DISCUSSION

structure. The shift tendency of the reflectivity peak was
determined by the dominant factor d or r. The
calculation result shows that the bandgap position is
red-shifted with the increase of the treating temperature if
nes=>2. But when n.g is lower, the bandgap position will
be shifted to the contrary tendency.

We assumed an extreme status: polystyrene spheres’
deformation reached the maximum and the air void was
infilled so that the volume of the air could be ig-

Y2na

B3
Nefs = Nsphere = 1.59. The bandgap position 4 is 634 nm. The
calculation result shows that the peak is shifted to the
short wavelength. But the measured value (622 nm) is
smaller than the ideal calculation result. This could be
caused by the error of microsphere size and the anisotropy
in the shrinking process, more detailed analysis should vz
carried out in the future.

= 200 nm,

nored, the inter-planar spacing 4 =

3 Conculsion

In summary, the pclystyrine spheves’ shape trans-
forms to dodecahedron ecpecially in the range from 80°C
to 100°C with treating temperature increasing, and the
peak of reflective spectra is shifted to the short wave-
length because of the transformation, the shift in experi-
ment is more obvious than that in the theoretical simula-
tion.
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Abistract  The jurassic high Sr/low Y granitoids in east-
ern China are characterized by high Sr/Y (27—166) and
La/Yb (14—66) ratios, low abundance in Y (6—21 pg/g) and
Yb (0.5—2.0 ug/g), comparable with those of adakites de-
fined by Defant et al. Thus, they were recently considered as
adakitic rocks by some researchers. Compared with the
typical adakites in circum-Pacific margins, however, these
high Sr/low Y granitoids have higher K,0 (-3.5%) but lower
ALO; (-16.0%) as well as lower Mg* (=38) and &Sry (-1.23)
values. Furthermore, they show relatively flat HREE pat-
terns with Y/Yb values of —10 close to the chondritic value.
These geochemical characteristics indicate a residue mineral
assemblage of hornblende, garnet and plagioclase for these
high Sr/low Y granitoids melt. Thus, they were generated by
partial melting at 9—13 kbar (30—45 km in depth), similar
to the Archaean high-Al TTG rather than the modern ada-
kites. Generation of these high Sr/low Y graniteids cannot be
considered as evidence for a thickened crust (>50 km) and/or
the presence of the “Eastern China Plateau” in Jurassic.

Keywords: granitoids, adakite, TTG, Jurassic, eastern China.

Defant et al.”" had first proposed the term of adakites
to describe some NayO-rich and K,0-poor arc volcanic
rocks, including calc-alkaline andesites, dacites, sodic
rhyolites and their intrusive equivalents. Typical adakites
are derived directly from partial melting of the subducted
oceanic crusts, in contrast to the island-arc magmasm de-
rived from partial melting of the underlying mantle
wedges. In the process of partial melting, the garnets and
amphiboles are residual and the plagioclases melt, which
results in depletion in Y and HREE, but enrichment in
AlyOs, Sr with high La/Yb and St/Y ratios in the typical
adakites!?. Additionally, the interactions between the
ascending adakitic magma and the mantle wedge would
increase the Mg* values for the typical adakites*. For
example, the adakite of Adak island in Aleutian islands
(with SiO, = 60%) contains 2366 ppm Sr, and their La/Yb
and Mg” are up to 48.9 and 72, respectively'®. The typical
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adakites are mainly located in the Cenozoic circum-
Pacific island arcs™”. In general, only young and hot
subducted oceanic crusts (<25 Ma) can reach the solidus
temperature of hydrous tholeiite before it dehydrates, and
melt to product adakitic magmas'"”!. The process has been
described in some places, such as Cook island of Chile”,
Mount St. Helens of North America® and so on. However,
flat subduction of overthickened oceanic crusts (e.g. oce-
anic plateau) can also produce adakitic magmas, e.g. Peru
and Ecuador, because the slabs have sufficient time to
float on the upper mantle and gain enough heat to melt. In
nature, of the 10 known flat subduction regions worldwide,
eight are linked to occurrences of adakitic magmas!'”,
Additionally, some older subducted slabs (>40 Ma) may
be hot enough to melt in case of oblique convergent sub-
duction or young subduction, such as the Adak and Ko-
mandorsky island of Aleutian'®”""!, Mindanao of Philip-
pinesm] and so on.

Adakites defined by Defant et al.'' are rocks with
distinct geochemistry and petrogenesis rather than par-
ticular petrographical characteristics. High St/Y (20—
40), La/Yb (>20) ratios and lov Y (=218 pg/e), TIREE
(Yb=<<1.9 ng/g) conients are wmost important
discriminating features of adakites. However, recent
studies indicate that some rocks with similar geochemical
features mentioned above were not generated by melting
of subducted 1ithosphere[5' B3-151 For example, Archaean
high-Al TTG are characterized by high-Sr, low-Y and
strongly fractionated REE patterns, and almost identical
with typical adakites in composition. It is generally
accepted that the Archaean high-Al TTG could have been
generated from partial melting of either subducted oceanic
crusts™’® or underplated basaltic rocks'™. With plagio-
clase being as residual mineral, the TTG magmas were
less or not affected by the mantle peridotite, which re-
sulted in lower & Sry and Mg” ratios for the Archaean
high-Al TTG relative to the typical adakites'”, Further-
more, some Phanerozoic intermediate to felsic
calc-alkaline rocks, such as Cordillera Blanca Batholith of
Peru!'®, Separation Point Batholith of New Zealand"*,
also show geochemical affinity with the typical adakites
with high Sr/Y and La/Yb ratios, although they were gen-
erated by partial melting of underplated basaltic rocks in
the lower crust. According to the geochemical studies on
high-silica lavas from island arcs of Philippines, Castillo
et al."" presumed that some mantle-derived magmas
could have high Sr/Y and La/Yb ratios through assimila-
tion and fractional crystallization (AFC) processes. Actu-
ally, if adakites are loosely termed only by some geo-
chemical parameters (e.g. high St/Y and La/Yb ratios, low
Y and Yb contents), some mantle-derived shoshonitic
rocks, high-Ba-Sr granitoids"”'®! and probably many
other rock types could also be called adakites. Doing so,
except indicating the residues of garnet and hornblende,
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adakites will not have other specific genetic applications
any more.

A number of the Jurassic high-K calc-alkaline grani-
toids in eastern China are characterized by strongly frac-
tionated REE patterns, high St/Y and (La/Yb)y ratios and
low Y and HREE contents, comparable with the adakites
defined by Defant et al!. Thus, some researchers
grouped these rocks into the “adakitic rocks™'"*"*%. Fur-
thermore, they suggested that a significantly thickened
crust or “the Eastern China Plateau” might have existed in
the Jurassic compared with the typical adakites that
formed at high pressure (>15 kb) with garnet-bearing
amphibolite or eclogite as residue'” ?*, This paper pro-
vides a detailed comparison of geochemical characteris-
tics and petrogenesis between tlic Jurassic high St/low Y
granitoids in casterp China and ibe typical adakites lo-
cated 1n the cucum-Pacific margins, to explore whether
thesc high Sr/lew Y graaitoids can provide constraints on
the crustal thinkness in eastern China.

1 Contrast on geochemical characteristics

We collected in this paper most of the published data
of the Jurassic high Sr/low Y granitoids in eastern China
in literatures, including Beipiao, Zhangwu and Fuxin vol-
canic rocks of Liaoning province® **!, Tiaojishan Forma-
tion in the Beijing area™’, some granitoids in the Yanliao
are= 2 some granitoids in southern Dabieshan'?”, and
sume intermediate-acid magmatic rocks in the middle-
lower reaches of the Yangtze River (Shaxi and Tongling in
Anhui)®" ¥ Compared with the typical adakites of the
circum-Pacific arcs, the high Sr/low Y granitoids display
distinct differences in geochemistry as follows.

(1) K0 contents. The high Sr/low Y granitoids con-
tain 3.1%—>5.2% Na,O and 1.4%—4.5% K,O with high
K;0/Na,O ratios (average in 0.76, and a few=1), in con-
trast to the typical adakites that are sodic volcanic rocks
characterized by NayO-rich (3.5%—7.5%) and K,O-poor
(0.57%—3.2%) with low K,O/Na,O ratios (average in
0.42"Y. In a K50 vs. SiO, diagram (fig. 1(a)), the typical
adakites are plotted in the tholeiitic to calc-alkaline fields,
whereas the high Sr/low Y granitoids are mostly plotted in
the high-K calc-alkaline field, with a few plotted in sho-
shonitic or calc-alkaline fields. Thus the high Sr/low Y
granitoids in eastern China are significantly richer in K
than the typical adakites.

(2) ALO; contents. Both of the high St/low Y grani-
toids and the typical adakites show decreasing trends of
AL Oz with SiO, increasing, indicating the fractional
crystallization of plagioclase (fig. 1(b)). Overall, the aver-
age Al,O; content of —16.0% for the high Sr/low Y grani-
toids is similar to that of Archaean high-Al TTG
(-15.7%""), but lower than that of the typical adakites
(=17.1%). Furthermore, difference in Al,O; is more pro-
nounced at lower silica values between them.
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Fig. 1. Comparison of geochemical compositions bewteen the high
Sr/low Y granitoids and the typical adakites. (a) K;O vs. 8i0y; (b) Al;O;
vs $i0; (¢) Mg” vs. Si0,. Data for the typical adakites (open circles) are
from refs. [4, 8, 9, 29-—33]; The high Sr/low Y granitoids in eastern
China (filled circles) are from refs. {20, 21, 23—28] and 1).

(3) Mg” values. Typical mid ocean ridge basalts
(MORB) have Mg” values [=100X Mg**/(Mg**+Fe’*)] of
about 60. Experimental results have shown that the ap-
parent maximum Mg”* value is —45 for partial melts of
MORB™, but the addition of only ~10% peridotite can
increase the Mg” value from —44 to 55, Consequently,
Mg” value can provide a sensitive indicator of the con-
tamination of peridotite™. The typical adakites have

higher Mg# values (average in 55 and up to 68, fig. 1(c)),
which was interpreted by interactions between the as-
cending adakitic magma and the overlying mantle
wedge!™ 51 The high Sr/low Y granitoids have lower Mg®
values (average in 38), apart from a few latite samples
from Zhangwu (up to —50, fig. 1(c)), indicating that the
parental magmas of most high Sr/low Y samples might
not have interacted with the peridotite mantle, similar to
Archaean high-Al TTG"!,

(4) & Sry ratios. Sr enrichment relative to LREE, ex-
pressed as the & Sry value, is one of the diagnostic features
for typical adakites, indicative of the lack of residual pla-
gioclase (fig. 2). On the contrary, Archaean high-Al TTG
have no any Sr positive anomaly (fig. 2), implying the pla-
gioclase as a residue minerz!, The Sr contents and St/Y
ratios of the high Sv/low Y granitoids (376—1535 pg/g and
271—166, respectively) are similar to those of the typical
adakites (348—-2002 ug/g and 32—443, respectively).
However, they do not show obvious Sr positive anomaly
duc o strong enrichments of LREE, with a few samples
even showing Sr negative anomaly (fig. 2). In general, the
high Si/low Y granitoids are similar to Archaean high-Al
TTG, rather than the typical adakites, ind Sry values. Al-
though & Sry values increase and decrease gently with Sr
and SiO, increasing (fig. 3), possibly due to plagioclase
fractionation, the distinct difference in J5Sry values be-
tween high Sr/low Y granitoids (J Sry < 2) and the typical
adakites (J Sry > 2), however, is difficult to be interpreted
solely by plagioclase fractionation.

(5) HREE contents. Unlike the typical adakite, the
high Si/low Y granitoids show nearly flat heavy REE pat-
terns with Y/Yb ratios (—10) close to the chondrite
value®®, except a few North Dabieshan samples display-
ing strongly fractionated HREE patterns with Y/Yb ratios
of 14—18%, In addition, the depletion of heavy REE in
the high Sr/low Y granitoids is insignificant compared
with that of typical adakites. In the (La/Yb)y vs. Yby dia-
gram (fig. 5)'8 the high Sr/low Y granitoids are plotted
mainly in the transitional field of high-Al TTD (or adakite)
and low-Al TTD, lying between partial melting curves of
amphibolite restite and 10% garnet amphibolite restite.
Whereas, most typical adakites lie between partial melting
curves of 10% gamet amphibolite restite and eclogite
restite.

2 Petrogenesis of the high Sr/low Y granitoids in
eastern China

According to field geology, igneous rock associa-
tions and geochemical characteristics of the high Sr/low Y
granitoids as well as the tectonic regime of eastern China
in the Mesozoic, many researchers®™ ***! suggest that the
high St/low Y granitoids were likely generated by partial

1) Wang, Q., Zhao, Z. H., Xu, J. F. et al., The adakite-like magmas in the eastern Yangtze Block and their geodynamic and metallogenetic sig-

nificance, in press.
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Fig. 2. Primitive mantle normalized trace elements diagram. Adakite from ref. [25], TTG from ret. [37], the high Si/low Y granitoids from
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melting of the basaltic lower-crust, rather than by melting
of subducted paleo-Pzcific oceanic crust, fractional crys-
tallization of basaltic magma or magma mixing. This
viewpoint is consistent with the field and geochemical
characteristics of the high Sr/low Y granitoids; for exam-
ple, high SiO, contains >56%, low Mg# values of <50,
rarely associated with basic rocks, no evolutional trends
with basic rocks, and homogeneous and lower-crust-like
Sr and Nd isotopic compositions in specific re;ions (for
example, €xg(1) = —15.7—-15.0 and initial *’St/*®Sr =
0.70575—0.70607 for 6 samples from Tiaojishan Forma-
tion volcanics*”). However, the sources of the high
Sr/low Y granitoids could also be composed of lower-
crust mafic rocks and some other rock types (e.g. inter-
mediate-acid rocks or metasedimentary rocks) in some
areas. Addition of mantle-derived magmas cannot be to-
tally ruled out for a few high Sr/low Y granitoids with
high &ng ratios.

The experimental petrological studies indicate that
the potassium contents of source rocks would distinctively
influence K,O contents of derived-melts, and that high-K
calc-alkaline magma should not be originated from partial
melting of low-K tholeiite!!. Very high K,O (average in
3.15%), Sr, LREE contents, 56.02% SiO, in the most ba-
sic rocks and Sr, Nd isotopic data all suggest that the
sources of the high Sr/low Y granitoids of eastern China
should be lower-crust basaltic rocks derived from an en-
riched lithospheric mantle, but we also do not exclude
some other possibilities, such as the mixture of depleted
mantle and old crust.

The geochemical differences between the high
Sr/low Y granitoids and the typical adakites indicate the
different residual phases in source area. Since plagioclase
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is an important Al-rich mineral in igneous rocks and the
Sr partition coefficient between plagioclase and melt is
very high, Al;O; and Sr contents are used to diagnose the
role that plagioclase plays in the magma generation and
evolution. Compared with the typical adakites, the high
St/low Y granitoids in eastern China have lower Al,O;
contents and & Sry values, indicating that plagioclase was
likely the residual mineral during Partial melting, resem-
bling the Archaean high-Al TTG™, because such signifi-
cant differences could not be attributed to the plagioclase
fractionation alone. Furthermore, amongst the HREE, Yb
and Lu have the highest garnet-melt partition coefficients,
whereas Dy and Ho have the highest hornblende-melt
partition coefficients'*”. When garpet is the main residual
phase, HREE will show strongly fractionated patterns
with Y/Yb > 10 (up to 20). In contrast, when hornblende
is the main residual phase, HREE will show flat patterns
with Y/Yb = 10. So the HREE patterns indicate that the
typical adakites should have either garnet amphibolite or
eclogite as residual phases!™** ' in contrast to the high
St/low Y granitoids with hornblende, garnet and plagio-
clase as main residual phases.

3 Constrains on the crustal thinkness in eastern
China

Since the high Sr/low Y granitoids in eastern China
are most probably generated by partial melting of the ma-
fic lower crustal caused by basaltic underplating or intru-
sion, melting conditions, particularly the pressure of
melting could provide constraints on the crustal thinkness
as proposed by Zhang et al.?® and Wang et al.”*'".

Distinct from that of typical adakites, the residual
mineral assemblage of the high Sr/low Y granitoids in
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eastern China was likely made up of hornblende + garnet
+ plagioclase, in which hornblende might be the major
residual phase. Thus, the P-T conditions required for the
production of these rocks should correspond to the stable
ranges of garnet granulites (shadow area in fig. 6)*). Ex-
perimental studies indicate that dehydration partial melt-
ing of water-undersaturated basaltic rocks needs tempera-
tures high than 850°C""***1 and that the melting tem-
peratures of lower-crust induced by basaltic underplating
is generally lower than 950°C'*%. The pressure for the
stability of garnet granulite is about 8—12 kbar at 850—
950°C (fig. 6)"”. Experiments on dehydration melting of
amphibolite show that the garnet appears at 850—990°C
and 10 kbar'*, Compiling the experiment results of the
stable range of garnet, Vielzeuf and Schmidt™*” considered
that the gamet-in curve was located between 9 and 14
kbar in terms of the various compositions of basaltic
sources at 800—1000°C. Furthermore, the geological and
geochemical studies of the high-Al TTG indicate that they
could have been generated at ~ 10 kbar. For example, the
high-Al trondhjemite of Catalina island in scuthern Cali-
fornia is generated at 9—11 kbar™®, and the Birbi: TTG
in Ethiopia is generated at %—-12 kpas'*®!. Thus, it is
not necessary to invoke high pressures of > 12—15
kbar!!72! 23 interpreting the presence of garnet in the
residues for those high Sr/low Y granitoids. In fact, be-
cause of the coexistence of hornblende, plagioclase and
garnet in the residues and the dehydration reaction for
H;O-undersaturated melting (amphibole + plagioclase =
garnet + melt + clinopyroxene)!*”, the melting pressure
close to the reaction curve (garnet-in curve) may be more
appropriate for hornblende, rather than garnet, being the
major residue. Thus, the melting pressure of the high
Sr/low Y granitoids in eastern China was likely at 9—13
kbar, the minimum pressure range for stabilizing garnet
granulite, at temperature intervals of 800—1000°C. This

pressure range corresponds to 30—45 km in depth.
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Therefore, a distinctively thickened Jurassic crust or “the
plateau of Eastern China” is not necessarily true based on
the occurrences of these rocks.

4 Conclusions

The high Sr/low Y granitoids share some composi-
tional features of adakite defined by Defant et al.', such
as high Sr/Y, (La/Yb)y ratios and low Y, HREE concentra-
tions. Nevertheless, compared with the typical adakites in
circum-Pacific margins, the high Sr/low Y granitoids have
lower & Sry values and weaker depletions in Y and HREE,
More importantly, there are some obvious differences in
geochemistry between them. The high Sr/low Y granitoids
have higher K,O contents, lower Al,Os contents and lower
Mg” values than the typical adakites. So it may be inap-
propriate to using the term of “adakitic rocks” to describe
the high-K calc-alkalive granitoids which were not di-
rectly related to subduction. In oiher countries, there are
also scme high Sr/low Y intermediate-acid igneous rocks
occurring i the intraplate environments or 0r0§enic zones,
such as Jaaho batholith in northwestern USAP” and gran-
ites of the Arunta Inlier in central Australia”">? Although
they are similar to adakite with high Sr/Y ratios and
strongly fractionated REE patterns, these igneous rocks
have not been termed “adakite” or “adakitic rocks”.
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