全南正长岩的地球化学特征及成因

陈志刚 李献华 李武显

中国科学院广州地球化学研究所,510640

内容提要 全南正长岩由霓辉石正长岩和石英正长岩组成。它们高钾(5.4%~6.2%)、富碱(K₂O+Na₂O= 10.63%~12.08%),属钾玄质系列岩石。它们的稀土元素均显示轻稀土富集的右倾稀土配分形式。微量元素表现 为大离子亲石元素(LIL)和 Nb-Ta 明显富集,并出现明显的 Sr、P和 Ti 负异常。其中石英正长岩比霓辉石正长岩有 更低的 Sr、P和 Ti 含量。它们均有正的 ε_{Nd}(t)值(+0.97~+3.38)。这些岩石地球化学特征表明,全南正长岩来源 于交代富集金云母的尖晶石二辉橄榄岩地幔的小比例部分熔融,并经历了早期少量斜长石、辉石;晚期大量的钾长 石和磷灰石、钛铁矿的结晶分异作用,并有地壳的混染作用影响。

关键词 全南正长岩 岩石学 地球化学 赣南

中国东南部广泛分布着晚中生代火成岩。仅浙 闽赣粤四省,火成岩的出露面积约24万平方千米(周 新民等,2000; Zhou et al., 2000b)。它们总体上呈 北东带状分布,成分上以流纹质岩石为主(>90%)。 玄武质岩石很少(<10%),且主要出露在靠近沿海 的浙江和福建的东部。它们总体构成钙碱性-高钾 钙碱性的岩石系列(李武显等,2000)。但是,在江西 南部(简称赣南),近东西走向分布着一系列的火山 岩盆地,其中的火山岩是双峰式的,有大量的 A 型 花岗岩(陈培荣等,1998,1999,2002;孔兴功等, 2000a, 2000b; 范春方等, 2000), 还有少量的正长 岩,并且出现 Nd 同位素的 T_{DM}低值和 ε_{Nd}(t)高值区 (带)(Gilder et al., 1996; Chen et al., 1998; 沈渭 洲等,2000)。它们无论是在总体分布上,还是在岩石 组合上,与中国东南部广泛发育的晚中生代岩浆活 动不协调。认识它们所代表的构造意义,将有助于加 深对中国东南部晚中生代大规模岩浆活动成因的理 解。近年来,已有许多关于双峰式火山岩和 A 型花 岗岩的报道(陈培荣等,1998,1999,2002;孔兴功 等,2000a,2000b; 范春方等,2000)。但是,与它们共 生出现,并且时间上略晚的少量高钾正长岩,一直没 有进行系统的岩石学和岩石地球化学研究。本文报 道了全南正长岩系统的岩石学、岩石地球化学和 Nd 同位素资料。在此基础上,讨论了它的成因及地质意 义。

1 地质背景

近东西走向的赣南中生代火山一侵入岩带,由 一系列的火山岩盆地和花岗质岩体构成。主要的火 山岩盆地自西向东依次为:南径盆地、临江盆地、东 坑盆地、白面石盆地、菖蒲盆地和河岭盆地。主要的 中生代侵入岩有破头岩体、寨背岩体、柯树北岩体和 单观障岩体,其中前2个岩体已经确定为A型花岗 岩(陈培荣等,1998;范春芳等,2000)。正长岩发育在 全南县城、全南西北的龙源坝以及龙南北的高栋地 区,它们主要以小岩株形式侵入于陂头A型花岗岩 和古生代地层中。

全南正长岩位于赣南火山岩带的西部,全南县 城的北部(图1)。岩体西北方向为陂头岩体,西南方 向为南径侏罗纪火山岩盆地。岩体呈北西向延长的 肾形,长约3.2 km,宽约2.4 km,面积约7.7 km²。岩 体侵入于古生代下石炭统煤系地层中。岩体南部为 二长正长斑岩,北部为正长岩。两者之间为渐变过渡 关系。本次工作主要研究了北部的正长岩。

2 岩石学特征

全南正长岩体由霓辉石正长岩和石英正长岩两 种岩性组成。霓辉石正长岩为粗粒结构,主要矿物为 钾长石(>90%)和霓辉石(~10%),副矿物为锆石、 磷灰石、钛铁矿,极少量黝帘石和榍石。钾长石为条

注:本文为中国科学院知识创新项目(编号 KZCX2-102)资助成果。

收稿日期:2001-12-31;改回日期:2002-05-11;责任编辑:刘淑春。

作者简介:陈志刚,男,27岁。硕士研究生,同位素年代学和地球化学专业。通讯地址:510640,中国科学院广州地球化学研究所。

图 1 全南正长岩地质简图 Fig. 1 Simplified geological map of the Quannan syenite intrusion 1-正长岩; 2-二长正长斑岩; 3-花岗岩; 4-休罗纪火山岩 盆地; 5-元古宙地层; 6-古生代地层; 7-断层 1-Syenite; 2-syenitic porphyry; 3-granite; 4-Jurassic volcanic basin; 5-Proterozoic sequences; 6-Paleozoic sequences; 7-faults

纹长石。没有石英和斜长石,暗色矿物为不含水的碱 性霓辉石,没有闪石类和云母类矿物。这种矿物组合 和岩石结构特征表明为浅成,高温、无水的超溶线条 件下结晶。石英正长岩为中一细粒结构,主要矿物组 成为钾长石(>85%)、石英(8%~10%)和少量由暗 色矿物蚀变形成的绿泥石(7%~5%)。副矿物主要 为锆石、磷灰石和钛铁矿。和霓辉石正长岩一样,它 的钾长石也为条纹长石,也是超溶线条件下结晶的 岩石。上述岩石的岩相学特征表明,岩石结晶于近地 表的浅部,无水、高温条件下,与野外观察到的该岩 体与浅成相的二长斑岩共生是一致的。这种超熔线 结晶特征是许多碱性岩石的特征,如魁岐碱性花岗 岩(Martin et al., 1994)、Ulungur River A 型花岗岩 (Han et al., 1997)。

3 分析方法

所有的主量元素、微量元素和 Nd 同位素均在 中国科学院广州地球化学研究所分析。主量元素采 用碱熔法熔样,在 ICP-AES 上测定。微量元素用酸溶法溶样,在 ICP-MS 上测定。主量元素和微量元素的分析精度分别为1%和3%~5%。详细的主量元素和微量元素分析流程见李献华等(2002)和刘颖等(1996)。Nd 同位素分析为:称取约40 mg 样品粉末,置于 Teflon 溶样器中。用1:1 HNO₃和 HF 混合溶样。Sm-Nd 的分离采用常规的阳离子树脂(分离REE 和其他元素)和 HDEHP(分离 Sm 和 Nd)。Nd同位素在中国科学院广州地球化学研究所新安装的MC-ICP-MS 上进行。该仪器对 Shin Etsou 标准的¹⁴³Nd/¹⁴⁴Nd测定值为0.512125±11(2σ , n = 14)。¹⁴³Nd/¹⁴⁴Nd值用¹⁴⁶Nd/¹⁴⁴Nd=0.7219标准化。主、微量元素和 Nd 同位素分析结果见表1。

4 岩石地球化学特征

岩石化学上,全南正长岩可分为霓辉石正长岩 和石英正长岩两组。霓辉石正长岩相对低 SiO₂ (60.8%~65.2%)、高 K₂O(5.57%~6.18%)。而石 英正长岩相对高 SiO₂(65.7%~67.8%)、低 K₂O (5.35%~5.99%)。在 Middlemost(1994)提出的侵 入岩全碱-SiO₂分类图上(图2),霓辉石正长岩和石 英正长岩分别落入正长岩区和石英二长岩区。在 Rickwood(1989)的 K₂O-SiO₂分类图上它们都属于 高 钾的钾玄质系列的岩石(图3)。在以 SiO₂为横 坐标的Harker图上(图4),主量元素TiO₂、Al₂O₃、

表 1	全南正长岩主	▋元素(%),微量:	元素(µg/g)ネ	和 Nd 同位	素分析结果
-----	--------	------------	-----------	---------	-------

岩性	石英正长岩			霓辉 石正长岩			岩性	石英正长岩		霓辉石正长岩					
样品	2KGN	2KGN	2KGN	2KGN	2KGN	2KGN	2KGN	样品	2KGN	2KGN	2KGN	2KGN	2KGN	2KGN	2KGN
编号	16-1	16-7	16-10	16-3	16-5	16-9	16-11	编号	16-1	16-7	16-10	16-3	16-5	16-9	16-11
SiO ₂	67.65	67.82	65.69	65.20	61.95	62.21	60.79	Ba	826	222	367	1173	1293	1238	1394
TiO_2	0.22	0.24	0.41	0.37	0.52	0.50	0.58	La	54.8	78.5	38.5	41.8	23. 7	26.5	31.8
Al_2O_3	16.1	15.1	16.4	16.1	17.4	16.1	17.4	Ce	109	158	86.1	82.3	51.0	56.3	68.3
Fe_2O_3	3. 27	3.41	2.98	4.79	4.96	5.57	5.02	Pr	11.7	16.4	10.0	8.81	6.07	6.63	7.89
MnO	0.08	0.09	0.18	0.17	0.16	0.20	0.18	Nd	43.5	60.5	39.9	33.0	24.8	26.6	31.8
MgO	0.12	0.14	0.11	0.43	0.55	0.53	0.37	Sm	9.00	12.1	8.63	6.14	5.09	5.45	6.34
CaO	0.95	0.88	0.95	1.22	1.37	1.98	1.86	Eu	1.59	1.10	1.81	2.46	2.72	2.69	3.07
Na_2O	5.62	5.42	4.64	5.37	6.05	5.51	5.65	Gd	7.65	10.1	7.67	4.60	4.27	4.61	5.06
K ₂ O	5.35	5.40	5.99	5.94	6.03	5.57	6.18	ТЪ	1.46	1.83	1.41	0.80	0.73	0.78	0.85
P_2O_5	0.03	0.03	0.04	0. 08	0.10	0.09	0.12	Dy	7.88	9.86	7.79	4.12	3.76	4.00	4.31
烧失	0.55	0.87	1.78	0.84	1.06	1.57	1.65	Ho	1.60	1.93	1.57	0.79	0.77	0.79	0.83
总和	99.97	99.42	99.21	100. 53	100.16	99.79	99.76	Er	4.70	5.44	4.67	2.27	2.19	2.26	2.30
ACNK	0.96	0.92	1.04	0.92	0.92	0.86	0.90	Tm	0.69	0.82	0.72	0.33	0.34	0.34	0.34
Sc	6.17	3.73	6.21	6.95	6.43	5.24	8.33	Yb	4.32	5.10	4.75	2.14	2.26	2.26	2.20
v	1.32	0.67	1.44	0.33	0.79	0.30	1.20	Lu	0.63	0.76	0.75	0.34	0.38	0.37	0.35
Cr	3.28	2.64	1.27	4.37	3.44	4.63	3.82	Hf	9.65	12.5	14.1	4.54	6.96	5.96	5.64
Co	0.79	0.85	0.57	0.98	0.87	0.96	0.91	Ta	5.04	5.82	3.77	2.07	2.06	2.46	2.85
Ni	1.33	1.46	0.84	0.88	0.77	1.18	0.70	Pb	16.3	14.3	12.9	13.6	7.75	12.7	7.60
Ga	24.8	25.8	24.3	22.0	21.8	20.6	21.4	Th	12.4	15.0	9.70	5.53	2.27	3.43	2.84
Ge	1.86	2.07	1.71	1.59	1.59	1.71	1.49	U	3.21	2.83	2.67	1.18	0.96	1.15	0.79
Rb	126	138	137	97.5	80.2	89.1	85.3	¹⁴³ Nd ¹⁴⁴ Nd	0. 512618	0.512611	0.512643	0. 512687	0.512734	0.51272	0.512734
Sr	48.1	25.9	47.6	48.6	46.6	46.1	58.0	$2\sigma_{m}$	0. 000006	0. 000005	0. 000006	0. 000006	0. 000007	0. 000006	0. 000007
Y	42.6	51.9	42.3	21. 0	19.3	20.7	21.0	Nd (µg/g)	43.5	60.5	39.9	33.0	24.8	26.6	31.8
Zr	313	462	693	146	340	251	242	Sm (μg/g)	9.00	12.1	8.63	6.14	5.09	5.45	6.34
Nb	71.8	88.4	5 2. 7	31.9	33.7	38.0	44.8	$\frac{^{147}\text{Sm}}{^{144}\text{Nd}}$	0. 1250	0. 1207	0.1307	0. 1125	0.1241	0.1235	0. 1203
Cs	5.75	6.93	3.88	17.5	3. 10	4.86	2.84	е _{Nd} (164Ma)	1.01	0.97	1.38	2. 63	3. 30	3.04	3. 38

往: eNd (t) 计算所用参数: (143Nd/144Nd) CHUR = 0.512638; (147Sm/144Nd) CHUR = 0.1967; t=164Ma。

图 3 全南正长岩的 K₂O-SiO₂图解 Fig. 3 K₂O vs SiO₂ diagram for the Quannan syenite 图例同图2 (Symbols as in Fig. 2)

Fe₂O₃、CaO、K₂O、Na₂O和P₂O₅均呈负相关关系,表 明它们为同成因,不同演化阶段的岩石。结合岩相学 特征,涉及到的分离结晶矿物主要为钾长石、霓辉 石、钛铁矿和磷灰石。微量元素与SiO₂的关系,Ba呈 明显的负相关,而Sr变化不大,说明不是斜长石的 结晶分异所造成;Rb呈正相关,表明没有黑云母的 结晶分异。

所有样品显示轻稀土富集,重稀土亏损的右倾 稀土配分形式(图5a),(La/Yb)_N为5.4~12.9,其中 轻稀土较陡(La_N/Sm_N=4.1~6.4),重稀土较平缓 (Gd_N/Yb_N=1.3~1.8)。石英正长岩稀土丰度总体 偏高,并出现弱的负 Eu 异常。霓辉石正长岩稀土丰 度相对偏低,但是出现弱的正 Eu 异常。它们的原始 地幔标准化蜘网图(Sun et al.,1989)(图5b),由于 大离子亲石元素(LIL)的富集,使得整个曲线显示 "隆起"的特征。但是,Sr、P和Ti出现明显的亏损 槽,表明经历了斜长石、磷灰石和钛铁矿的结晶分 异。其中石英正长岩比霓辉石正长岩有更高的Nb-Ta、Zr-Hf含量和更亏损Sr、P和Ti,表明经历了更 加强烈的结晶分异作用。全南正长岩的另一个显著 特征是没有Nb-Ta异常,Nb/La = 0.76~1.43(平 均:1.26),类似于桂东南钾玄质岩带(李献华等, 1999)。它们的总体形态与板内玄武岩相似。

该岩体的年龄为164±2 Ma(另文发表),以此 年龄计算的 ε_{Nd}(t)值为+0.97~+3.38,与这些岩 石不出现 Nb-Ta 负异常是协调的,都表明岩浆来自 于地幔而不是古老的地壳。

5.1 物质来源

钾玄质岩石是一种分布很少,但有重要岩石学 意义的岩石。钾玄质系列岩石主要形成于岛弧环境, 包括大洋弧、大陆弧以及碰撞后弧,只有极少数钾玄 岩产于板内环境。与岛弧相关的钾玄岩常常形成于 远离海沟的岩浆弧的后部,由俯冲流体交代的岩石 圈地幔小比例部分熔融形成,这类钾玄质岩石具有 与岛弧岩浆岩非常一致的微量元素地球化学特征, 即高度富集 LIL 和 LREE 及显著的 Ta-Nb-Ti 负异 常(Muller et al., 1995; Rock, 1991)。

与俯冲作用无关的板内环境形成的钾玄质岩石,可形成于大洋板内环境,如 Gough 和 Tristan da Cunha 群岛,也可以形成于大陆板内环境,如东非裂谷。它们是裂谷活动的产物,它们共同的地化特征是 具有典型的洋岛型玄武岩(OIB)的微量元素特征 (Weaver et al., 1987;Rogers et al., 1998)。全南正 长岩缺乏 Nb-Ta 异常,明显正的 $\epsilon_{Nd}(t)$ 值以及与板 内玄武岩相似的微量元素曲线,表明形成于与岛弧 无关,而与板内交代作用富集的岩石圈地幔有关。这 种岩石圈地幔的交代富集可能和 LIL 富集的地幔 柱底垫相关,或岩石圈地幔本身就存在长期的不均 一性(李献华等,1999)。全南正长岩没有明显的重稀 土亏损和出现明显的 Eu 异常,可能表明它不是岩 石圈地幔下部石榴石二辉橄榄岩部分熔融形成,而 是岩石圈地幔上部尖晶石二辉橄榄岩部分熔融形成,而 人。含交代形成的金云母的尖晶石二辉橄榄岩地幔 的小比例部分熔融,是这种钾玄质岩石的来源(李献 华等,1999)。

图 6 全南正长岩 Ba-Eu*/Eu 图解 Fig. 6 Ba vs Eu*/Eu diagram for the Quannan syenite 图例同图2 (Symbols as in Fig. 2)

5.2 结晶分异过程

全南正长岩异常低的 MgO 含量(0.11%~ 0.55%)和明显的 Sr、P 以及 Ti 亏损,表明它不是原 始岩浆,而是结晶分异的产物。异常低的 Sr 含量是 经历了斜长石结晶分异的结果。高的 Eu 含量(对于 寬辉石正长岩甚至出现明显的正 Eu 异常)表明斜 长石的结晶分异比例并不是很大或者由于斜长石在 碱性岩浆中对 Sr 的分配系数明显大于 Eu(对于粗 面岩分别为2~6.6和0.85~1.06, Villemant, 1988),斜长石的结晶分异使岩浆中 Sr 亏损而 Eu 相 对富集。从霓辉石正长岩到石英正长岩,K、Na 和 Ba 的一致降低,表明钾长石的结晶分异占主导地位, Ba 和 Eu* / Eu 的关系 (Han et al., 1997) 也说明这 一点(图6)。Rb 的增加,表明没有黑云母的结晶分 异,而钾长石中 Ba 比 Rb 有更大的置换钾长石中钾 的能力,结晶分异的钾长石优先带走 Ba 而 Rb 被留 在熔体中。这种矿物的分离与岩相学观察到的不出 现斜长石和含水的暗色矿物是一致的。大量的钾长

石的结晶分异, 是导致 Eu 从霓辉石正长岩的正异 常到石英正长岩的负异常的主要原因。

5.3 地壳同化混染作用

在 Th/Y、Nb/Th 和 ε_{Nd}(t)对 Th 图上(图7),显示双曲线形状,而不是直线形,表明不是简单的结晶 分异,还有地壳物质混染作用,即地壳 AFC 过程。这 种过程对于超熔线条件下结晶的,形成于浅部地壳 水平的岩浆岩是可能的(Han et al., 1997)。

图 7 全南正长岩 Th/Y-Th(a)、Nb/Th-Th(b)和 _{ε_{Nd}(t)-Th(c)}图解

6 地质意义

中国东南部广泛的岩浆活动有两种主要的解释,即与古太平洋的俯冲有关的弧岩浆岩(周新民等,2000; Zhou et al., 2000b)和与岩石圈伸展有关的岩浆活动(Li X H et al., 2000)。赣南地区火成岩近东西分布的宏观地质特征,以及它们的岩石组合和岩石地球化学特征反映明显的拉张构造背景,如

双峰式火山岩、A型花岗岩。全南正长岩明显的富集 大离子亲石元素、不出现 Nb-Ta 亏损和明显正的 ε_{Nd}(t)-值,表明它的形成与俯冲作用无关,而与板内 裂谷作用有关。因此,赣南地区近东西向分布的燕山 期火成岩,难于用简单的俯冲过程来解释,很可能是 印支碰撞造山作用之后的板内裂谷型岩浆活动。

在野外地质调查工作中得到江西264地质大队 易作凡高级工程师的帮助。葛文春副教授、葛小月博 士、邓希光博士、王强博士、袁超博士及贾望鲁博士 给了很大帮助和建设性建议,刘颖高级工程师、梁细 荣研究员、涂湘林副研究员及曾文、胡光黔工程师在 实验分析过程中给了热心指导。谨此致谢。

参考文献

- 陈培荣,章邦桐,孔兴功,蔡笔聪,凌洪飞,倪琦生.1998. 赣南寨 背 A 型花岗岩体的地球化学特征及其构造地质意义. 岩石学 报,14(3):289~298.
- 陈培荣,孔兴功,倪琦生,章邦桐,刘昌实.1999. 赣南燕山早期双 峰式火山岩的厘定和意义.地质论评,45(增刊):734~741.
- 陈培荣,华仁民,章邦桐,陆建军,范春方.2002.南岭燕山早期后 造山花岗岩类:岩石学制约和地球动力学背景.中国科学(D 辑),32(4):279~289.
- 范春方,陈培荣. 2000. 赣南陂头 A 型花岗岩的地球化学特征及其 形成的构造环境. 地球化学,29(4): 358~366.
- 孔兴功,陈培荣,章邦桐. 2000a. 江西南部白面石一东坑盆地 A 型 火山岩的确定及其地质意义. 地球化学, 29(6):521~524.
- 孔兴功,陈培荣,章邦桐. 2000b. 赣南白面石盆地双峰式火山岩的 Rb-Sr 和 Sm-Nd 同位素特征. 地质论评,46(2): 186~189.
- 李献华,周汉文,刘颖,等.1999. 桂东南钾玄质岩浆岩带的及其岩 石学和地球化学特征.科学通报,44(18):1992~1998.
- 李献华, 刘颖, 涂湘林, 胡光黔, 曾文. 2002. 岩石样品主量与微量 元素 ICP-AES 和 ICP-MS 准确测定—— 酸溶和碱熔分解样品 方法的对比. 地球化学, 31: 289~294.
- 李武显,周新民,2000. 浙闽沿海晚中生代火成岩成因的地球化学 制约. 自然科学进展,10(7);630~641.
- 刘颖,刘海臣,李献华.1996.用 ICP-MS 准确测定岩石样品中的40 余种微量元素.地球化学,25(6):552~558.
- 沈渭洲, 凌洪飞, 李武显, 王德滋. 2000. 中国东南部花岗岩类的 Nd 模式年齡与地壳演化. 中国科学(D 辑), 30(5): 471~478.
- 周新民,李武显. 2000. 中国东南部晚中生代火成岩成因:岩石圈消 减和玄武岩底侵相结合的模式. 自然科学进展,10(3): 240~ 247.

References

- Chen Peirong, Zhang Bangtong, Kong Xinggong, Cai Bicong, Ling Hongfei, Ni Qisheng. 1998. Geochemical characteristics and tectonic implication of Zhaibei A-type granitic intrusives in South Jiangxi Province. Acta Petrologica Sinica, 14(3): 289~298 (in Chinese with English abstract).
- Chen Peirong, Kong Xinggong, Ni Qisheng, Zhang Bangtong, Liu Changshi. 1999. Ascertainment and implication of the early Yanshanian bimodal volcanic associations from South Jiangxi Province. Geological Review, 45 (Supp.); 734~741 (in Chi-

nese with English abstract).

- Chen Peirong, Hua Renmin, Zhang Bangtong, Lu Jianjun, Fan Chunfang. 2002. The early Yanshanian post-orogenic granitoids of Nanling: petrologic constraint and geodynamics background. Science in China (series D), 32(4); 279~289 (in Chinese).
- Chen J F, Jahn B M. 1998. Crustal evolution of southeastern China: evidence from Sr, Nd and Pb isotopic compositions of granitoids and sedimentary rocks. Tectonophysics, 284: 101~133.
- Fan Chunfang, Chen Peirong. 2000. Geochemical characteristics and tectonic implication of Beitou A-type granitic intrusive in South Jiangxi Province. Geochimica., 29(4); $358 \sim 366$ (in Chinese with English abstract).
- Gilder S A, Gill J, Coe R S, et al. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of South China. J. Geophy. Res., 101(B7): 16137~16154.
- Han B F, Wang S G, Jahn B M, Hong D W, Kagami H, Sun Y L. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemical and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology, 138: 135~159.
- Kong Xinggong, Chen Peirong, Zhang Bangtong. 2000a. Confirmation of A-type volcanics in Baimianshi and Dongkeng basin, South Jiangxi Province and their geological implication. Geochimica, 29 (6): 521 ~ 524 (in Chinese with English abstract).
- Kong Xinggong, Chen Peirong, Zhang Bangtong. 2000b. Isotopic characteristics of Rb-Sr and Sm-Nd in bimodal volcanics from the Baimianshi Basin, southern Jiangxi Province. Geological Review, 46(2): 186~189 (in Chinese with English abstract).
- Li Xianhua, Liu Ying, Tu Xianglin, Hu Guangqian, Zeng Wen. 2002. Precise determination of chemical compositions in silicate rocks using ICP-AES and ICP-MS: A comparative study of sample digestion techniques of alkali fusion and acid dissolution. Geochimica, 31:289~294 (in Chinese with English abstract).
- Li H X. 2000. Cretaceous magmatism and lithosphere extension in Southeast China. J. Asian Earth Sci., 18: 293~305.
- Li W X, Zhou X M. 2000. The geochemistry constraint for the petrogenesis of the Late Mesozoic igneous along the Zhejiang—Fujian coast. Progress in Natural Science, 10(7): 630~641 (in Chinese).
- Liu Ying, Liu Haichen, Li Xianhua. 1996. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS. Geochimica, 25(6): 552~558 (in Chinese with English abstract).
- Martin H, Bonon B, Capdevila R, Jahn B M, Lameyre J, Wang Y. 1994. The Kuiqi peralkaline granitic complex (SE China): petrology and geochemistry. J. Petrol., 35(4): 983~1015.
- Muller D, Groves D I. 1995. Potassic igneous rocks and associated gold-copper mineralization. Berlin: Springer-Verlag, 1~210.
- Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos. , 22: $247 \sim 263$.
- Rock N M S. 1991. Lamprophyres. Glasgow: Blackie, 1~285.
- Rogers N W, James D, Kelley S P, et al. 1998. The generation of patassic lavas from the easten Virunga Province. Rwanda. J. Petrol., 39: 1223~1247.
- Shen Weizhou, Ling Hongfei, Li Wuxian, Wang Dezi. 2000. The Nd model age of the granitoids in Southeast China and crust evolu-

tion. Science in China (series D), 30(5): 471 \sim 478 (in Chinese).

- Sun S-S, Mc Donough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders A D, Norry M J, ed. Magmatism in the ocean basins. London: Geological Society Special Publication 42, 313~345.
- Villemant B. 1988. Trace element evolution in the Phlegrean Fields (Central Italy): fractional crystallization and selective enrichment. Contrib. Mineaal. Petrol., 98: 169~183.
- Weaver B L, Wood D A, Tarney J, et al. 1987. Geochemistry of ocean island basalts from the South Atlantic: Ascension, Bouvet,

St. Helena, Gouth and Tristan Da Cunha. In: Fitton J G, Upton B G J, ed. Alkaline igneous rocks. Geological Society, London. Geol. Soc. Spec. Publ., $30: 253 \sim 267$.

- Zhou X M, Li W X. 2000a. Petrogenesis of Late Mesozoic igneous rocks in Southeastern China: the model of combining lithosphere subduction and underplating of mafic magmas. Progress in Natural Science, 10(3): 240~247 (in Chinese).
- Zhou X M, Li W X. 2000b. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326: 269 ~ 287.

Geochemical Characteristics and Origin of the Quannan Syenite

CHEN Zhigang, LI Xianhua, LI Wuxian

Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640

Abstract

The Quannan syenite consists of aegirine augite syenite and quartz syenite. They are alkali-enriched (K₂O + Na₂O = 10. 63% ~ 12. 08%) and characterized by high K₂O content (5. 4% ~ 6. 2%) and are of typical shoshonitic series rocks. These rocks are depleted in Sr, P and Ti, but enriched in LILEs and LREEs, exhibiting LREE-rich patterns. They show significant enrichment of Nb and Ta and have Nd isotope composition (ε_{Nd} (t) = +0. 97~+3. 38) of mantle characteristics. These geochemical characteristics suggest that the Quannan syenite was derived from low-degree partial melting of metasomatized, phlogopite-rich spinel lherzolite mantle and experienced fractionations of minor plagioclase and pyroxene in the early stage, and of plentiful K-feldspar, apatite and ilmenite in the late stage. Assimilation of crustal materials may also contribute to the genesis of the Quannan syenite.

Key words: Quannan syenite; petrology; geochemistry; southern Jiangxi