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Due to the limited energy supply of sensor nodes in underwater acoustic communication networks
(UACNs), energy optimization for underwater acoustic transmissions is critical to prolong the network
lifetime and improve network performance. Machine learning is a powerful and promising method that
can be used to optimize energy consumption of UACNs. In this paper, we propose a machine learning
based environment-aware communication channel quality prediction (ML-ECQP) method for UACNs. In
ML-ECQP, the logistic regression (LR) algorithm is used to predict the communication channel quality
(which is measured according to the bit error rate) between a transmitter and a receiver based on the
perceived underwater acoustic channel environmental parameters (such as signal-to-noise ratio, under-
water temperature, wind speed, etc.). Based on the predicted communication quality, each transmitter
can optimize the acoustic data transmissions in order to minimize the energy waste caused by retrans-
missions, thus significantly reducing the energy consumption of UACNs. Extensive experiments are con-
ducted in the Furong Lake at Xiamen University to demonstrate the performance (in terms of the
feasibility, channel condition predication accuracy, and energy consumption reduction) of the proposed
ML-ECQP method.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Internet of underwater things (IoUT) refers to as the network of
smart interconnected underwater objects to monitor vast unex-
plored water areas. IoUT is an enabler to achieve smart oceans,
which has received growing attention from both industry and aca-
demia. In IoUT based underwater acoustic communication net-
works (UACNs), most of underwater acoustic devices need to be
placed underwater for a long time. However, the energy supply
of these devices is usually very limited; meanwhile, it is impossible
or extremely expensive (in terms of consuming tremendous man-
power and material resources) to replace or recharge these devices
once they are out of power [1,2]. In addition, due to the complex
and dynamic features of underwater environment, the underwater
acoustic channels may suffer from much stronger fading and noise
interference [3,4], thus leading to retransmissions caused by
packet delivery failures over the severe underwater acoustic chan-
nels. Retransmissions may significantly increase the energy con-
sumption of underwater devices [5–7]. Therefore, it is critical to
optimize the acoustic data transmissions, i.e., avoiding data trans-
missions when the underwater channel is bad, thus reducing the
number of retransmissions and prolonging the lifetime of UACNs.

Recently, artificial intelligence (AI) technologies, such as
machine learning algorithms and big data networking and analysis,
have been developed and used in the fields of atmospheric science,
medical, climate change, terrestrial communication, etc. [8]. Apply-
ing these AI technologies to the underwater acoustic
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communications is a promising way to achieve the communica-
tions much more efficient and energy-preserving.

Some researchers have explored to use of machine learning
technologies to facilitate underwater acoustic communications.
In the context of machine learning assisted underwater acoustic
signal processing, McQuay et al. [9] proposed to use the convolu-
tional neural network to identify the sound signal of the whale
among different received signals. Roberts et al. [10] identified dif-
ferent fish individuals by classifying their acoustic transmissions
based on the support vector machine (SVM) algorithm. In [11], in
order to distinguish different underwater targets, Chen et al.
adopted the deep learning algorithm to recognize different types
of noise radiated by different targets. Based on the sample selec-
tion and feature selection, Yang et al. [12] proposed an underwater
acoustic target recognition method by using the adaptive boosting
algorithm to integrate several weak classifiers. In the context of
machine learning assisted underwater acoustic localization, Pin-
heiro et al. [13,14] combined the SVM algorithm with the nuclear
regression method to eliminate the outliers in received acoustic
signals and improve the positioning accuracy of autonomous
underwater vehicle (AUV). In [15], Ludwig et al. combined the deep
neural network and the range estimation to realize the underwater
localization for single sensor, small array, and small aperture tow-
ing array, respectively. In the context of machine learning assisted
routing design in UACNs, the reinforcement learning technology is
adopted to optimize the routing paths for the underwater acoustic
sensor networks in order to achieve energy saving and efficient
transmissions [16,17]. In [18–20], the ant colony optimization
algorithm is used to design routing paths for different proposed
network models to achieve different objectives, such as increasing
network throughput and reducing the overall transmission dis-
tance. In [21], the authors argued that applying a machine learning
algorithm to determine the routing path may perform differently
under different scales of networks. They proposed the ant colony
optimization algorithm- artificial fish swarm algorithm (ACOA-
AFSA) fusion dynamic coded cooperation routing method to adap-
tively adopt different machine learning algorithms under different
scales of UACNs. All the mentioned works apply various machine
learning methods to facilitate underwater acoustic communica-
tions. Yet, none of them apply machine learning algorithms to esti-
mate the quality of underwater acoustic channels. Note that the
quality of the underwater acoustic channel is determined by many
factors (such as wind speed, water surface temperature, etc.), and
thus it is impossible to derive an empirical model to estimate the
channel quality. The motivation of the paper is to use the logistic
regression (LR) algorithm to estimate the underwater acoustic
channel quality, and the estimated channel quality is used to opti-
mize the data transmissions scheduling to reduce the energy con-
sumption of a transmitter in UACNs.

The LR algorithm is a typical classification algorithm. LR learns/-
trains the mapping from input features to output labeled results
based on the labeled data, and applies the well-trained mapping
to the unknown data in order to achieve classification. As a typical
classification algorithm, the LR algorithm has been widely used in
different applications. For example, Ayalew et al. [22] used the LR
algorithm to investigate the landslide susceptibility of mountains.
Cannarile et al. [23] used the LR algorithm to diagnose faults of on-
board aeronautical systems. Yu et al. [24] applied the LR algorithm
to the load allocation improvement for a chiller system in an insti-
tutional building. Yang et al. [25] used the LR algorithm to analyze
the risk of malaria in African children. Seo et al. [26] proposed the
LR based target recognition model, which can improve recognition
accuracy under a shallow water environment. Kalaiarasu et al. [27]
applied the LR algorithm to capture the spatio-temporal variation
in the performance of a UACN. The reason of the LR algorithm
being widely used is because its low complexity, efficient, easy to
2

achieve parallel processing, and capable of realizing online learn-
ing. In addition, the LR model has strong explanatory ability, i.e.,
it is easy to understand the principle/reason of the classification
decision made by the model.

In this paper, in order to solve the problem of energy optimiza-
tion in UACNs, we propose machine learning based environment-
aware communication channel quality prediction (ML-ECQP)
method, where the LR algorithm is adopted to predict underwater
acoustic communication quality. The main contributions of this
paper can be summarized as follows:

� We propose the ML-ECQP method, where each acoustic com-
munication link in the UACNs adopts the LR algorithm to enable
the transmitter to predict the quality of the communication
channel, which is measured based on the bit error rate (BER).
The LR based prediction is based on the perception of environ-
mental characteristics and the communication system setups.
Based on the predicted communication channel quality, the
transmitter is able to optimally schedule when to transmit
acoustic data, thus reducing the energy consumption caused
by retransmissions.

� To construct the environment-aware underwater communica-
tion channel quality prediction model, we implement the
underwater acoustic transmission experiments in the Furong
Lake at Xiamen University to collect the field test data sets,
which are used to train and validate the LR based prediction
model.

� We conduct extensive simulations to demonstrate the perfor-
mance of the proposed ML-ECQP method.

The rest of this paper is arranged as follows. In Section 2, we
simply introduce the LR algorithm. The proposed ML-ECQP method
is described in Section 3. In Section 4, we describe the underwater
acoustic transmission experiments. The prediction performance of
the LR based model and the energy consumption of the network by
applying the ML-ECQP method are analyzed in Section 5. Finally,
Section 6 concludes the paper.

2. Description of LR algorithm in machine learning

This section will introduce the principle of the LR algorithm.

2.1. Linear regression and its drawbacks

The linear regression algorithm refers to as fitting the distribu-
tion of sample points in a multidimensional space according to the
linear combination of eigenvalues. Assume a data set is X;Yð Þ,
where X ¼ x1; x2; . . . ; xn½ � and Y ¼ y1; y2; . . . ; yn½ � represent the
eigenvectors and the labels of the samples, respectively. Then, we
have the linear regression model H Xð Þ as follows:

H Xð Þ ¼ WTX ¼ w0x0 þ
Xn
i¼1

wixi; ð1Þ

where x0 ¼ 1 is the offset item, W ¼ w0;w1;w2; . . . ;wn½ � is the
weight vector (where each element in the weight vector represents
the weight of each eigenvector), and WT is the transpose of the
weight vector W.

Linear regression is applicable to not only regression problems,
but also classification problems. In a classification problem, the lin-
ear regression algorithm divides the output value of the model into
two categories based on a predefined threshold. As shown in Fig. 1
(a), several sample points are marked as red circles and green
crosses in a two-dimensional space. The solid yellow line in
Fig. 1 is the fitting curve, denoted as f xð Þ, derived by the linear
regression model based on these data samples (i.e., red circles



Fig. 1. The schematic diagram of the linear regression classification and its
drawbacks.
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and green crosses). If the threshold is set to be 0.5, then the data
samples can be easily classified into two categories. That is, for
any data sample (a, b), if f að Þ > 0:5, it is in category-1 (i.e., red cir-
cle); otherwise, it is in category-0 (i.e., green cross).

However, the linear regression based classification method has
many drawbacks, such as sensitive to imbalanced data and unable
to classify the data samples if the output is non-continuous value
[28]. For example, as shown in Fig. 1(b), if there is an abnormal
data sample (i.e., a red circle indicated by an upward arrow), then
the solid blue line would be the new fitting line for the updated
data samples. The new fitting line would result in the data sample
in the shaded area being misclassified into category-0 (i.e., green
cross).

2.2. Logistic regression

The LR algorithm is proposed to resolve the mentioned draw-
backs of the linear regression algorithm. In LR, the Sigmoid func-
tion is used to map any input values to the values between 0 and
1. The expression of the Sigmoid function is

g zð Þ ¼ 1
1þ e�z

; ð2Þ

where z is the linear regression model, which can be expressed by
Eq. (1). Then, we can easily derive the LR model, denoted as h xð Þ, as:

y ¼ h xð Þ ¼ g H Xð Þ½ � ¼ g WTX
� �

¼ 1
1þ e�WTX

: ð3Þ

Deriving the weight of eigenvectors for the data sets, i.e.,
W ¼ w0;w1;w2; . . . ;wn½ �, is the target of the LR algorithm. If a loss
function J wð Þ is defined as the difference between the base truth
and the predicted values, then the training process can be trans-
formed into a minimization problem of loss function J wð Þ over
the training set, i.e.,

w� :¼ arg min
w

J wð Þ: ð4Þ

With respect to the LR algorithm, we adopt cross entropy to
describe the loss function J wð Þ. Specifically, according to Eq. (3),
we can first obtain the likelihood function L wð Þ of m data samples
as follows,
3

L wð Þ ¼
Ym
i¼1

h xið Þ½ �yi 1� h xið Þ½ �1�yi : ð5Þ

Then, Eq. (4) is transformed into the logarithmic form, i.e.,

l wð Þ ¼ log L wð Þ ¼
Xm
i¼1

yi logh xið Þ þ 1� yið Þ log 1� h xið Þ½ �½ �: ð6Þ

Then, we can obtain the loss function J wð Þ,

J wð Þ ¼ � 1
m

l wð Þ: ð7Þ

Afterwards, the partial derivative of the loss function with
respect to w is

@J wð Þ
@w ¼ � 1

m

Xm
i¼1

yi
1

h xið Þ
@h xið Þ
@wj

� 1� yið Þ 1
1�h xið Þ

@h xið Þ
@wj

h i

¼ � 1
m

Xm
i¼1

yi
1

g wTxið Þ � 1� yið Þ 1
1�g wT xið Þ

� �
@g wT xið Þ

@wj

¼ � 1
m

Xm
i¼1

yi 1� g wTxi
� �� �� 1� yið Þg wTxi

� �� 	
xji

¼ � 1
m

Xm
i¼1

yi � g wTxi
� �� 	

xji

¼ � 1
m

Xm
i¼1

g wTxi
� �� yi

� 	
xji:

ð8Þ

According to Eq. (8), the iterative update expression of w can be
obtained as follows.

wj :¼ wj � g
1
m

Xm
i¼1

g wTxi
� �� yi

� 	
xji; ð9Þ

where g represents the learning rate, i.e. the step size of each
update.

Based on Eq. (9), the weights of all the eigenvectors in the LR
model can be obtained by training the labeled sample points. The
LR model h xð Þ in Eq. (3) can then be derived, and h xð Þ can be used
to classify the new data sets. In addition, the problem of over-
fitting may occur in the process of model training. That is, the mod-
el’s fitting level to the training data set is too high, which makes
the model loss a good generalization ability and unable to accu-
rately classify/predict the results for the new data sets. In order
to improve the generalization ability of the LR model, the regular
term is added in the loss function, and so Eq. (7) can be rewritten
into

J wð Þ ¼ � 1
m

l wð Þ þ kkwpk; ð10Þ

where k is the regularization coefficient, and p is usually set to 1 or
2, which represents the L1 and L2 regularization, respectively. The
subsequent procedures to derive iterative update expression of w
based on the new loss function (i.e., Eq. (10) is very similar to
Eqs. (8) and (9) (where the regular term will be added), and we
do not specify the detailed derivation.

3. Description of the proposed method

Based on the mentioned LR model, we propose the ML-ECQP
method, where the quality of the underwater channel is predicted.
In order to derive the LR based prediction model, the experimental
data of underwater acoustic transmission need to be first collected
as the training sample data set to derive the weight vector W. The



Fig. 2. Flowchart of ML-ECQP.

Fig. 3. The schematic diagram of the lake experimental site.

Fig. 4. The layout of the underwater acoustic communication experiment.
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feature vector of each input data sample is consisted of the envi-
ronmental parameters of an underwater acoustic channel and the
setups of the transmission system. The BER of an underwater
acoustic channel is used as the output of the data samples. After
collecting enough training samples, the LR algorithm is used to
construct a model to predict the quality of an underwater acoustic
channel, which is measured by the BER. Finally, through the con-
structed LR model, the quality of an underwater acoustic channel
is predicted in advanced according to the perceived environmental
parameters of the underwater acoustic channels and the setups of
the transmission system. Based on the predict channel quality, the
transmitter will optimize the data transmission time, i.e., prevent-
ing from transmission data when communication quality in terms
of BER is bad, and thus reduce the number of retransmissions
caused by transmission failures. Accordingly, the energy consump-
tion of each sensor node in UACNs can be significantly decreased.
Fig. 2 illustrates the flowchart of the proposed ML-ECQP method.

In order to ensure the performance of the above ML-ECQP
method, it is necessary to guarantee the accuracy of the LR based
prediction model. In the following, we will examine the perfor-
mance of the proposed ML-ECQP method and the LR based link
quality prediction model via extensive experiments and
simulations.

4. The lake experiment of the underwater acoustic transmission

4.1. Lake experimental process

The underwater acoustic transmission experiment is carried out
in Furong Lake, Xiang’an campus of Xiamen University in Fujian
Province, China. The experiment is used to obtain the data samples
for training and validating the LR model in the ML-ECQP method.

Fig. 3 shows the scenario that our experiments want to emulate.
Two source nodes, one destination node, and one relay node are
deployed to achieve the two-source single-relay communications
[29], where acoustic data are transmitted from two underwater
source nodes to a destination node via a relay node. Specifically,
the two source nodes broadcast packets X1 and X2, respectively,
in different time slots. Since the relay node is close to the two
source nodes, the relay node is assumed to successfully receive
the two packets and generates a new packet XR, where
XR ¼ X1 � X2 (here, � is the modulo 2 sum operation). The relay
node then broadcasts packet XR. The destination node would
expect to receive all the packets (i.e., X1; X2, and XR) and apply a
decoding method (either channel decoding or channel-network
joint decoding) to obtain the original X1 and X2 packets 1[29].

Our experiments try to emulate the scenario described in Fig. 3.
As shown in Fig. 4, the experiment mainly consists of two parts, i.e.
the transmitter part and the receiver part. The transmitter part
comprises a laptop, a National Instruments (NI) data acquisition
card, an amplifier, and three underwater acoustic transducers.
The laptop is used to generate the transmitted binary data streams.
The NI data acquisition card is to convert digital signals into analog
signals, and the amplifier is to amplify analog signals. The under-
water acoustic transducer is used to transmit analog signals in
the form of acoustic waves. Here, three underwater acoustic trans-
ducers are used to emulate the behaviors of two source nodes and
one relay node in Fig. 3. That is, packets X1; X2, and XR will be gen-
erated by the transmitter and emitted by the three different under-
water acoustic transducers in three different time slots. The
receiver part comprises a laptop, an NI data acquisition card, and
1 Note that, as compared to directly sending packets from the source nodes to the
destination node, applying the relay node to encode and transmit the packet to the
destination node (which receives and decodes the original packets from the source
nodes) incurs lower BER.

4

an underwater acoustic transducer. The underwater acoustic trans-
ducer is used to receive the acoustic waves and demodulate the
acoustic waves to obtain the analog signals. The NI data acquisition
card is to convert analog signals into digital signals, and the laptop
is used to receive and display the digital signals. The distance
between the transmitter and the receiver is around 205 meters.
Note that the underwater communication channel is referred to
as the channel between the transmitter and the receiver in the
experiment.

The experiment setup for the underwater acoustic transmis-
sions in the lake environment is listed in Table 1. The original bit
streams are converted into analog signals based on Binary Phase
Shift Keying (BPSK). Linear sweep signal is used as a synchroniza-
tion head to achieve the synchronization among different nodes. In
addition, two signal carrier frequencies, i.e., 23 kHz and 25 kHz, are
used in the experiment to explore the relationship between the



Table 1
Parameter settings of lake experiment for the underwater acoustic transmission.

Parameter Value

Baseband frequency 2000 Hz
Carrier frequency 23 kHz/ 25 kHz
Sample frequency 100 kHz

Code rate 1/2
Number of bits 1024

Modulation mode BPSK
Guard interval 500 ms

Fig. 5. The generating signal waveform using MATLAB.

Table 2
The involved feature variables of each collected data.

Feature Variable Unit

Carrier frequency kHz
Transmitting coefficient n

Wind speed m/s
Water temperature �C

Air humidity %

Signal to noise ratio (SNR) dB
Decoding mode n
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carrier frequency and the quality of an underwater acoustic com-
munication channel between the source and destination nodes.
According to the parameter settings listed in Table 1, Fig. 5 shows
the signal waveforms generated via MATLAB. The three signals will
be transmitted by three different underwater acoustic transducers,
which represent two source nodes and one relay node, respec-
tively. There are three blocks in Fig. 5, where the first and the sec-
ond blocks represent the signals for packets X1 and X2 sending
from two underwater source nodes, respectively, and the third
block represents the signal for packet XR sending from the relay
node. Here, we assume that the relay node is much closer to the
destination node than the two source node (as indicated by
Fig. 3), and thus the amplitude of the signal for packet XR is set
up to be higher than that for packet X1 and X2. Note that, in the
experiment, we can control the signal amplitude by adjusting the
transmission coefficient (ranging from 0.1 to 1.0) via the program
interface of the amplifier. Thus, the generated signals are transmit-
ted repeatedly and grouped based on the values of transmission
coefficient, carrier frequency, and different ways of decoding. In
addition, in order to consider the how the underwater environ-
ment affects the channel condition, we also use the anemometer
device to measure the hydrological parameters (such as the wind
speed, the water surface temperature, and the air humidity) during
each data transmission. Therefore, all the mentioned parameters in
the experiment will be considered as the feature selection candi-
dates when we construct the prediction model.

Finally, through the experiment, we obtain totally 2856 data
samples, each of which is corresponding to the data for one group
of underwater acoustic transmissions from the source node to the
destination node via the relay node (i.e., transmitting packets
X1; X2, and XR from three different underwater acoustic transduc-
ers at the transmitter to the receiver). The involved feature vari-
ables of each collected data sample are listed in Table 2. It is
worth noting that two different decoding methods, i.e., the channel
decoding method (labeled as 0) and the channel-network joint
decoding method (labeled as 1), are used to decode the received
signals.
Fig. 6. The number of data samples for each grade value.
4.2. Preprocessing of the lake experimental data

Before using the collected experimental data samples to con-
struct the prediction model, the integrity of the data should be
guaranteed. The integrity of the data samples means that the val-
ues of each feature variables for each data sample should be
non-empty and reasonable. In addition, in order to improve the
generalization ability of the constructed model, it is necessary to
preprocess the collected data after data sample integrity checkup.

In this paper, according to the result of BER after decoding, the
collected data is classified into two categories, i.e. grade 0 and 1,
where grade 0 indicates the BER of the receiver is less than 0.1
(which implies that the quality of the current communication
channel is good) and grade 1 indicates the BER of the receiver is
no less than 0.1 (which implies that the quality of the current com-
munication channel is bad). That is,
5

grade ¼ 0; BER < 0:1:
1; BER P 0:1:



ð11Þ

The statistics of the both grades in the collected data samples
are shown in Fig. 6, where 618 data samples are categorized into
grade 0 and 2238 data samples are categorized into grade 1. Data
samples in good communication channel quality is significantly
fewer than those in bad communication channel quality, and so
the collected data samples has the imbalanced distribution prob-
lem, which refers to the situation that the sample sizes of different
categories are significantly imbalanced, which makes the classifi-
cation algorithm concentrate on classifying the category with more
data samples accurately, while ignoring the category with less data
samples. To solve this problem, we should adjust the weight of
each data sample to ensure that each data sample has the same
impact on the prediction model. The weight adjustment rule for
each sample is described as follows [30]. Assuming that the num-
ber of data samples belonging to grade 0 is N0, the number of data
samples belonging to grade 1 is N1, and the weights of two grades
are set to a0 and a1, respectively. Thus, the weights of the two
grades can be calculated by the following equation,



Fig. 7. The statistics of each feature variable.

Fig. 8. The learning curve of the LR based prediction model.
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N0a0 ¼ N1a1: ð12Þ
Substitute Eq. (12) into Eq. (6), we have the updated likelihood

function

l wð Þ ¼ log L wð Þ ¼
Xm
i¼1

aj
j¼0;1

yi log h xið Þ þ 1� yið Þ log 1� h xið Þ½ �½ �: ð13Þ

Fig. 7 shows the statistics of each feature variable in the data
samples. We can find that the statistic values of different feature
variables are quite different, which will lead to the algorithm put
a higher weight to the feature variable with larger values in the
training process, and thus make the classification algorithm unable
to be converged. Therefore, it is necessary to normalize all feature
variables in order to keep them having the same impact on the pre-
diction model and accelerate the convergence speed. We use the
following formula to do the normalization.

x0 ¼ x� l
r

; ð14Þ

where x and x0 are the data samples with respect to a feature vari-
able before and after normalization, respectively, and l and r are
the mean and standard deviation of a feature variable among all
the data samples, respectively.

5. Prediction model construction and performance analysis

There are seven feature variables involved in the experiment,
including carrier frequency, transmission coefficient, wind speed,
water temperature, air humidity, SNR, and decoding mode. The
number of the feature variables is far fewer than the number of
data samples, and so all the feature variables can be used to con-
struct the prediction model without having feature selection, thus
reducing the complexity of the LR based prediction algorithm.
When constructing the prediction model based on the LR algorithm
in the proposed ML-ECQP method, we need to divide the data sam-
ples into the training data samples and the testing data samples.
The training data samples are used to train the LR based prediction
model to minimize the loss function, while the testing data sam-
ples are used to test the accuracy of the constructed prediction
model. In order to determine the proportion of the splitting, it is
necessary to draw the learning curve of the LR based prediction
model, which comprises the performance curve of the training
samples and the performance curve of the test samples. The learn-
ing curve, as shown in Fig. 8, reflects how the performance of the
constructed model changes with respect to the increase of the
number of training samples. From Fig. 8 we can derive that as
the number of the training samples increases, the two learning
curves gradually converges. When the proportion of the training
samples reaches 80% (i.e., 2284=2856 � 80%), the performance
of the model has been stabilized. Therefore, 80% of the total data
6

samples are used as the training samples, i.e.
Ntraining ¼ 2856	 80% � 2284, and the rest of them are used as
the test samples, i.e. Ntest ¼ 2856	 20% � 572.

5.1. Performance analysis of the linear regression based prediction
model

By applying the training data samples to solve Eq. (4), the
weights of all the feature variables can be derived and are listed
in Table 3. The positive and negative sign of a feature weight rep-
resents the positive or negative correlation between each feature
and the quality of the communication channel, respectively. For
example, carrier frequency and the quality of the communication
channel exhibit the negative correlation, and the transmission
coefficient and the quality of the communication channel shows
the positive correlation. The absolute value of each feature weight
indicates the correlation level between each feature and the pre-
dicted quality of the communication channel. For example, the cor-
relation between transmission coefficient and the quality of the
communication channel is much stronger than that between
decoding mode and the quality of the communication channel. In
order to further analyze the prediction performance of the con-
structed model, the confusion matrix is applied to visualize the
prediction performance of the model [28]. The confusion matrix
for a binary classification problem can be described as a 2	 2
matrix/table, where each element in the matrix represents the
number of the following four outcomes.

� True Positive (TP): the real label of the sample is positive class,
and the predicted result of the model is also a positive class.

� False Negative (FN): the real label of the sample is positive class,
but the predicted result of the model is a negative class.

� False Positive (FP): the real label of the sample is negative class,
but the predicted result of the model is a positive class.

� True Negative (TN): the real label of the sample is negative
class, and the predicted result of the model is also a negative
class.

Based on the elements in the confusion matrix, the following
metrics are defined to evaluate the performance of the LR based
prediction model.

1) Accuracy: it represents the proportion of all correctly pre-
dicted results to the total number of training data samples,
i.e.,
Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

: ð15Þ



Table 3
The weights of all the feature variables.

Feature variable Weight value

Carrier frequency �0.016180
Transmitting coefficient 0.47608302
Wind speed 0.14284686
Water temperature �1.47350085
Air humidity �1.63384352
Signal to noise ratio (SNR) �0.66985144
Decoding mode 0.09308579

Fig. 9. The confusion matrix of the constructed LR based prediction model.

Table 4
The related indicators of the confu-
sion matrix when grade 0 samples are
the positive class samples.

Indicator Value

TP 76
FN 43
FP 151
TN 302
Accuracy 0.66
Precision 0.33
Sensitivity (or recall) 0.64
Specificity 0.67
F1 score 0.44

Table 5
The related indicators of the confusion matrix when the grade 1 samples are the
positive samples.

Indicator Value

TP 302
FN 151
FP 43
TN 76
Accuracy 0.66
Precision 0.88
Sensitivity (or recall) 0.67
Specificity 0.64
F1 score 0.76
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2) Precision:it represents the proportion of the correctly
predicted positive results to the total number of pre-
dicted positive samples, i.e.,

Precision ¼ TP
TP þ FP

: ð16Þ

3) Sensitivity/Recall: it represents the proportion of the
correctly predicted positive results to the total number
of real positive samples, i.e.,

Sensitivity=Recall ¼ TP
TP þ FN

: ð17Þ

4) Specificity: it represents the proportion of the correctly
predicted negative results to the total number of real
negative samples, i.e.,

Specificity ¼ TN
TN þ FP

: ð18Þ

The value of each of the above metrics is between 0 and 1. Note
that a larger value of any of these metrics may indicate that the LR
based prediction model has a better performance. However, since
the Precision and Recall values could be opposite (e.g., a prediction
model could have a high Precision but a low Recall), the F1 score is
introduced to better explain the performance of the prediction
model, i.e.,

F1 ¼ 2 
 Precision 
 Recall
Precisionþ Recall

; ð19Þ

where the value of the F1 score is also between 0 and 1, and a larger
value of F1 indicates a better performance for the model.

The prediction performance of the constructed LR based predic-
tion model will be analyzed by calculating the above metrics. The
confusion matrix of the constructed LR based prediction model is
shown in Fig. 9, where X- and Y- axes represent the predicted
and real grade values (i.e., grade 0 or grade 1) of the quality of
the underwater acoustic link, respectively, and the numbers in
the figure implies numbers of data samples under different pre-
dicted and real channel quality scenarios. Based on Fig. 9, we can
derive the values of the five metrics for, i.e., Accuracy, Precision,
Sensitivity, Specificity, and F1 score, shown in Tables 4 and 5,
where Table 4 lists the results with the grade 0 data samples (i.e.
the data samples are generated when the link suffer from low
BER) as the positive class, and Table 5 lists the results with the
grade 1 data samples (i.e. the data samples are generated when
the link suffer from high BER) as the positive class. We can observe,
from Table 4, that the constructed LR based prediction model has a
relatively poor prediction result i.e., a low F1 score. Therefore, the
model incurs a lower prediction accuracy when the wireless chan-
nel is in the good communication quality, and thus the transmitter
may miss some appropriate transmission opportunities. From
Table 5, we can find that the constructed LR based prediction
model has a high F1 score, which indicates that the model can
guarantee the prediction accuracy when the channel is in the bad
communication quality. As a result, the transmitter can effectively
7

avoid the transmission in bad channel condition to reduce the
number of retransmission and save more energy.

Fig. 10 shows the receiver operating characteristic (ROC) curve
(denoted by yellow line) for the constructed LR based prediction
model, where the X-axis represents the FP rate, and the Y-axis rep-
resents the TP rate. The blue dotted line in Fig. 10 represents the
ROC curve of the random prediction model, where the probability
of predicting the channel quality to be good (i.e., grade ¼ 0) and
bad (i.e., grade ¼ 1) are the same, i.e., 0.5. Given a FP rate, a higher
TP rate indicates a model can predict the channel quality more
accurate. Therefore, we can observe that the LR based prediction
model always incurs a higher TP rate than the random prediction
model under different FP rates. Hence, the prediction accuracy of
the proposed LR based prediction model is better than that of the
random prediction model. However, there is still a large space for
improving the performance of the LR based prediction model as



Fig. 10. The ROC curve the constructed LR based prediction model. The blue dotted
line represents the prediction performance of the random prediction model.
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compared to the ideal case, where the TP rate is always equal to 1
under different FP rates.

Based on above analysis, owing to the limited number of train-
ing data samples, the LR based prediction model may incur some
prediction errors when the channel quality is good, but can accu-
rately predict the bad channel quality to enable the transmitter
to reduce the invalid transmissions or retransmissions, thus poten-
tially saving the energy of the transmitter.

5.2. Performance analysis of ML-ECQP

In this section, we will analyze the performance in terms of
energy consumption of the transmitters, transmission delay, and
packet loss rate of the ML-ECQP algorithm, which utilizes the pre-
diction results from the proposed LR based model to schedule the
data transmission, i.e., if the predicted channel condition is good,
the transmitter would transmit a packet; otherwise, the transmit-
ter halt the transmission and wait until the channel condition
becomes good. The following two methods are used as the refer-
ence algorithms to compare the performance with ML-ECQP.

1) Non-prediction algorithm: the transmitter does not predict
the channel condition and transmits a packet to the receiver during
each time slot.

2) Ideal-prediction algorithm: the transmitter knows the
channel condition in advance. That is, the channel condition can
be accurately predicted by the transmitter, which will transmit a
packet when packet is good.

In the simulation, Ntest ¼ 2856	 20% � 572 data samples are
used to emulate the channel conditions. That is, each data sample
represents the actual channel condition and underwater acoustic
environment for a specific time slot. Assume that one packet can
be transmitted from the transmitter to the receiver during each
time slot. A packet can be successfully transmitted to the receiver
when the current underwater channel is in good condition (i.e.,
grade ¼ 0); otherwise, the packet needs to be retransmitted (i.e.,
grade ¼ 1) later. Thus, if there are Np packets needed to be trans-
mitted, then the total energy consumption of the transmitter,
denoted as Et , is

Et ¼
XNp

i¼1

1þ Kið Þ 
 b 
 e; ð20Þ

where b is the number of bits in each packet, e is the energy con-
sumption of transmitting a bit to the receiver, and Ki is the number
of retransmissions required for transmitting packet i. Here,
0 6 Ki 6 Kmax, where Kmax is the maximum number of the allowed
8

retransmissions. If a packet is unable to be successfully delivered
the destination after Kmax retransmissions, the packet will be
dropped directly. Thus, we define the packet loss rate, denoted as
g, as follows.

g ¼ Nloss

Np
; ð21Þ

where Nloss is the number of the packets, which is unable to be
delivered after Kmax retransmissions.

Note that Ki in Eq. (20) may vary among different algorithms.
For instance, in the ideal-prediction algorithm, Ki ¼ 0 as the algo-
rithm can always accurately predict the channel condition, and
schedule the packet transmission when the channel condition is
good to completely avoid the retransmission. In the ML-ECQP algo-
rithm, the average value of Ki is determined by the False Negative
rate (grade 1 as the positive class), i.e., the number of the wrong
predictions (where the predicted channel condition is good, but
the actual value is bad) over total number of the predictions. That
is,

Ki ¼ TP þ TN þ FP þ FN
FN

; ð22Þ

where Ki is the average value of Ki. In the non-prediction algorithm,
the value of Ki highly depends on the number of the time slots with
bad channel condition.

� Performance analysis by varying the number of Np

Assume that the maximum number of the allowed retransmis-
sions Kmax ¼ 3, the number of bits in each packet b ¼ 1024 bits,
and the energy consumption of transmitting a bit e ¼ 0:146 J/
bit. Fig. 11 shows the energy consumption Et , the packet loss
rate, and the total amount of delay for transmitting Np packets
incurred by the three algorithms under different number of
packets need to be transmitted. From Fig. 11(a), we can find that
ML-ECQP consumes less energy consumption than non-
prediction but more energy consumption than ideal-
prediction, and has the value of increases, the difference of
energy consumption incurred by the three algorithms increases.
The results demonstrate that transmitting packets only when
the channel prediction is good can significantly save the energy
of the transmitter especially when the traffic load of the trans-
mitter is heavy. In addition, increasing the accuracy of the chan-
nel prediction model can significantly reduce the energy
consumption of the transmitter for underwater communica-
tions. Similarly, in Fig. 11(b), ML-ECQP has lower g (which is
calculated based on Eq. (21)) than non-prediction but higher
than ideal-prediction (where g ¼ 0), which also derives the sim-
ilar conclusion, i.e., transmitting packets only when the channel
prediction is good can significantly reduce the packet loss rate,
and increasing the accuracy of the channel predictionmodel can
significantly reduce g. Although transmitting packets only
when the channel prediction is good can potentially reduce
the energy consumption and packet loss rate, it increases the
total delay for transmitting Np packets as shown in Fig. 11(c),
where ML-ECQP has higher delay than ideal-prediction because
the LR based prediction model in ML-ECQP may result in False
Positive prediction (grade 1 as the positive class), i.e., the real
channel condition is good but predicted to be bad, thus missing
the time slot for successful transmission and increasing the
overall delay.

� Performance analysis by varying the number of Kmax

Assume that Np ¼ 50. Fig. 12 shows the performance of the
three algorithms by varying Kmax. The performance in terms of
energy consumption and packet loss rate for ML-ECQP is better
than non-prediction but worse than ideal-prediction as shown



Fig. 11. The performance of the algorithms by varying the number of packets
needed to be transmitted Np .

Fig. 12. The performance of the algorithms by varying the maximum number of
allowed retransmissions Kmax .
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in Fig. 12(a) and (b). Note that as Kmax increases, the energy con-
sumption for ML-ECQP and non-prediction increases since a lar-
ger Kmax indicates more retransmissions triggered by the
packets transmission in bad chancel condition, and the energy
consumption and packet loss rate for ideal-prediction does
not change as Kmax increases because ideal-prediction does
not trigger any retransmissions during the whole process.
Fig. 12(c) shows the overall delay of transmitting Np packets
for the three algorithms. It is interesting to see that ML-ECQP
incurs a lower delay than ideal-prediction when Kmax equals
to 0 and 1. This is because the LR based prediction model in
ML-ECQP may lead to False Negative predictions (grade 1 as
9

the positive class), i.e., the real channel condition is bad but pre-
dicted to be good, and thus ML-ECQP could schedule to transmit
a packet even if the real channel condition is bad, which reduce
the time of waiting for the channel to be good. For example,
assume that Kmax ¼ 1 and the real channel condition in time slot
t1 and t2 are both bad but are incorrectly predicted as both good
by the LR based prediction model in ML-ECQP. Then, the delay
of transmitting a packet for ML-ECQP is 2 time slots (as the
packet is dropped in time slot t2). On the other hand, ideal-
prediction would wait for the real channel conduction to be
good, and then transmit the packet. Thus, the delay of transmit-
ting a packet for ideal-prediction should be longer than 2 time
slots.
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6. Conclusion

In this paper, we proposed an ML-ECQP method, where the LR
based prediction model is used to estimate underwater channel
condition between a transmitter and a receiver. Based on the esti-
mated results, the transmitter only transmits packets when the
estimated channel condition is good to reduce the number of
retransmissions, thus reducing the energy consumption of the
transmitter. The experiments are conducted to obtain the data
samples of underwater acoustic transmissions. The data samples
are used to train and test the LR based prediction model. The per-
formance of the LR based prediction model is validated by analyz-
ing the values of the five metrics, i.e., Accuracy, Precision,
Sensitivity, Specificity, and F1 score. In addition, extensive simula-
tions have been conducted to demonstrate the performance of ML-
ECQP as compared to other two baseline methods.
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