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Abstract: Routing plays a critical role in data
transmission for underwater acoustic sensor networks
(UWSNs) in the internet of underwater things (IoUT).
Traditional routing methods suffer from high end-to-
end delay, limited bandwidth, and high energy con-
sumption. With the development of artificial intel-
ligence and machine learning algorithms, many re-
searchers apply these new methods to improve the
quality of routing. In this paper, we propose a Q-
learning-based multi-hop cooperative routing protocol
(QMCR) for UWSNs. Our protocol can automati-
cally choose nodes with the maximum Q-value as for-
warders based on distance information. Moreover, we
combine cooperative communications with Q-learning
algorithm to reduce network energy consumption and
improve communication efficiency. Experimental re-
sults show that the running time of the QMCR is less
than one-tenth of that of the artificial fish-swarm al-
gorithm (AFSA), while the routing energy consump-
tion is kept at the same level. Due to the extremely
fast speed of the algorithm, the QMCR is a promis-
ing method of routing design for UWSNs, especially
for the case that it suffers from the extreme dynamic
underwater acoustic channels in the real ocean envi-
ronment.
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I. INTRODUCTION

Underwater acoustic sensor networks (UWSNs) are
widely adopted in environmental and military sens-
ing undersea areas [1, 2] . With the development of
the internet of underwater things (IoUT)[3–5], more
and more artificial intelligence (AI) technologies have
been adopted for smart ocean [6]. Generally, under-
water networks consist of many sensors, which can re-
ceive and forward information through multi-hop to
the destination. However, due to the harsh environ-
ment in underwater acoustic channels [7], it is still
a challenging task to design the suitable UWSNs in
IoUT for transmitting data.

In order to mitigate the issues such as high bit er-
ror rates (BER), high end-to-end delay, and limited
frequency associated to the underwater acoustic chan-
nels, one-hop transmissions are replaced by multi-hop
transmissions, which can transmit data more effec-
tively by increasing relays. This is because multi-
hop transmissions can greatly improve performance
by decreasing signal attenuation and increasing avail-
able bandwidth during the transmission [8].

Transmission energy efficiency has also been a ma-
jor concern in UWSNs. In underwater environment,
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sensors are mainly powered by batteries, which are
difficult to recharge. Therefore, energy consumption
of the transmissions is a critical issue in the design
of UWSNs. In practice, high BER and limited band-
width will lead to many re-transmissions among the
hops and consume additional energy. Thus, energy-
efficient transmissions and low BER are the decisive
factors in the design of routing protocols for UWSNs.
Many routing protocols have been proposed to solve
these problems. Xie et al. [9] propose a vector-
based-forwarding (VBF) method that uses locations of
source, sink, and relay nodes to improve energy effi-
ciency in dynamic underwater environment. In VBF,
a self-adaptation algorithm allows each node to esti-
mate the density of nodes in its neighborhood based
on local information and choose the next node ac-
cordingly. However, the method does not consider
the energy status of the forwarder. The power of
those frequently working forwarders can be consumed
very quickly, which shortens the lifetime of the en-
tire UWSNs. To solve this problem, lifetime-extended
vector-based forwarding routing (LE-VBF) has been
presented in [10]. LE-VBF takes position as well
as energy information into consideration in order to
increase the lifetime of UWSNs. Furthermore, the
depth-based routing (DBR) protocol has been pro-
posed in [11], which only requires location depth in-
formation. A node transmits packets to the next node
which has smaller depth than itself. However, using
flooding mode to send packets can generate redundant
data and increase channel occupancy, which can cause
high energy consumption. In depth-based multi-hop
routing (DBMR) [12], the multi-hop mode of each
node is used to send packets, thereby greatly decreases
the energy consumption.

With the development of AI, many intelligent algo-
rithms, such as ant colony algorithm (ACA), simulated
annealing algorithm (SAA), artificial fish-swam algo-
rithm (AFSA), and Q-learning algorithm have been
adopted for the routing design of UWSNs. ACA [13]
can find the optimal routing by simulating the food-
seeking activities of ants. However, ACA suffers from
long searching time, easily getting stuck in local op-
tima. In [14], a Q-learning-based adaptive routing
(QELAR) protocol has been proposed to extend the
lifetime of UWSNs. The QELAR uses a reward func-
tion based on energy consumption. After the training
of an AI agent, the agent can automatically choose the

routing which consumes the least energy. QELAR has
been proved to be superior to VBF routing protocol.
In [15], Jin et al. propose a reinforcement-learning-
based congestion-avoided routing (RCAR) protocol to
reduce the end-to-end delay and energy consumption
for UWSNs, where congestion and energy are both
considered for adequate routing decision. In [16], Lu
et al. propose an energy-efficient depth-based oppor-
tunistic routing algorithm with Q-learning (EDORQ)
for UWSNs, which combines advantages of the Q-
learning technique and opportunistic routing (OR) al-
gorithm. It is shown to be able to achieve guarantee
the energy-saving and reliable data transmission.

On the other hand, cooperative communications
[17] have been introduced into UWSNs [18, 19] recre-
antly, because the broadcast nature of wireless signals
can enhance transmission quantity at the receiver side.
During the transmission, a source node broadcasts sig-
nals to a cooperative node and a receiver. The receiver
can then receive signals from both the source node and
the cooperative node. With the help of the two iden-
tical copies of the signal, the probability of packet re-
ception and success rate of decoding can be increased
in the receiver. To the best of our knowledge, until
now, Q-learning algorithm has never been applied to
multi-hop underwater acoustic cooperative communi-
cations to further enhance its performances.

In this paper, we propose a Q-learning algorithm
based multi-hop underwater acoustic cooperative rout-
ing protocol (QMCR) for the UWSNs. A new con-
cern of the multi-hop UWASNs is that when there are
both relay nodes and cooperative nodes, the difficulty
of routing selection increases. How to give full play to
the gain of cooperative communication and the advan-
tages of Q-learning is the main issue that we consider
in this paper. The main contributions of this paper are
as follows:

1) We present an improved protocol, named QMCR,
based on Q-learning algorithm and cooperative com-
munication technique for the UWSNs. In the proposed
QMCR, we set the reward function based on energy
consumption for each transmission link of the multi-
hop UWSNs; then we train the AI agent to choose the
main routing that consumes the minimum energy; fi-
nally we apply cooperative communication technique
to choose a cooperative routing to make the entire en-
ergy consumption the lowest. Extensive experiments
have shown that the QMCR can automatically choose
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the routing with low transmission energy consumption
efficiently.

2) The short running time of the proposed QMCR
is especially designed for the harsh underwater acous-
tic channels in the real ocean environment. In order
to timely find a suitable routing when the network
topology has been changed due to the rapidly chang-
ing underwater acoustic channels, the running time is
a major concern. Compared with other routing pro-
tocols, the running time of QMCR is less than one-
tenth of that of other intelligent algorithms while the
energy consumption of the selected route is almost the
same. This is because QMCR spends most of its time
on training the AI agent, and once the training is fin-
ished, the AI agent can automatically choose the best
route. However, other algorithms such as ACA and
AFSA need to calculate the energy consumption of
all the candidates of routing, causing a slow reaction
to the dynamic network topology of UWSN. There-
fore, the proposed QMCR is quite appealing to the ex-
tremely dynamic underwater acoustic channels in the
real ocean environment.

The rest of this paper is organized as follows. In
Section II, basic concept of the Q-learning and its ap-
plication in routing design for UWSNs is introduced.
Section III presents underwater acoustic channels and
energy consumption model for underwater acoustic
transmissions and combines Q-learning with coopera-
tive communications. Section IV shows the simulation
results. Finally, we conclude this paper in Section V.

II. Q-LEARNING AND ITS APPLICATION
TO ROUTING DESIGN IN UWSNS

2.1 Q-Learning Technique

Reinforcement learning (RL) is a method that trains an
AI agent to learn from its interaction with the environ-
ment where it works. The main purpose of the training
is to ensure that the agent can automatically find the
action with maximum reward in any situation. After
choosing an action in a certain situation, the outcome
will be used to give a positive or negative reinforce-
ment to the agent.

Q-learning is one of the RL algorithms that can be
seen as a Markov decision process [20]. As Figure 1
shows, at each step the agent selects a random action
under the particular environment. Then, the agent will

receive a probabilistic reward whose value depends
on current state and the corresponding action. At the
same time, the current state updates to the next step.
After learning from the outcome, agent takes next ac-
tion based on previous experience. The process does
not stop until the agent achieves the goal we set at the
beginning. When the process stops, one iteration time
is completed. Every iteration operation forms a lim-
ited sequence of states, actions and rewards.

Agent Environment

State

New StateReward

Action

Figure 1. Framework of Q-learning.

At each step, the agent learns from its past and re-
members it as Q value. The updating of Q value can
be defined by the following expression:

Q(s, a) = R(s, a) + δ ·max{Q(s′, a′)}, (1)

where s denotes current state; a denotes current ac-
tion; s′ is the next state after taking this action; a′ is all
the actions that the next state s′ can take. R(s, a) de-
notes the current reward, and max{Q(s′, a′)} denotes
the largest Q value we can get in the next state. It
means Q value is not only determined by current re-
ward but also future reward. δ is the discount factor,
where 0 < δ < 1. If the discount factor is larger, the
agent will put more weight on future reward than cur-
rent reward. In general, the value of Q(s, a), which
takes both current reward and future reward into con-
sideration, can measure whether the action in the cur-
rent state should be taken or not. Q table is a matrix
that documents the Q value in each state and each ac-
tion. The size of the Q table is m× n, where m is the
number of states and n is the number of actions. All
the Q values are initialized to zero prior to the training.

2.2 Q-Learning for Routing Design in UWSNs

Adopting the Q-learning technique in UWANs for
IoUT, a simple example of routing design without con-
sidering cooperative nodes can be given as below [21]:
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Suppose that there are six nodes in an UWSN, and
each of them can receive and transmit packets. The
connection between each node is shown in Figure 2(a).
The circles represent sensor nodes, and the arrows rep-
resent transmission directions. Each sensor node is a
state and each arrow represents an action. In this ex-
ample, there are six states and thirteen actions. We can
see from Figure 2(a) that both node 0 and node 2 have
only one node to connect. We set node 5 as the desti-
nation. At first, a packet is sent from a random node.
The reward of an action, which can lead to the desti-
nation, is set as 100. Otherwise, the reward is set to
be 0. The reward of impossible actions such as node 2
to node 0 is set as -1. As agent can reach the destina-
tion by choosing action 5 in state 1, the corresponding
reward R(1, 5) is 100. If the agent chooses action 4
in state 0, the reward will be 0 since action 4 does not
lead the agent to the destination. Impossible actions,
such as action 2 in state 0, have the negative reward.
The reward distribution and reward matrix are shown
in Figure 2(c) and Figure 3(a).

At the beginning of the training process, a Q table
is initialized with zeros as Figure 3(b) shown. We set
the discount factor δ as 0.8, and choose state 1 as the
source node. If the action is randomly selected as 5,
Q(1, 5) can then be calculated and updated based on
Eq. (1):

Q(1, 5) = R(1, 5) + 0.8×max{Q(5, 1), Q(5, 2),

Q(5, 3), Q(5, 4), Q(5, 5)}
= 100 + 0.8×max{0, 0, 0, 0, 0}
= 100.

(2)
Then, we update the Q table shown as Figure 3(c).

The training process will be stopped when values in
the Q table are almost stable. The final Q table is as
shown in Figure 3(d). In order to view the outcome
more directly, every Q value can be presented in the
connection relation figure as shown in Figure 2(c).

In Figure 2(c), the value of arrow denotes the cor-
responding Q value. Red arrow is the action with the
largest Q value, namely the best action corresponding
to each node. After training, the agent is ready for
choosing the best routing in any situation. For ex-
ample, suppose there is a packet sent from node 3.
Since Q(3, 1) is greater than Q(3, 2), the packet will
be transmitted to node 1. In state 1, Q(1, 5) is greater

than Q(1, 3), therefore the agent will choose action
5 that leads to the destination. In particular, if there
are more than two actions with identical Q values to
choose from, one of them will be chosen randomly as
the next action. For example, in Figure 2(c), Q(3, 1)

and Q(3, 4) are equal, so action 1 or action 4 will be
randomly selected as the next action.

The process of Q-learning for UWSNs routing de-
sign in IoUT can be summarized as Algorithm 1.

Algorithm 1. Q-learning for UWSNs routing design.

Initialization: According to the number of sensor
nodes and the topology of UWSN, set the parame-
ters, including discount factor δ and reward values
in the reward table; initialize Q table to record Q
value.

1: for i = 1, 2, . . . , do
2: Step 1: Randomly choose a beginning and ran-

domly take actions according to the reward ta-
ble and Q table; the goal is to let the agent reach
the destination;

3: Step 2: Update Q table according to Eq. (1);
4: Step 3: Compare its new Q value to the last Q

value, and do judgement:
5: if Q table is changed then
6: update the Q table again from step 1:
7: else if the Q table is almost unchanged then
8: stop updating the Q table and break out.
9: end if

10: end for
11: According to the stable Q table, select the optimal

routing.

III. DESIGN OF Q-LEARNING ALGO-
RITHM IN MULTI-HOP COOPERA-
TIVE UWSNS

3.1 Underwater Acoustic Communication En-
ergy Consumption Model

The energy consumption model of underwater acous-
tic communication is different from the model of ter-
restrial communication. Since it requires much less
power in receiving packets than transmitting, we only
consider the power required for transmitting at this
moment. The energy consumption model of point-
to-point underwater acoustic communication in [22] is
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Figure 2. An example of UWSN for Q-learning: (a) Connection between each node; (b) Reward distribution; (c) Connection
relation with Q value.
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Figure 3. Reward table and Q table for Q-learning: (a) Reward table; (b) Initialized Q table; (c) Q table after one update;
(d) Q table after training.

shown below.
The attenuation of the power relative to the distance

d is U(d), which can be described as

U(d) = (1000 · d)κ · αd, (3)

α = 10
γ(f)
10 , (4)

γ(f) =
0.11f2

1 + f2
+

44f2

4100 + f2
+

2.75f2

104
+

3

103
, (5)

where γ(f) is the absorption coefficient. Under differ-
ent communication conditions, the value of κ is dif-
ferent. In surface channel or deep-sea channel where
wave propagates cylindrically, κ = 1; in surface chan-
nel or deep-sea channel where wave propagates cylin-
drically with the absorption of seabed, κ = 1.5; in
open water where wave propagates spherically, κ = 2.
The choice of f is based on the empirical formula of
the optimal working frequency and working distance
[22],

fopt =

(
200

d

) 2
3

, (6)

where d represents the distance between two adjacent
nodes under the unit of kilometers.

Let P0 be the lowest power level at which a data
packet can be correctly decoded by the receiver, thus
the lowest transmission power of the node P can be
written as

P = P0 · U(d). (7)

With Eq. (3) to Eq. (7) in hand, we can obtain the
transmission power for each transmitting. Then the
energy consumption can be calculated and more de-
tails can be found in [18]. From the underwater acous-
tic transmission loss or energy consumption model, we
can observe that distance is the most critical parameter
in determining energy consumption. For convenience,
we can express the energy consumption cost function
L(d) as the positive correlation with the attenuation of
the power U(d),

L(d) ∝ U(d). (8)

Therefore, we design the reward table of Q-learning
technique mainly based on the distance for the multi-
hop cooperative UWSNs.
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3.2 Combination Design of Q-Learning Tech-
nique and Cooperative UWSNs

In the multi-hop cooperative UWSNs of IoUT, the sys-
tem model can be shown as Figure 4. The source node
is denoted as S, the destination node is denoted as D,
the relay node is represented as Ri, and the coopera-
tive node is represented as Ci(i = 1, 2, . . . , N − 1),
where N is the number of the hops.

In Figure 4, for each hop of the network, say “Ri −
Ci+1−Ri+1”, it adopts the dynamic coded cooperation
(DCC) scheme as we investigated in [18] and [19],
where the cooperative node Ci+1 can enhance the data
transmission from relayRi to relayRi+1 by exploiting
the benefit of rate-compatible coding. Further details
of DCC transmission design for “Ri − Ci+1 − Ri+1”

group and its application in multi-hop scenario can be
found in our previous work [18, 19].

S

C1

R1

R3

RN-1

CN-1

C3

D

Source/Destination

Relay node

Cooperative node

Broadcast path

Cooperative path

Multi-hop path

R2

Figure 4. Multi-hop cooperative UWSNs model.

The task of design the optimal routing in this multi-
hop cooperative UWSN is to find the routing on the
lowest transmission energy consumption with the help
of cooperative nodes.

The most important thing in Q-learning is the de-
sign of reward table. In order to apply Q-learning to
routing design, we use the negative distances as the
rewards. For example, if the distance from node 1 to
node 2 is 2 km, and the distance from node 1 to node
3 is 3 km, then the reward of taking action 2 in state
1 is -2, and the reward of taking action 3 in state 1
is -3. After the iteration, Q(1, 2) will be greater than
Q(1, 3), so the agent will choose to take action 2 in
state 1. Since the distance is the shortest, the rout-
ing is the one with the smallest transmission energy
consumption based on the energy consumption model
according to Eq. (8).

For the case without cooperative node, the energy
consumption cost function L(dij) in state k is ex-

pressed as:
Lk,ij ∝ U(dij), (9)

ΨTotal = ΣLk,ij , (10)

where Lk,ij represents the energy consumption cost
function from node Ri to node Rj during the trans-
mission in state k, dij is the distance between the two
nodes. The total energy consumption (from source
node to destination node) cost function is the sum of
each link of Lk,ij , and denoted as ΨTotal.

For the case with cooperative node, the energy con-
sumption cost function is expressed as

Lk,ij ∝
U(dij) +4 · U(dcjj)

1 +4
, dij ≤ r2, dcjj < r1,

(11)

4 =

{
0, dij ≤ r1
1, dij > r1

, (12)

where r1 is the furthest distance that the data packet
can be decoded correctly without the help of coopera-
tive node, r2 is the furthest distance that the data can be
decoded correctly with the help of cooperative node,
dij represents the distance from the current node Ri
to the next node Rj , and dcjj represents the distance
from the cooperative node Cj to the next node Rj . In
the case where the cooperation is not satisfied,4 takes
0 and the cost function is equal to U(dij). If the co-
operation is satisfied, 4 takes 1 and the cost function
is equal to the average of U(dij) and U(dcjj). The to-
tal energy consumption of the network is equal to the
summation of the energy consumptions of every two
adjacent nodes.

Ri

Ri+1 Ri+1 Ri+1

r1

r2

, ,, ,,,

Figure 5. Node location condition for cooperative commu-
nication.

As shown in Figure 5, when cooperative communi-
cation is adopted, the distance dij between two nodes
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should satisfy the range r1 < dij < r2. When the dis-
tance dij is too small, such as nodeR′

i+1(dij < r1), the
receiving node can successfully receive and decode the
signal from the source node without the help of coop-
erative node. When the distance dij is too large such as
node R′′′

i+1(dij > r2), the receiving node can not suc-
cessfully decode the signal from the source node even
with the help of a cooperative node. Therefore, only
when the distance dij between the two nodes satisfies
r1 < dij < r2, such as node R′′

i+1, the cooperative
node is necessary and effective.

There may be multiple cooperative nodes to choose
from between any two nodes. As shown in Figure 6,
there are five candidate cooperative nodes around node
Ri and node Ri+1. Since node C5 is not between node
Ri and node Ri+1, it cannot be a cooperative node.
In the remaining four candidate nodes, according to
the cost function Eq. (11), the energy consumption of
each candidate node will be calculated. The one with
the lowest energy consumption will be selected as the
cooperative node.

Ri Ri+1

C1

C2

C3

C4 C5

Figure 6. The case with multiple cooperative nodes.

The idea of designing Q-learning algorithm for the
multi-hop cooperative UWSNs is as follows: First,
the main route is selected by Q-learning, and the dis-
tance dij of each node in the main path should satisfy
r1 < dij < r2 (the range of cooperative communica-
tion). Then, according to the main route, the cooper-
ative nodes that can minimize the transmission energy
consumption will be calculated. At last, the two are
combined to obtain the final routing scheme.

Specific steps are as follows:
1) Parameter initialization. Input node location

information and set parameters (including number of
nodes, number of iterations, learning rate, discount
factor, number of states, number of actions, source
node, destination node).

2) Design the reward table. The distance between

every two nodes is calculated according to the node
locations, and then is stored in a matrix called edge.
For example, the distance from node 1 to node 3 is
3 km, then edge(1,3)=edge(3,1)=3. Next, each ele-
ment in the matrix edge takes a negative value as its
reward value for training the agent. Due to the smaller
the distance, its value is larger after taking the nega-
tive, and the agent tends to get a bigger reward. Hence
the agent will preferentially transmit the data to the
nearest node. In order to prevent the agent from trans-
mitting data from source node to itself, the reward for
performing action k in state k is set to be -1000 (ap-
proximately infinitesimal).

For cooperative communications, we set the dis-
tance threshold r1 = 2.5 km, r2 = 4 km as an ex-
ample. The reward between nodes with too small dis-
tance (dij < r1) and too large distance (dij > r2) is
set to be -1000 (approximate infinitesimal) to meet the
condition of cooperative communication.

3) The iteration of training the Q table. Create
a zero matrix with size equal to the number of states
multiplied by the number of actions as the original Q
table (the number of states and the number of actions
equals the number of nodes in the UWSNs). The iter-
ation process is shown as follows: i) randomly select a
state and an action with reward greater than -1000; ii)
the environment feedbacks the current reward value;
iii) search for the maximum Q value of the next state;
calculate the new Q value according to Eq. (1); iv)
continue to select an action in the next state and repeat
the above process until the destination node is reached.
Above steps consist one iteration. The final number of
iterations required to achieve a stable Q table depends
on the specific network environment.

4) Correction of the Q table. It is necessary to cor-
rect the Q table; otherwise, the agent may fall into lo-
cal optimum. For example, the distance between node
3 and node 4 is very small. The Q value of taking ac-
tion 4 in state 3 and taking action 3 in state 4 is very
large so the data packet will be transmitted back and
forth between node 3 and node 4. For this problem, if
the agent is in state 3, the Q value of action 3 for all
other states is set to be -1000, which means the data
packet will not return to state 3 in any situation. It en-
sures that the data packet can be transmitted forward
smoothly.

5) Use the agent to select the main routing. For
specific source and destination nodes, the agent starts
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from the source node and selects the action that max-
imizes the Q value according to the Q table until it
reaches the destination node. Record the nodes se-
lected by the agent each time to form the main route.

6) Select the cooperative nodes. In each hop of
the main route, if there are multiple nodes that can be
chosen as the cooperative node, use the energy con-
sumption cost function to calculate and select the node
that minimizes energy consumption as the cooperative
node. Record each cooperative node and then the co-
operative routing is obtained.

7) Performance output. Calculate total transmis-
sion energy, algorithm running time and draw the rout-
ing map.

IV. NUMERICAL RESULTS

In this section, we present the simulation results of
the proposed QMCR for the multi-hop cooperative
UWSNs. The simulation is carried out based on the
MATLAB software platform, the computer operating
system is Windows 10 (64-bit), the CPU is i7-7700,
and the memory is 8 GB. We compare the performance
of QMCR and AFSA protocols to evaluate the superi-
ority of the proposed scheme.

4.1 Simulation Setup

As shown in Figure 7, a total of 18 nodes are arranged,
where each circle represents a sensor node, and the
number represents the index of nodes. The source
node S is node 1 and the destination node D is node 18.
In order for the transmission to proceed smoothly, the
18 nodes are located in a rectangular area with around
14 km length and 5 km width.
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Figure 7. Routing selected by QMCR without cooperation.

It is assumed that underwater acoustic communica-
tions are carried out in the shallow sea and the sound
waves mainly propagate in the form of cylindrical
waves, i.e., set κ = 1.5 in Eq. (3). According to
Eq. (11) and Figure 5, we set the distance threshold
r1 = 2.5 km, r2 = 4 km in the simulation. If the
distance between two nodes in a hop is too far to de-
code correctly (dij > r2), the topology structure of
the UWSNs should be reconsidered or we should add
the transmitting power and reset the cooperative region
design.

4.2 Simulation Results

First we evaluate the performance of QMCR and
AFSA without the cooperation strategy (According to
Eqs. (11) and (12), when there is no cooperative node,
QMCR algorithm essentially degenerates into a gen-
eral Q learning algorithm). The maximum number of
iterations is set as 1000, the discount factor δ is set as
0.8.

Figure 7 shows the selected routing result of QMCR
without cooperative nodes. The solid blue line repre-
sents the selected routing, which is 1-3-4-5-7-9-10-12-
13-16-18. The total value of energy consumption cost
function for the transmission is 5390034. The running
time of QMCR algorithm is 0.23 seconds.

Figure 8 is the result of AFSA without cooperative
nodes. The selected routing is 1-3-4-5-7-9-10-12-13-
14-16-18. The total value of energy consumption cost
function for the transmission is 5724767. The running
time of AFSA algorithm is 17.51 seconds.
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Figure 8. Routing selected by AFSA without cooperation.

It can be concluded that the routing selected by Q-
learning algorithm is one hop less than that selected
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by AFSA. Especially, compare to AFSA, the running
time of Q-learning algorithm reduces from 17.51 sec-
onds to 0.23 seconds, which is a drop of 98%, and
the total transmission energy consumption has also re-
duces 5%. It can be seen that the Q-learning algorithm
performs faster and the selected routing consumes less
energy.

Next, we evaluate the performance of these two al-
gorithms for the case with cooperative nodes.

In Figure 9, the solid blue line represents the main
routing and the dotted red line represents the cooper-
ative routing selected by QMCR. The trained agent
first selects the main routing 1-4-9-13-18, and then
finds the best cooperative nodes 3, 7, 12, 16 with the
lowest transmission energy. The total value of en-
ergy consumption cost function for the transmission is
3251576. The running time of QMCR algorithm is 0.8
seconds. Compared with the results in Figure 7, it can
be observed that the transmission energy consumption
of QMCR is only 60% of that of non-cooperative Q-
learning algorithm.
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Figure 9. Routing selected by QMCR for the case with co-
operation.

Figure 10 is the routing selected by AFSA with co-
operative nodes. The main routing selected is 1-5-10-
13-18, and the cooperative nodes are 4, 9, 12, 16. The
total value of energy consumption cost function for the
transmission is 3071395. The AFSA algorithm takes
10.81 seconds in this case.

Compared to the AFSA, the running time of QMCR
is decreased into 7.4% of that in AFSA. The trans-
mission energy consumption of QMCR is 5% higher
than that of AFSA. In the cooperative case, the run-
ning time of QMCR is still much smaller than that of
AFSA while the transmission energy consumption is
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Figure 10. Routing selected by AFSA for the case with co-
operation.

similar.

4.3 Comparison and Discussion

In order to analyze the advantages and disadvantages
of QMCR and AFSA, we apply the two algorithms to
the same underwater acoustic communication environ-
ment to observe the main differences.

The resulting comparisons are shown in Table 1.
From the comparison above, it can be concluded

that QMCR is superior to AFSA in terms of algo-
rithm running time, transmission energy consumption
and stability for the case without cooperation. Espe-
cially the running time of QMCR is much less than
that of AFSA with a drop from 17.51 seconds to 0.23
seconds, which is a 98% reduction. This is because
the core of QMCR is using the reward table to con-
tinuously optimize the Q table. When selecting the
routing, the agent selects the action with the largest Q
value to complete routing selection in one time. How-
ever, the AFSA first selects a routing, and then con-
tinuously selects a different routing to choose a better
one. That is to say, the QMCR only needs to choose
the routing and calculate the energy consumption once
while the AFSA needs to evaluate multiple routings.
Therefore, the AFSA takes much more time than the
QMCR.

For the case with cooperation, the running time is
0.8 seconds for QMCR, and 10.8 seconds for AFSA.
The running time of QMCR is about 1/10 of that of
AFSA. In addition, the QMCR has a high conver-
gence. Hence both the running time and stability of
QMCR are better than those of AFSA, but the trans-
mission energy consumption is slightly larger than that
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Table 1. Comparison between AFSA and QMCR.

Cases Items AFSA QMCR

Non-Cooperation

Time 17.51 s 0.23 s
Energy 5724767 5390341
Routing 1-3-4-5-7-9-10-12-13-14-16-18 1-3-4-5-7-9-10-12-13-16-18

Convergence Low High

Cooperation

Time 10.8 s 0.8 s
Energy 3071396 3251576
Routing 1-5-10-13-18 1-4-9-13-18

Cooperative node 4,9,12,16 3,7,12,16
Convergence Normal High

of AFSA. This is because the AFSA continuously op-
timizes and iterates the routing as a whole. However,
the QMCR is too complicated to directly take cooper-
ative nodes into consideration in the reward table. The
QMCR first uses the Q-learning algorithm to calculate
the main routing and then selects the cooperative node
that minimizes the transmission energy. Hence the
transmission energy consumption is slightly higher.

In summary, if we need to quickly choose the rout-
ing in a dynamic underwater environment, the QMCR
is the better choice since its computational complex-
ity and running time are much lower than other algo-
rithms. The AFSA can be used when there is enough
time to run the algorithm.

4.4 Iterations Analysis of QMCR Algorithm

Figure 11 shows the energy consumption of the se-
lected routing of QMCR with respect to the number
of iterations. The energy consumption of the selected
routing is recorded during iterations of training the Q
table. If the energy consumption of the selected rout-
ing becomes stable, it means that the Q table has con-
verged, and the training is completed. Therefore, we
can estimate the times of training required for QMCR
to avoid unnecessary training steps and reduce the run-
ning time.

Since the Q table has not been completed in the first
300 iterations, the energy consumption of the routing
is too large to be displayed. Therefore, the horizontal
axis starts from the 300-th iteration. After the num-
ber of iterations reaches about 550, the energy con-
sumption of the selected routing becomes stable. In
summary, through about 550 iterations, the Q table is
basically stable, which indicates the iteration is over
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Figure 11. The iterations analysis of QMCR.

and the agent training process is completed.

4.5 Performance in Dynamic Underwater En-
vironments

In the case where the sea state is stable, the underwa-
ter transducers are in relatively fixed positions; in the
case where the sea wind is heavy, the positions are rel-
atively unstable, as shown in Figure 12.

Surface

Bottom

Land

Figure 12. A UWSN when the sea state is not stable.

Due to the complex and varied marine environ-
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ments, the drift of the nodes may occur. Therefore,
in order to simulate the dynamic drift of the network
nodes, the horizontal and vertical coordinates of the re-
lay nodes can be randomly added by−0.5 km to +0.5

km based on the fixed positions of the 18 nodes dur-
ing the simulation. Note that, in the actual ocean sce-
nario, the drifts of network nodes are complicated with
horizontal, vertical, and oblique movements. In our
simulation analysis, it is assumed that the node moves
around a fixed position and moves randomly within the
range of ±0.5 km. That is to say, no matter to which
direction the node moves, it only moves within the
range of ±0.5 km around the fixed position. In fact,
because the acoustic wave radiates omni-directionally,
it covers a three-dimensional space. No matter the
node moves in horizontal, vertical, and oblique di-
rections, as long as the receiver node is in the three-
dimensional space and within an appropriate range of
the acoustic radiation of the transmitter node, it can
receive and decode the signal.

In the simulation process, the possible drift ranges
of relay nodes and cooperative nodes are shown in Fig-
ure 13. Hence the topology of the dynamic network in
Figure 13 can be used to verify the effectiveness of the
proposed QMCR when the nodes are drifting with the
ocean current.
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Figure 13. Possible drift ranges of sensor nodes.

Figure 14 shows the routing selected by QMCR un-
der the condition of network nodes drift. It can be ob-
served that after nodes movement, the QMCR can still
select a new route quickly according to the new net-
work topology. According to the comparison in Ta-
ble 1, we know that the running time of QMCR is
much less than that of other algorithms. Therefore,
the proposed QMCR is very suitable for the actual sit-

uation of network node drift caused by the dynamic
changes in the marine environment. It means that the
proposed QMCR has strong adaptivity and can be ap-
plied to complex and variable marine environment.
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Figure 14. Routing selected by QMCR for dynamic net-
work.

V. CONCLUSION

In this paper, we have proposed a novel routing proto-
col, named QMCR, for UWSNs in IoUT based on co-
operative technique and Q-learning algorithm. A suit-
able reward table is designed for the underwater acous-
tic communication model. Through the continuous
updating and optimization of Q table, the agent can
quickly and automatically select the optimal transmis-
sion routing compare with other routing algorithms.
The method greatly reduces the amount of calculation
and saves the running time of the algorithm. Through
simulation and comparison with the AFSA, it can be
clearly observed that the proposed QMCR can reduce
the time consumption of the algorithm by ten or even
dozens of times while ensuring that the transmission
energy of the selected routing is approximately un-
changed. In addition, the proposed QMCR is a gen-
eral framework, which can be easily adapted for differ-
ent applications by adding new factors into the reward
function. In the future, we can take metrics such as
residual energy of each node, the density of nodes and
even topography of UWSNs into consideration. Also,
we can tune the weight of each parameter to ensure the
highest performance of the protocol, which is more at-
tractive for the complex underwater acoustic channels
in UWSNs.
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