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Abstract

Background: The nuclear progesterone receptor (Pgr) is a ligand-dependent

transcription factor primarily responsible for mediating progesterone actions

relevant for reproduction across vertebrates. Information on the cellular locali-

zation of Pgr expression in the reproductive system is required for developing

a comprehensive approach to elucidate the role of Pgr in reproduction.

Results: We generated transgenic zebrafish Tg(pgr:eGFP) that express enhanced

green fluorescent protein (eGFP) driven by promoter sequence of pgr gene. The

tissue distribution pattern of egfp mRNA is consistent with the pgr mRNA

expression in Tg(pgr:eGFP). In the pituitary, GFP signals are found in the proxi-

mal pars distalis. In order to better discern the cellular localization of GFP sig-

nals in gonads, Tg(pgr:eGFP) line was crossed with Tg(gsdf:nfsB-mCherry) line,

specifically expressing nitroreductase-mCherry fusion protein in granulosa and

Sertoli cells in ovary and testis, respectively. Imaging of testis tissue showed that

GFP expression was confined to Leydig cells. In the ovary, GFP expression col-

ocalized with the mCherry signal in granulosa cells. Intriguingly, we also identi-

fied some non-granulosa cells close to where blood vessels branched, expressing

stronger GFP signals than granulosa cells.

Conclusions: Analyzing Tg(pgr:eGFP) expression in zebrafish provided leads

toward new routes to study the role of Pgr in reproduction.
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1 | INTRODUCTION

Progestagenic sex steroid hormones play critical roles in
reproduction across vertebrates. The biological activity of
progestin is mediated via specific receptors. The classic
nuclear progesterone receptor (Pgr), a member of the
nuclear receptor superfamily,1 functions primarily as a
ligand-dependent transcription factor to regulate target
gene expression,2 while membrane-associated Pgrs are

involved in nongenomic mechanisms.3 To date, only a sin-
gle pgr gene has been reported in the majority of verte-
brates, except for Xenopus laevis,4 Japanese eel (Anguilla
japonica),5,6 and European eel (Anguilla anguilla),7 in
which two distinct paralogous copies of pgr genes have been
described. In humans, rodents, and chicken, two isoforms
(A and B), encoded by a single PGR gene but originating
from different translational initiation sites at two in-phase
ATG codons, have been reported.8,9 In teleost fish species
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studied to date, only gilthead seabream (Sparus aurata)
exhibit alternative splicing of the pgr.10

Studies using Pgr knockout (KO) mice, which was gen-
erated using CRE-loxP gene-targeting approach, indicated
that only PGR-A is both necessary and sufficient to elicit
the progesterone-dependent reproductive responses
required for female fertility, while PGR-B is needed to elicit
the normal proliferative responses of the mammary gland
to progesterone.2 Considering the data in mice and the pre-
dominant expression of pgr in the gonads of different spe-
cies, we assume that the major function of Pgr is to mediate
the effect of the teleost progestins, 17,20β-dihydroxypregn-
4-en-3-one (DHP)11 and 17,20β,21-trihydroxy-pregn-4-en-
3-one (20β-S),12 on reproductive physiology. Indeed, in
zebrafish (Danio rerio), pgr KO females, which was gener-
ated using TALEN-mediated gene-editing technology, was
infertile due to ovulation defects.13 The pgr KO males were
fertile, but fshb transcripts levels no longer responded to
DHP.14 In tilapia (Oreochromis niloticus), pgr KO males,
which was generated using CRISPR/Cas9 technology,
showed subfertility, reflected by significantly lower gonado-
somatic indices, sperm counts and motility, reduction of all
stages of germ cells.15 Although results from these pgr KO
models provide clear evidence that the Pgr plays important
roles in fish reproduction, the molecular mechanisms
underlying these phenotypes remain to be further
elucidated.

The identification of Pgr-expressing cell types in repro-
ductive organs is a critical first step to investigate molecular
mechanism regulated by Pgr. So far, research on the cellular
localization of Pgr in vertebrate gonads often provided con-
troversial results. In human testis, PGR mRNA and protein
have been detected in spermatogenic, Sertoli, and Leydig
cells,16,17 or PGR protein expression was reported in a few
peritubular and interstitial cells, but not in germ cells.18 In a
murine Leydig cell, tumor line PGR was not detected,19

while Pgr promoter-driven LacZ expression was induced by
intratesticular hormonal deprivation in mouse Leydig
cells.20 In zebrafish testis, the pgr mRNA was detected in
Leydig and Sertoli cells,21 while Pgr protein was detected in
spermatogonia and spermatocytes.22 So far, most of these
studies on the cellular localization of PGRweremainly con-
ducted by immunohistochemistry (IHC) and/or in situ
hybridization (ISH). IHC and ISH may show inconsistent
results due to methodological issues, such as the fixation
used, the specificity of antibodies or cRNA probes, or tech-
niques used to detect the primary antibodies or cRNA pro-
bes. Therefore, the cellular localization of PGR in the
reproductive system requires further studies using other
approaches.

In the present study, in order to investigate spatial
and temporal expression patterns of the pgr gene in
zebrafish, we have used the Tol2 transposon system to

generate a transgenic zebrafish strain Tg(pgr:eGFP), in
which a �2.8-kb proximal promoter region is fused to the
coding region of enhanced green fluorescent protein
(eGFP). The cloned promoter region mimicked the
expression profile of endogenous pgr transcripts in
zebrafish. To better identify the gonadal cell types
expressing GFP driven by the pgr promoter, the Tg(pgr:
eGFP) strain was crossed with another transgenic
zebrafish strain, Tg(gsdf:nfsB-mCherry), which expresses
mCherry protein in gonads under the control of the pro-
moter of zebrafish gonadal soma-derived factor (gsdf )
gene, resulting in transgene expression in Sertoli and
granulosa cells.23 The results of the cellular localization
of pgr gene expression in pituitary and gonads give infor-
mation on the identity of the Pgr target cells of these cen-
tral tissues of the reproductive system, providing the
required basis for future, targeted studies on progestogen
functions in these tissues.

2 | RESULTS

2.1 | Establishment of transgenic
zebrafish lines

In order to compare the tissue expression profile of the
Tg(pgr:eGFP) transgene with the endogenous pgr gene,
the levels of the egfp and endogenous pgr transcripts were
determined by reverse transcription PCR of seven tissues.
Similar to our previous observations,21 pgr mRNA was
detected in several organs (testis, ovary, brain, pituitary,
and kidney), but not in the heart and liver (Figure 1A).
Egfp mRNA showed a similar tissue expression pattern
(Figure 1B), suggesting that the �2.8 kb promoter frag-
ment contained the regulatory elements required to reli-
ably convey the pgr's tissue-specific expression pattern.

2.2 | Cellular localization of GFP under
the control of pgr promoter in the pituitary

The pituitary of zebrafish is below the brain and lay within
a hypophyseal fossa. After removing the brain, the pituitary
can be found by using a fluorescent dissecting microscope,
the GFP signals being in the middle of the pituitary
(Figure 2A-C). The dorsal view of the pituitary showed that
the GFP-positive cells was located on the proximal pars dis-
talis (PPD), occupying the major part of PPD (Figure 2D).
Most of the GFP-positive cells were associated in large
aggregates, whereas only a few were scattered as single cells
(Figure 2D). A lateral view of the pituitary confirmed that
the GFP-positive cells located to the PPD (Figure 2E), in
particular to its central and ventral parts (Figure 2E).
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2.3 | Cellular localization of GFP under
the control of pgr promoter in testis

Direct observation of the intact testis of Tg(pgr:eGFP)
showed strong GFP signals in a mesh or network topology
(Figure 3A, B). Cryosections showed germ cells at different
stages presented in the spermatogenic tubules. GFP-positive

cells were present in the intertubular compartment
(Figure 3C, D). Direct observation of the whole testis of
double transgenic fish Tg(pgr:egfp/gsdf:nfsB-mCherry)
showed that there was no colocalization of GFP and
mCherry signals (Figure 3E, F). The mCherry signal was pre-
sent within spermatogenic tubules, delineating the borders of
the spermatogenic cysts (Figure 3F). Analyzing cryosections

FIGURE 1 The gene expression of pgr and egfp in the Tg(pgr:eGFP) zebrafish. The tissue expression pattern of the endogenous pgr

gene (A) and egfp gene (B) was assessed on reverse-transcribed total RNA by PCR on zebrafish transgenic lines. The pituitary sample was

pooled from 20 fish, and except the ovary, other tissues were collected from the same adult fish. B, brain; eGFP, enhanced green fluorescent

protein; H, heart; K, kidney; L, liver; MK, marker; O, ovary; P, pituitary; pgr, progesterone receptor; T, testis

FIGURE 2 Cellular localization of green fluorescent protein (GFP) under the control of pgr promoter in the pituitary. A, The pituitary

expressing GFP signals laid within a hypophyseal fossa. The white dash line indicated a cross-shaped bone containing the pituitary. B,

Dissected cross-shaped bone (white dash line) containing the pituitary (red dash line). C, The intact pituitary (red dash line) was collected by

breaking the bone (white dash line). D, Dorsal and, E, side view of the pituitary indicated the expression of GFP in the proximal pars distalis

(PPD), and most of the GFP-positive cells normally formed aggregates (red arrow), whereas a few were scattered as single cells (red

arrowhead). The blue fluorescence represented the nucleus which was stained by Hoechst33342. Scale bars = 200 μm (A, B, C) and 50 μm
(D, E). Pgr, progesterone receptor
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similarly showed distinctly localized GFP and mCherry sig-
nals in the intertubular and intratubular compartments,
respectively (Figure 3G, H). In the cystic type of spermato-
genesis typically found in fish, the epithelium of the sper-
matogenic tubules is composed of spermatogenic cysts,
where thin cytoplasmic extensions of Sertoli cells (being
mCherry-positive in our model) envelope a developing
germ cell clone. The GFP-positive cells, on the other hand,
were located in the intertubular compartment.

2.4 | Cellular localization of GFP under
the control of pgr promoter in the ovary

The zebrafish ovarian follicle is completely surrounded
by a follicle cell layer. Direct observation of the surface of
intact ovarian follicles of Tg(pgr:eGFP) showed that some
of the follicle cells expressed GFP signals in the follicular
layer (Figure 4). In primary growth follicle, the GFP sig-
nals were rarely found. During follicle maturation, the
number of GFP-positive cells gradually increased,
reaching the maximum when the oocytes attained the
fully grown stage (Figure 4).

The follicle cell layer consists of the inner granulosa
cell and the outer theca cell layer. To identify whether
the GFP signals were present in the granulosa cell layer
and/or theca cell layer, we generated double transgenic
fish Tg(pgr:egfp/gsdf:nf3sB-mCherry) that express
mCherry in granulosa cells.23 As expected, mCherry-
positive granulosa cells formed a ring surrounding the
oocyte (Figure 5A). The GFP-positive cells also form a
ring, and almost all the GFP signals colocalized with
mCherry (Figure 5B-D), suggesting that, under the con-
trol of pgr promoter, GFP is expressed in granulosa cells.
Intriguingly, a few GFP-positive cells displayed a much
stronger signal than others (Figure 5B). Those strongly
GFP-positive cells were only found in the outer theca cell
layer and did not express mCherry (Figure 5E-H). The
cells expressing both, GFP and mCherry, localized exclu-
sively to the inner granulosa cell layer (Figure 5E-H).

Direct observation of the surface of intact ovarian fol-
licles also showed a few GFP-positive cells with an irreg-
ular shape expressing a stronger GFP signal than the
more round granulosa cells that expressed both GFP and
mCherry (Figure 6A). Remarkably, the mCherry signal
was found in granular spots in the granulosa cells

FIGURE 3 Cellular localization of green fluorescent protein (GFP) under the control of pgr promoter in testis. Intact (A, B) and

cryosection (C, D) of testis of the Tg(pgr:eGFP) showed GFP signals at intertubular compartments. In Intact (E, F) and cryosection (G, H)

of testis of the Tg(pgr:egfp/gsdf:nfsB-mCherry) showed GFP signals and mCherry signals presented at intertubular compartments and

spermatogenic cysts, respectively. Note that there was no colocalization of GFP and mCherry signals in testis. B, D, F, and H correspond to a

higher magnification of the quadrangle area indicated by the dash line in A, C, E, and G, respectively. The blue fluorescence represented the

nucleus which was stained by Hoechst33342. Gc, germ cell; eGFP, enhanced green fluorescent protein; Pgr, progesterone receptor; Sc,

spermatogenic cysts; St, spermatogenic tubules; Sz, spermatozoa; white arrow, Leydig cell; white arrowhead, Sertoli cells. Scale

bars = 100 μm (A, E), 50 μm (B, C, F, G), and 20 μm (D, H).
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(Figure 6B), which may reflect aggregations often seen
with mCherry as part of a fusion protein.24 Higher mag-
nifications showed that mCherry signals were absent in
the cells expressing strong GFP signals, again suggesting
that these cells are not granulosa cells (Figure 6C). On
the surface of the ovarian follicle, a network of inter-
connected, unstained (dark) channels was visible in sam-
ples from double transgenic fish (Figure 6A). The cells
closely adjacent to the dark channels displayed neither
GFP nor mCherry; the shape of their cell nuclei is differ-
ent from cells expressing GFP and/or mCherry signals.
The channel network was reminiscent of the blood vessel
system on the surface of ovarian follicles, as suggested by
the fli promoter-driven GFP expression in endothelial
cells (Figure 6D). Moreover, the shape of cell nuclei with-
out fluorescence signals lining the dark channels is

similar to that of vascular endothelial cells (Figure 6D).
Therefore, it seems likely that the channels are blood ves-
sels (Figure 6D). The cells exhibiting strong GFP signals
were often located close to branching points of the
assumed blood vessels (Figure 6A).

3 | DISCUSSION

In order to identify cell types expressing pgr in pituitary
and gonadal tissue, we generated Tg(pgr:eGFP) zebrafish,
in which GFP was expressed under the control of a
�2.8-kb fragment of the pgr promoter. Our first trials
with a shorter fragment (�1.9-kb; data not shown) failed
to drive GFP expression. Our tissue screening experi-
ments suggested that the promoter fragment reflects the

FIGURE 4 Cellular localization of green fluorescent protein (GFP) under the control of pgr promoter in ovarian follicles during

folliculogenesis in Tg(pgr:eGFP). The number of GFP expressing cells increases during folliculogenesis. The diameter of the ovarian follicle

was indicated within brackets. The blue fluorescence represented the nucleus which is stained by Hoechst33342. Scale bars = 100 μm. eGFP,

enhanced green fluorescent protein; EV, early-vitellogenic; FG, full-grown stage; LV, late-vitellogenic; MV, mid-vitellogenic; PG, primary

growth; Pgr, progesterone receptor; PV, pre-vitellogenic
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normal pgr expression pattern in adults. However, future
experiments will have to show if also temporal aspects
during ontogenesis are similar.

The adenohypophysis in fish is divided into three dis-
tinct zones: rostral pars distalis (RPD), PPD, and pars
intermedia. In the present study, only cells in the PPD
region of the zebrafish pituitary gland expressed GFP. Fol-
lowing a general pattern in teleost fish, gonadotropes (Fsh
and Lh-producing cells), somatotropes (growth hormone-
producing cells), and thyrotropes (Tsh-producing cells) are
localized in the PPD.25 Previous studies in zebrafish dem-
onstrated that both Fsh cells and Lh cells are localized in
the PPD.26,27 Our previous work demonstrated that DHP
exerted a Pgr-mediated, direct stimulatory effect on fshb
mRNA, and that pgr mRNA was expressed only in fshb-
expressing cells.14 PGR protein was mainly localized to
gonadotrophs also in rodent and primate pituitaries.28,29

Therefore, it is very likely that Pgr is expressed in Fsh-
producing gonadotrophs in the PPD of the zebrafish pitui-
tary. There is little information on the localization of Pgr
in vertebrate somatotropes and thyrotropes. A recent study
demonstrated that ewes with elevated serum levels of pro-
gesterone exhibited greater levels of CXCR4, a receptor for
chemokine ligand 12, in somatotropes.30 Further studies

using single-cell sequencing-based technologies would be
necessary to identify other cell types potentially expressing
Pgr in zebrafish pituitary, although expression levels are
expected to be lower than in Fsh-producing gonadotrophs.

Since the cellular sites of PGR expression in the tes-
tis are controversial, the physiological functions of pro-
gestins mediated via PGR remain an interesting and
underexplored question. In the present study, the GFP
signals were exclusively observed in the Leydig cells.
A previous study in zebrafish also reported that pgr
mRNA was expressed in Leydig cells, and DHP stimu-
lated 11beta-hydroxysteroid dehydrogenase activity via
a Pgr-dependent manner in adult zebrafish testis.21 The
expression of PGR in Leydig cells has been reported in
human, nonhuman primates, mouse, Japanese eel, and
gilthead seabream.31 Therefore, the effects of progestins on
testis seem to be mediated through PGR in Leydig cells,
and Leydig cell products, in turn, may affect spermatogen-
esis. In mammals, progestins inhibit spermatogenesis and
sperm vitality,32-34 and accordingly, the KO of the PGR
increases testicular development and sperm production.20

However, in teleosts, progestins seem to support, instead
of inhibiting, spermatogenesis (see reviews by11,35). This
is also supported by genetic evidence, considering that

FIGURE 5 Cellular localization of green fluorescent protein (GFP) under the control of pgr promoter in ovarian follicles layer in Tg

(pgr:egfp/gsdf:nfsB-mCherry). The ovarian follicle consisted of an oocyte and a follicle cell layer (A, A0) which showed both GFP (B, B0) and
mCherry (C, C0) signals. Most of GFP-positive cells expressed mCherry signals (D), and located at inner follicle layer (D0). A few of GFP-

positive cells without mCherry signals showed strong GFP signals (B0, D0) and located at outer follicle layer (D0). The blue fluorescence
represented the nucleus which is stained by Hoechst33342. Oc, oocyte; white arrow, thecal cell; white arrowhead, granulosa cell. Scale

bars = 10 μm. Pgr, progesterone receptor
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loss of Pgr function in male tilapia resulted in sub-
fertility.15 Interestingly, both in Pgr KO mice20 and
tilapia,15 there was a significant increase in the number
of Leydig cells, suggesting that PGR may regulate the
number of Leydig cells. In tilapia pgr mutants, there
was also a significant increase in the transcript levels
of steroidogenesis-related genes and of serum
11-ketotestosterone levels.15 This phenotype is difficult to
understand considering that no Pgr protein was detected
in tilapia Leydig cells by IHC, using antibodies raised
against zebrafish Pgr.15 Using the same antibodies, no

signal was observed in zebrafish Leydig cells.22 One pos-
sibility is that Pgr protein is only transiently expressed
under specific conditions. For example, in mouse, Pgr
promoter-driven LacZ expression was rarely detectable in
Leydig cells but significantly increased when intra-
testicular testosterone was suppressed.20 It would be
interesting to investigate the function of Pgr in Leydig
cells in the further study.

Pgr antagonist studies in humans and rodents, knock-
down in a primate, as well as KO in mouse and zebrafish,
have demonstrated the critical role of PGR in ovulation

FIGURE 6 Direct observation of the surface of intact ovarian follicles in Tg(pgr:egfp/gsdf:nfsB-mCherry) and Tg(fli:egfp). A, Direct

observation of the intact ovarian follicle showed almost all granulosa cells expressing both mCherry and green fluorescent protein (GFP)

signals, and a few cells exhibiting strong GFP signals. The dash line indicated a network of interconnected, unstained (dark) channels

without cells presenting. B, Granulosa cells expressed both mCherry and GFP signals. Noted mCherry signals present as a few spots inside

granulosa cells. C, Non-granulosa cells only exhibited strong GFP signals (red arrow head) or without GFP/mCherry signals (red arrow).

White arrow head indicated granulosa cells. D, Blood vessel nest on the surface of the ovarian follicle in Tg(fli:egfp). The white arrow

indicated the vascular endothelial cell. The blue fluorescence represented the nucleus which was stained by Hoechst33342. Scale

bars = 100 μm (A, D), 20 μm, C, and10 μm, B. Pgr, progesterone receptor
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(see36 for detailed review13,37). Inmammals, ovarian expres-
sion of PGR is restricted primarily to granulosa cells of folli-
cles destined to ovulate (see38 for detailed review). In
zebrafish, strong Pgr immunoreactivity was observed in the
nuclei of follicular layer cells surrounding all stages of
oocytes.22 Using the same antibody, a study in tilapia rev-
ealed abundant expression of Pgr in follicular cells during
the early stages of ovarian differentiation.39 In gilthead sea-
bream (S. aurata), immunohistochemical localization of
Pgr showed strong immunostaining in the nuclei of granu-
losa cells using a specific Pgr antibody against gilthead sea-
bream Pgr.10 In the present study, our results clearly show
that the promoter of the pgr gene drives eGFP expression in
granulosa cells as well, which indicates that PGR expression
in granulosa cells is conserved among vertebrates.

Intriguingly, we also identified some non-granulosa
cells located at outer thecal cell layer, expressing GFP sig-
nals. Some of these cells locating at the branches of the
interstitial blood vessels exhibited strong GFP signals. We
assume that these cells are theca cells, which appear out-
side basement lamina associated with blood vessels, move
into the interstitial region between oocytes, and finally
enclose the oocytes at an early vitellogenic stage (see refer-
ence40 for detailed review). PGR protein has been detected
in theca cells from monkeys,41 rat,42 human,43 and dog.44

However, one study in mouse reported that there is no
detectable immunoreactivity in theca and interstitial cells
of ovary.45 Since PGR is expressed by granulosa cells and
plays a critical role in ovulation, studies have focused on
granulosa cells and revealed that PGR-regulated genes
unequivocally linked to the ovulatory success are the
extracellular matrix proteases, for example, ADAMTS
(a disintegrin and metalloproteinase with throm-
bospondin motifs) family members.46 Our previous study
identified adamts9, expressed in follicle cells, as a down-
stream target of Pgr, which is essential for ovulation in
zebrafish.47,48 However, it is worth noting that theca cells
are also vital to the mammalian ovulatory process.49 It has
been reported that Adamts1 mRNA in the theca interna
was upregulated just prior to ovulation in the horse.50

Recently, studies in cattle indicate that ADAMTS family
members produced by theca cells may play important roles
in follicle rupture and the accompanying tissue remo-
deling in cattle.51,52 Therefore, further studies seem
warranted to examine whether the pgr expressed in theca
cell layer participate in follicle rupture in zebrafish.

In summary, the Tg(pgr:eGFP) zebrafish line is a use-
ful model to identify cellular localization of Pgr in pitui-
tary and gonads. Further detailed analysis of the
sequence between 1.9 and 2.8 kb pgr promoter fragment
could reveal key regulatory elements involved in the reg-
ulation of pgr gene expression. Finally, this transgenic
zebrafish line will be a valuable model for the isolation of

Pgr-expressing cells to investigate molecular mechanisms
mediated via Pgr in fish reproduction.

4 | EXPERIMENTAL PROCEDURES

4.1 | Animals

Tübingen strain zebrafish were propagated in our facili-
ties (ESEN; Beijing, China). Fish were kept in rec-
irculating aquaria at 28�C ± 0.5�C with a 14L:10D
photoperiod (lights on at 08:00 AM). Fish were fed three
times daily with a commercial food (Otohime B2; Mar-
ubeni Nisshin Feed, Tokyo, Japan) and supplemented
with newly hatched brine shrimp. A transgenic zebrafish
line Tg(fli:egfp), which expresses GFP signals in vascular
endothelial cells, was kindly provided by Dr. Mingyu Li
(Xiamen University, Xiamen, China). All experimental
protocols were approved by the Institutional Animal Care
and Use Committee at the Xiamen University.

4.2 | Preparation of pTol2(pgr:eGFP)
Construct

The genome sequence of the pgr gene was identified in the
zebrafish genome using the ENSEMBL genome browser
(http://www.ensembl.org/index.html). The −2798/+26
promoter fragment of the zebrafish pgr gene was amplified
from zebrafish genomic DNA using specific primers (pgr-
fw: 50-CCATGTGATTGGACCCGATTTCCGATTACA-30,
pgr-rv: 50-CGCAATCGTCCGAGATGCGTCCTCTTT-30).
The reaction was incubated for 7 cycles of 25 seconds at
94�C, 3.5 minutes at 72�C, and followed by 32 cycles of
25 seconds at 94�C, 3.5 minutes at 67�C. The�2.8-kb frag-
ment was inserted into the upstream of the eGFP coding
sequence of the pT2AL200R150G construct (kindly pro-
vided by Prof. Kawakami; National Institute of Genetics,
Shizuoka, Japan) between the NheI and BamHI sites to
generate the transgenic construct pTol2(pgr:eGFP)
(Figure 7).

4.3 | Generation of transgenic fish lines

The transgenic zebrafish line was generated with the
Tol2 Transposon System.53 The animal pole of zebrafish
one-cell-stage embryos was microinjected with a mixture
containing pTol2(pgr:eGFP) vector (10 ng/μL), Tol2
transposase enzyme mRNA (10 ng/μL), and phenol red
(0.25%) (P0290; Sigma-Aldrich, St. Louis, Missouri). The
Tol2 transposase capped mRNA was in vitro transcribed
from the pCS-zT2TP transposase vector (kindly provided
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by Prof. Kawakami) using the mMESSAGE mMACHINE
SP6 kit (Ambion AM1340; Austin, Texas). The DNA solu-
tions were injected using a PV 820 Pneumatic PicPump
(World Precision Instrument; Florida) and borosilicate
glass capillaries (IB100F-4; World Precision Instrument).
The F0 fish were bred to maturity and screened by PCR
with primers containing pgr promoter and egfp sequences
(screen-fw: 50-ACTACAGATCACAACCTCCAAAC-30,
screen-rv: 50-TTGTAGTTGTACTCCAGCTTGTGCCC-30).
The injected embryos were raised to sexual maturity, and
transgenic offspring were identified by genotyping using
genomic DNA extracted from caudal fin biopsies. The
positive F0 fish were mated with wild-type (WT) fish to
generate F1 transgenic lines named Tg(pgr:eGFP).

The Tg(pgr:eGFP) was crossed with Tg(gsdf:nfsB-
mCherry) zebrafish lines generated in our laboratory (will
be published separately) to obtain Tg(pgr:egfp/gsdf:nfsB-
mCherry) double transgenic fish. Driven by the proximal
promoter region of the zebrafish gsdf gene, the Tg(gsdf:
nfsB-mCherry) transgenic zebrafish line specifically
expressed nitroreductase-mCherry fusion protein in gran-
ulosa and Sertoli cells, as described previously.23

4.4 | RNA extraction and reverse
Transcription-PCR

Total RNA from different tissues (brain, pituitary, heart,
liver, kidney, ovary, and testis) was extracted using RNAzol
reagent (RN 190; Molecular Research Center, Cincinnati,
Ohio) according to the manufacturer's protocol. Reverse
transcription was carried out using the RevertAid First
Strand cDNA Synthesis Kit (K1622; Thermo Scientific, Lith-
uania) with 800 ng total RNA. The PCR was conducted on
the cDNA template for 32 cycleswith an annealing tempera-
ture of 58�C using pgr-specific primers (pgr-RT-fw: 50-AATC

TCATCA TGGAGCCACCG-30, pgr-RT-rv: 50-CCTCTGGCT
GTGTGTTGTCG-30) and egfp-specific primers (egfp-RT-fw:
50-GGACGACGGCAACTACAAGA-30, egfp-RT-rv: 50-GTC
CATGCCGAGAGTGATCC-30). As a negative control, an
equal volume of water was added into the PCR mixture
instead of cDNA. The PCR products were run on a 1.5%
agarose gel and photographed in the BioDocAnalyze
digital gel documentation system (Biometra GmbH,
Göttingen, Germany).

4.5 | Collection of pituitary and ovarian
follicles

Adult zebrafish were anesthetized in ice water. Pituitaries
were isolated as described previously.26 In brief, the pitui-
tary glands were collected under a fluorescent dissecting
microscope (Leica M165FC; Leica Microsystems, Wetzlar,
Germany) with fine forceps and eye scissors. We first
removed the dorsal part of the skull, followed by remov-
ing the whole brain. The pituitary gland, showing a clear
GFP signal, lay within the hypophyseal fossa (Figure 2A).
To collect the whole pituitary, we first dissected a cross-
shaped bone containing the pituitary (Figure 2B) and fur-
ther dissected the bone to collect the intact pituitary
(Figure 2C). The pituitary was stained with Hoechst
33342 (C1022; Beyotime Institute of Biotechnology,
Shanghai, China), mounted on a 29-mm glass-bottom
dish (D29-10-1.5-N; Cellvis, China) containing 1% low-
melting agarose (A9414; Sigma-Aldrich) in phosphate-
buffered saline (PBS). Images were taken with an SP8
(Leica, Germany) confocal laser scanning microscope.

Isolation of ovarian follicles was conducted as
described previously.54 In brief, ovaries were pooled and
quickly dispersed in a petri dish containing 60% Leibovitz
L-15 medium (GIBCO BRL, Gaithersburg, Maryland).

FIGURE 7 Schematic representation of the zebrafish pgr gene structure and transgene construct design. The zebrafish pgr gene is

located on chromosome 18 which has eight exons. The proximal 2824 bp promoter region of the pgr gene was placed upstream to the open

reading frame of the enhanced green fluorescent protein. In addition, the transgene was franked by Tol2 sites. The black box represents

exons; pA, SV40 poly(A) signal. Pgr, progesterone receptor
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Follicles in different stages of development were identi-
fied and manually isolated under a stereomicroscope
(Leica M165FC, Germany). The follicles were classified
into six stages based on the diameter, namely primary
growth (diameter ≤ 100 μm, PG), pre-vitellogenic
(100-300 μm, PV), early-vitellogenic (300-400 μm, EV),
mid-vitellogenic (400-500 μm, MV), late-vitellogenic
(500-600 μm, LV), and the full-grown stage (≥650 μm,
FG). The follicles were stained with Hoechst 33342
(Beyotime Institute of Biotechnology). Images were cap-
tured using M165FC (Leica, Germany), LSM880 (Carl
Zeiss MicroImaging, Oberkochen, Germany), and SP8
(Leica, Germany) confocal laser scanning microscope.

4.6 | Preparation of cryosections

The adult zebrafish were anesthetized, and testes were
carefully dissected and fixed in 4% paraformaldehyde
(Merck, Germany) in PBS overnight. The gonads were
rinsed in PBS twice (1 hour per time) and then dehydrated
in 25% sucrose at 4�C. After dehydration, the whole tissues
were embedded in the Tissue Freezing Medium (Leica
Biosystems, Heidelberg, Germany) and frozen by floating
in liquid nitrogen. Cryosections of the embedded gonad
were cut using a Leica CM1850 cryostat (Leica Micro-
systems, Heidelberg, Germany) at −18�C. Tissue sections
of the testis (10 μm) or ovary (20 μm) were collected and
then mounted onto poly-L-lysine-coated slides. The slides
were air-dried for 1 hour, rinsed in PBS three times, cov-
ered with VECTASHIELD Mounting Medium with DAPI
(H-1200; Vector Laboratories, Burlingame, California)
and coverslipped. Pictures were taken with an LSM780
microscope (Carl Zeiss, Germany).
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