GPP = Re − NEE (1)

LUE = GPP/APAR (2)

APAR = PAR × fAPAR (3)

fAPAR = 1 − SWout/SWin (4)

2.4. Spectral Measurement and Processing

With spectral reflectance sensors (SRS; Decagon Devices, Pullman, WA, USA) mounted
at the height of ~9 m above the canopy, canopy spectral radiance and sky irradiance were
continuously measured to calculate PRI. A pair of SRS sensors were fixed at the same height
with the upward-facing sensor measuring sky irradiance and the downward-facing sensor
measuring canopy spectral radiance. The downward-facing sensor was affixed facing north
with a 45◦ view zenith angle. The field of view of the upward sensor was hemispherical and
the downward one was 36◦ with an optical footprint of ~200 m2. Spectral measurements
under rainy conditions were excluded. Time series of canopy reflectance values at 531 nm
(r531) and 570 nm (r570) bands were derived from corresponding canopy radiance and sky
irradiance measurements, and PRI was calculated based on these two canopy reflectance
values [26]:

PRI = (r531 − r570)/(r531 + r570) (5)
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To distinguish the relative contribution of two components (constitutive and faculta-
tive) to the temporal variation of the PRI time series, we calculated several PRI-derived
indicators for each day to explore the underlying physiological mechanisms. PRI0 was
calculated as the mean value of PRI under relatively low light conditions (solar eleva-
tion angles between 35–45◦) to represent a dark-state pigment content (constitutive) with
minimal xanthophyll de-epoxidation. The application of this criterion of solar elevation
angles excluded data of bad quality under too low light conditions [37]. Sunlit PRI was
calculated as the minimum PRI around noon (between 11:30 and 13:30 local time) with
the strongest illumination. Sunlit PRI was subtracted from PRI0 to calculate seasonal
∆PRI, which was then used to indicate the diurnal magnitude of xanthophyll pigment
conversion (facultative).

2.5. Statistical Analyses

The relationships among PRI, carbon, and environmental variables across time scales
were explored by various statistical analyses including Pearson correlation, linear regres-
sion, and random forest (RF). Pearson correlation and linear regression were applied
to examine the PRI-carbon relationships using half-hourly and daily data, respectively,
while the RF approach was used to disentangle the complicated and non-linear interactions
among these variables based on monthly data. The RF is a non-parameter machine learning
approach without statistical presumption of explanatory variables and thus less affected
by the issues due to the nonlinearity and collinearity among explanatory variables [47,48].
Furthermore, the RF is an ensemble algorithm by aggregating predictions from a large
number of decision trees, which reduces the possibility of the overfitting issue associated
with single-tree predictors. The out-of-bag (OOB) error estimation was used here to assess
the generalization ability of the RF prediction [49–51]. Based on the RF approach, the
relative importance and affecting direction between dependent and explanatory variables
were quantified to identify the dominant factors driving the variations of PRI and carbon
fluxes. In this study, three sets of RF statistical analyses were conducted. The first two sets
were used to analyze the influence of environmental variables on GPP and NEE. Due to
the potential lag effects, advanced time series of each environmental variable (considering
one and two months ahead; expressed as var(t − 1) and var(t − 2)) were also treated as an
explanatory variable in addition to itself (expressed as var(t)). The third set was used to ex-
amine how PRI was correlated with environmental variables, GPP and NEE. By assuming
that PRI responses to varying environmental variables faster than carbon fluxes, advanced
time series of environmental variables (considering one and two months ahead) and lagged
time series of GPP and NEE (considering one and two months later; expressed as var(t + 1)
and var(t + 2)) were also treated as explanatory variables in addition to themselves. It is
important to note that these RF applications were not to predict PRI or carbon fluxes from
environmental variables but to disentangle their interactions and compare their relative
importance in a quantitative manner. All data processing and statistical analyses were
performed using MATLAB software (The MathWorks, Inc., Natick, MA, USA).

3. Results
3.1. Temporal Variations of Environmental Factors and Carbon Fluxes

Significant seasonal patterns of PAR were observed with higher and lower mean values
in summer and winter, respectively (Figure 2a). On an annual scale, the mean values of PAR
in 2020 were higher than in previous years, especially in summer when the mean value of
2020 reached 1.21 mmol m−2 s−1 with other years only about 1.00 mmol m−2 s−1 (Table 1).
The air temperature shared a similar seasonal pattern with PAR, and the seasonal mean
value of summer in 2020 was 1 ◦C higher than previous summers. The seasonal patterns
of VPD were similar with air temperature, presenting a slight difference among four
years with higher VPD in summer and autumn, especially from late 2019 to late 2020
(Figure 2b, Table 1). Furthermore, the mean value of VPD for each season in 2020 was
higher than in previous years, with the mean value of summer (up to 1.25 kPa) significantly
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higher than other seasons (Table 1). This can be explained by less rainfall from autumn
in 2019 to summer in 2020, leading to drought stress over this period (Figure 2c). Over
this period, the cumulative rainfall only reached 778.9 mm, roughly equivalent to the
rainfall of summer (774.8 mm) in 2018 and even less than that of summer (814.1 mm)
in 2017 (Table 1). We also compared the amount of rainfall over this period with the
multi-year (2011–2019) rainfall measurements from a meteorological station of the China
Meteorological Administration (~10 km away from the study area). The rainfall over
this period only accounted for approximately half of the multi-year mean annual rainfall.
The daily maximum water level tended to be higher in autumn and showed no obvious
difference among years (Figure 2b). The salinity was higher in winter among seasons and
the average salinity was relatively higher in 2020 than in previous years (Figure 2c).
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Lines and bars indicate monthly mean values. PAR = photosynthetically active radiation; Tair = air
temperature; VPD = vapor pressure deficit.

The seasonal LUE varied from 0.013 to 0.028 mol mol−1 and tended to show a U-
shaped pattern with higher LUE in spring and winter and lower LUE in summer and
autumn (Figure 3a). Compared with annual mean values in previous years, the mean
values in 2020 decreased by 12%. GPP and NEE shared similar seasonal patterns, showing
higher values in spring and summer (Figure 3b). Compared with the annual mean values
of GPP in previous years (16.71, 15.88, and 16.51 µmol m−2 s−1), the annual mean values
in 2020 decreased by 9.0%. Similarly, the mean values of NEE in 2020 decreased by 10.7%
in comparison with previous years (13.22, 12.53, and 12.98 µmol m−2 s−1) (Table 1). The
decrease in the carbon sink appeared to lag behind the increasing VPD and decreasing
rainfall (Figures 2 and 3).



Remote Sens. 2021, 13, 4053 7 of 15

Table 1. Seasonal mean values of environmental, spectral, and carbon-related variables from January 2017 to December
2020, with higher VPD and lower rainfall values indicating the 2019–2020 drought stress highlighted in bold.

Variables PAR (mmol m−2 s−1)
Tair
(◦C)

VPD
(kPa)

Surface Water
Level (m)

Rainfall
(mm)

Salinity
(PSU) PRI LUE (mol mol−1) GPP (µmol m−2 s−1) NEE (µmol m−2 s−1)

2017

Spring 0.77 22.50 0.33 0.40 265.2 12.43 0.16 0.025 16.58 13.38
Summer 1.09 30.36 0.56 0.35 814.1 5.40 0.15 0.018 17.97 13.26
Autumn 0.90 26.67 0.59 0.52 77.3 15.31 0.16 0.020 16.22 12.80
Winter 0.74 17.60 0.31 0.40 94.9 13.16 0.12 0.024 16.05 13.43

2018

Spring 1.00 24.43 0.47 0.24 186.5 14.89 0.16 0.018 17.66 13.82
Summer 1.02 29.94 0.69 0.40 774.8 14.85 0.21 0.018 16.22 12.20
Autumn 0.86 25.78 0.62 0.45 173.9 8.65 0.19 0.020 15.30 11.92
Winter 0.63 16.88 0.19 0.40 146.1 11.36 0.14 0.026 14.32 12.19

2019

Spring 0.72 22.56 0.29 0.31 536.3 6.36 0.20 0.025 16.06 12.83
Summer 1.02 30.41 0.72 0.26 511.6 3.80 0.19 0.019 18.10 13.28
Autumn 1.00 26.64 1.06 0.43 23.7 9.48 0.10 0.019 16.75 12.95
Winter 0.61 17.91 0.25 0.33 92.3 13.27 0.14 0.028 15.12 12.84

2020

Spring 0.81 23.00 0.49 0.33 209.3 10.23 0.14 0.022 14.66 11.68
Summer 1.21 31.33 1.25 0.28 453.6 9.37 0.11 0.013 15.35 10.71
Autumn 0.88 26.30 1.06 0.47 244.0 9.56 0.11 0.018 14.75 11.37
Winter 0.70 17.73 0.40 0.33 99.6 11.61 0.10 0.023 14.82 12.35

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 17 
 

 

autumn (Figure 3a). Compared with annual mean values in previous years, the mean val-
ues in 2020 decreased by 12%. GPP and NEE shared similar seasonal patterns, showing 
higher values in spring and summer (Figure 3b). Compared with the annual mean values 
of GPP in previous years (16.71, 15.88, and 16.51 μmol m−2 s−1), the annual mean values in 
2020 decreased by 9.0%. Similarly, the mean values of NEE in 2020 decreased by 10.7% in 
comparison with previous years (13.22, 12.53, and 12.98 μmol m−2 s−1) (Table 1). The de-
crease in the carbon sink appeared to lag behind the increasing VPD and decreasing rain-
fall (Figures 2 and 3). 

 
Figure 3. Seasonal and annual variations in daytime mean values of spectral and carbon-related variables from January 
2017 to December 2020. Dots indicate daily values and lines indicate corresponding monthly mean values. PRI = photo-
chemical reflectance index; LUE = light use efficiency; GPP = gross primary production; NEE = net ecosystem exchange. 

3.2. Temporal Variations of PRI and Its Components 
The seasonal patterns of PRI appeared to be hump-shaped with higher values in 

spring and summer, which was the opposite pattern to the seasonal trend of LUE (Figure 
4). The seasonal mean PRI ranged from 0.10 to 0.21 over the four years. On an annual 
scale, the mean values of PRI in each year reached up to 0.15, 0.18, 0.16, and 0.11. Com-
pared to previous years, annual mean values of PRI in 2020 decreased by 29.0%, present-
ing an obvious decreasing trend. The decreasing trend of PRI appeared to lag behind the 
increasing VPD and decreasing rainfall but went ahead of the decreasing carbon sink (Fig-
ures 2 and 3). 

Figure 3. Seasonal and annual variations in daytime mean values of spectral and carbon-related variables from January 2017
to December 2020. Dots indicate daily values and lines indicate corresponding monthly mean values. PRI = photochemical
reflectance index; LUE = light use efficiency; GPP = gross primary production; NEE = net ecosystem exchange.

3.2. Temporal Variations of PRI and Its Components

The seasonal patterns of PRI appeared to be hump-shaped with higher values in spring
and summer, which was the opposite pattern to the seasonal trend of LUE (Figure 4). The
seasonal mean PRI ranged from 0.10 to 0.21 over the four years. On an annual scale,
the mean values of PRI in each year reached up to 0.15, 0.18, 0.16, and 0.11. Compared
to previous years, annual mean values of PRI in 2020 decreased by 29.0%, presenting
an obvious decreasing trend. The decreasing trend of PRI appeared to lag behind the
increasing VPD and decreasing rainfall but went ahead of the decreasing carbon sink
(Figures 2 and 3).



Remote Sens. 2021, 13, 4053 8 of 15

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 4. Seasonal and inter-annual variations in monthly (dotted) PRI0, sunlit PRI, and seasonal 
ΔPRI from January 2017 to December 2020. Lines indicate the 3-month moving average of monthly 
values. PRI = photochemical reflectance index. 

Seasonal and annual variation patterns of different components of PRI were pre-
sented to explore the underlying mechanisms driving PRI variations (Figure 4). The vari-
ation patterns of PRI0 and sunlit PRI were similar with PRI0 slightly higher than sunlit 
PRI. In addition, the peaks of PRI0 and sunlit PRI in 2020 were lower than in previous 
years. The annual mean values of PRI0 and sunlit PRI in 2020 decreased by 27.8% and 
29.6%, respectively. ΔPRI tended to be hump-shaped with higher (lower) values in sum-
mer (winter) within the year but showed no obvious difference among years. 

3.3. Correlations between PRI, Environmental Factors, and Carbon Fluxes 
Pearson correlation analyses based on half-hour data (Figure 5) showed that PRI had 

good relationships with carbon dynamics at the diurnal scale over the four years, showing 
a positive PRI-LUE relationship and negative PRI-GPP and PRI-NEE relationships. The 
absolute values of seasonal mean correlation coefficients of diurnal PRI-GPP and PRI-NEE 
relationships were higher than 0.58. The annual mean values of correlation coefficients 
between PRI and the three carbon-related variables were the highest in 2020, though the 
differences were not obvious. 

Figure 4. Seasonal and inter-annual variations in monthly (dotted) PRI0, sunlit PRI, and seasonal
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Seasonal and annual variation patterns of different components of PRI were presented
to explore the underlying mechanisms driving PRI variations (Figure 4). The variation
patterns of PRI0 and sunlit PRI were similar with PRI0 slightly higher than sunlit PRI.
In addition, the peaks of PRI0 and sunlit PRI in 2020 were lower than in previous years.
The annual mean values of PRI0 and sunlit PRI in 2020 decreased by 27.8% and 29.6%,
respectively. ∆PRI tended to be hump-shaped with higher (lower) values in summer
(winter) within the year but showed no obvious difference among years.

3.3. Correlations between PRI, Environmental Factors, and Carbon Fluxes

Pearson correlation analyses based on half-hour data (Figure 5) showed that PRI had
good relationships with carbon dynamics at the diurnal scale over the four years, showing
a positive PRI-LUE relationship and negative PRI-GPP and PRI-NEE relationships. The
absolute values of seasonal mean correlation coefficients of diurnal PRI-GPP and PRI-NEE
relationships were higher than 0.58. The annual mean values of correlation coefficients
between PRI and the three carbon-related variables were the highest in 2020, though the
differences were not obvious.
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and carbon-related variables from January 2017 to December 2020. For better comparison, absolute
values of correlation coefficients were shown in the figure. PRI = photochemical reflectance index;
LUE = light use efficiency; GPP = gross primary production; NEE = net ecosystem exchange.

Daily mean data were grouped by different years to analyze the correlations at the
seasonal scale (Figure 6). Daily mean values generally showed linear relationships between
carbon fluxes and PRI (statistically significant at p < 0.05) for each year. At the seasonal scale,
LUE (R2 = 0.08~0.43 for the four years) had a positive relationship with PRI while GPP
(R2 = 0.04~0.29) and NEE (R2 = 0.07~0.24) had negative relationships with PRI. The slopes
of the correlation between daily PRI and carbon fluxes were steeper in 2020 compared to
in previous years. Moreover, the fitted relationships in 2020 were the best with obviously
higher R2 than other years. In addition to the PRI-carbon relationships, the relationships
between two PRI components and carbon fluxes were also analyzed. The PRI0-carbon
relationships were similar to the PRI-carbon relationships, while the relationships between
seasonal ∆PRI and carbon fluxes were fairly poor.

The roles of environmental factors in driving PRI variations and carbon dynamics
were examined using the RF approach based on monthly mean data (Figure 7). The OOB
prediction errors of the RF models of GPP, NEE, and PRI, were small (<5%). The RF-based
analyses demonstrated that GPP was most correlated with PAR and VPD(t − 2) among all
explanatory variables, and the partial dependence plot confirmed that GPP increased with
increasing PAR but decreased with increasing VPD. NEE was most correlated with VPD
(t − 1) and salinity(t − 1), with NEE decreasing with VPD and salinity. The RF analyses of
PRI revealed that dominant explanatory variables included GPP(t + 1), VPD(t − 1), VPD
(t − 2) and rainfall, where PRI increased with rainfall but decreased with VPD and GPP.
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Figure 6. The relationships between daily carbon-related and PRI-related variables: (a–c) LUE vs.
PRI, PRI0, and ∆PRI; (d–f) GPP vs. PRI, PRI0, and ∆PRI; (g–i) NEE vs. PRI, PRI0, and ∆PRI. Lines in
black, green, blue, and red represent values in 2017, 2018, 2019, and 2020, respectively. All the fitting
curves were statistically significant (p < 0.05). PRI = photochemical reflectance index; LUE = light use
efficiency; GPP = gross primary production; NEE = net ecosystem exchange.
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Figure 7. The regression performance (a,d,g) of three sets of random forest (RF) analyses and their
quantification of relative importance (b,e,h) and affecting direction (c,f,i) for explanatory variables in



Remote Sens. 2021, 13, 4053 11 of 15

driving the variations of monthly GPP (µmol m−2 s−1), NEE (µmol m−2 s−1), and PRI. The RF-based
variable importance and partial dependence plot are shown for each explanatory variable with its
importance ranking top 50% for each set of RF analyses. The symbols of (t), (t − n), and (t + n)
after explanatory variables denote time series themselves, advanced time series, and lagged time
series, respectively (n = 1 or 2). GPP = gross primary production; NEE = net ecosystem exchange;
PRI = photochemical reflectance index; PAR = photosynthetically active radiation; VPD = vapor
pressure deficit; Tair = air temperature; Sal = surface water salinity.

4. Discussion

The measurements of less rainfall and higher VPD than the multi-year average con-
firmed that the mangrove wetland experienced drought stress from late 2019 to late 2020
(Figure 2c). Consequently, the deficit of rainfall spanning several seasons during this
period lowered the carbon sink and PRI (Figure 3). Although this effect didn’t show as
soon as the rainfall decreased, it was likely that the response of mangroves to drought
stress was not as rapid as other environmental factors. Moreover, the rainfall of spring and
summer in 2020 only summed up to 662.9 mm, which was much less than that of previous
years (Table 1). Reduction of rainfall during this period could suppress mangrove carbon
uptake since mangrove forests in subtropical monsoon climates often have stronger carbon
sequestration capacity in spring [8]. The RF analyses also indicated that rainfall was a main
factor driving NEE and PRI variations (Figure 7). Wong and Gamon [52] proved that PRI
could serve as an optical indicator of spring photosynthetic activation in evergreen conifers,
which experienced a significant temperature increase from winter to summer. However,
the seasonal variations of temperature in mangroves are not as significant as those in
boreal evergreens. Thus, spring rainfall is more likely to be a limiting factor of carbon
sink potential in subtropical mangroves. The sustained deficit of rainfall also resulted
in higher VPD (Figure 1b), which further inhibited the growth of the plants [53]. The
combined influence of rainfall and VPD accounted for the decline of carbon assimilation.
According to the ranking of RF-based variable importance, mangrove carbon fluxes were
heavily affected by VPD with obvious one- or two-month lag effects, which was similar
to previous studies [20–22]. Another important factor affecting mangrove carbon sink is
tidal salinity, which has been often reported to cause physiological drought when reaching
relatively higher values [41]. The salinity started to increase in late 2019, and the annual
average salinity of 2020 was relatively higher (Figure 2c), probably due to the drought
stress. Therefore, we concluded that the sustained deficit of rainfall, higher VPD and
salinity inhibited the carbon sequestration, consequently leading to a significant decline of
mangrove carbon uptake in 2020.

The seasonal patterns of PRI were similar to previous studies showing the highest
(lowest) values in summer (winter) [54]. Over the four years, the significant decline of PRI
in 2020 (Figure 3) implied that drought stress could affect the canopy pigment composition.
The RF analyses also indicated that rainfall and VPD were two major factors in driving
PRI variations, where PRI increased with rainfall and decreased with VPD. Sims et al. [55]
observed an obvious decline in PRI during the extreme drought with small diurnal change
relative to seasonal changes. Magney et al. [37] also found that the PRI signal was more
sensitive under water-limited conditions. To further explore the response of pigment
composition to drought stress, the seasonal variations of PRI0 and sunlit PRI also provide
some indications. Temporal variations of PRI are mainly controlled by two physiological
processes, one of which is xanthophyll cycle activity controlling the diurnal changes of PRI, and
the other is the pigment pool size dominating the seasonal variations of PRI. PRI0 and sunlit PRI
in our results shared quite similar temporal variation patterns across time scales. The seasonal
variation patterns of PRI0 and sunlit PRI were consistent across years (Figure 6), which implied
that the size of the pigment pool was affected by seasonal variations of environmental
factors [38], in particular for PAR. This is consistent with a previous study showing that PRI
was radiation-dominated with additional effects from high VPD [42]. The typical seasonal
variations of subtropical mangrove forests have higher and lower PAR in summer and
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winter, respectively [42], leading to similar seasonal variations of two components of PRI.
On the annual scale, the PRI0 and sunlit PRI showed a significant decline due to drought
stress but seasonal ∆PRI didn’t show any response. The seasonal ∆PRI reflected the daily
maximum depression the canopy suffered from, or the maximum of the xanthophyll cycle.
In comparison with the facultative component, the response of the constitutive component
of PRI was more sensitive to environmental stresses such as drought stress. Therefore, we
confirmed that in subtropical mangrove forests, the pigment pool size could be the primary
cause of the long-term variations of PRI with additional contribution from the xanthophyll
cycle, which agrees with many previous studies [36,54].

The high correlation coefficients between PRI and carbon fluxes at the diurnal scale
verified the ability of PRI to track the carbon dynamics at short time scales. The slightly
higher correlation coefficient between PRI and carbon fluxes in 2020 further implied that
drought stress could also exert an impact on the daily short-term xanthophyll cycle, but
the impact was not as significant as the long-term variations of pigment pool size. In
addition, it is shown that the temporal variation patterns of PRI and carbon fluxes were
very similar at both seasonal and annual time scales (Figure 3). Zhu et al. [42] reported that
PRI was a good indicator of photosynthetic capacity at short time scales, showing good
correlations between carbon fluxes and PRI. Our results further confirmed that at a longer
time scale, PRI was also able to track the response of carbon fluxes to environmental stresses
such as drought stress. On the seasonal scale, the relationship between PRI and carbon
fluxes was better when mangroves experienced drought stress, which was consistent with
previous findings that the PRI-carbon relationship was better under enhanced VPD or
water stress [30,37,56]. Therefore, we conclude that the relationship between PRI and
carbon fluxes performs better under drought stress in mangrove forests. The RF analyses
indicated that PRI was mainly correlated with lagged GPP and advanced VPD. Overall,
the decreasing PRI values following higher VPD and reduced rainfall did serve as an
early indicator of the declines of carbon uptake. PRI variations were mainly caused by
pigment pool size and the response to changing environmental factors were relatively faster
than the response of carbon dynamics. The relationship between PRI0 and carbon fluxes
almost mimicked the PRI-carbon relationship, indicating that constitutive pigment pool
size played an important role in driving the seasonal variations of carbon fluxes, especially
under drought stress. The poor relationship between seasonal ∆PRI and carbon fluxes
suggested that the seasonal variations of carbon fluxes were barely relevant to the changes
of the xanthophyll cycle. This contrast between PRI0 and seasonal ∆PRI indicated that the
PRI0 was more representative in tracking the seasonal variations of carbon fluxes.

Our analyses of PRI and mangrove carbon dynamics suffered from several limitations
and uncertainties. First, due to the lack of continuous meteorological observations over
a decadal time scale, we were not able to explicitly quantify the level of the drought
stress investigated in this study. Further studies might be needed to better assess the
extent of this drought stress. Second, the difference in the footprint size of spectral and
carbon flux measurements might affect the PRI-carbon relationship [42], but we’re not
able to explicitly assess this effect with current measurements. Third, our PRI sensors
were installed at a fixed position, while PRI signals could be affected by other factors
such as sun-target-view geometry [56]. Fourth, there were uncertainties in NEE and GPP,
which were estimated from raw EC measurements based on several hypotheses [57]. Fifth,
in addition to drought stress, the decline of carbon-related variables in 2020 could also
be affected by other environmental stresses [58,59]. Sixth, although the RF approach is
presumably less impacted by the overfitting issue and the OOB error estimations confirmed
small prediction errors of the RF models, explicit tests of model generalization capacity
based on independent datasets should be conducted with more available data in the future.
Lastly, although the pigment pool size, indicated by dark-state PRI (PRI0), was attributed
the primary driver of seasonal variations of PRI, concurrent measurements of pigment
composition along with PRI measurements [37] are highly needed in future research to
further confirm the findings.
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5. Conclusions

In this study, the responses of PRI and carbon fluxes to climate fluctuations and
drought stress were examined in a subtropical mangrove forest with continuous high-
frequency time-series measurements from 2017 to 2020. The ability of PRI to track temporal
dynamics of mangrove carbon fluxes was confirmed at both short-term (diurnal) and long-
term (seasonal and inter-annual) scales. The time series of daily PRI and carbon uptakes
both showed decreasing trends when experiencing drought stress. Time series of monthly
PRI were most correlated with advanced time series of VPD with one month ahead and
lagged time series of GPP with one month later, which confirmed the ability of PRI as
an early indicator of drought-induced down-regulation of carbon uptake. Compared to
annual mean values in the first three years (13.22, 12.53, and 12.98 µmol m−2 s−1), the
annual mean value of NEE decreased by 10.7% in 2020. Correspondingly, the annual
mean value of PRI decreased by 29.0% in 2020. PRI and carbon fluxes were significantly
correlated at diurnal, seasonal, and annual scales, where the relationship performed better
under drought stress. Dark-state PRI, i.e., the constitutive PRI component, showed similar
temporal variation as PRI in response to drought stress, while delta PRI, i.e., the facultative
PRI component, did not show any response to drought stress. It implied that PRI variations
in this subtropical mangrove were mainly caused by the variations in pigment pool size
rather than the xanthophyll cycle. This study highlights the potential of PRI to serve as an
early and readily detectable indicator to track the response of mangrove carbon cycle to
climatic anomalies such as drought stress.
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