Contents lists available at SciVerse ScienceDirect

ELSEVIER

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier.com/locate/nimb

Further study on highly sensitive AMS measurement of ⁵³Mn

Dong Kejun^a, Hu Hao^a, Wang Xianggao^b, Li Chaoli^a, He Ming^a, Li Zhenyu^a, Wu Shaoyong^a, Liu Jiancheng^a, Zheng Guowen^a, Li Heng^{a,b}, Chen Zhigang^c, Liu Guangshan^c, Yuan Jian^a, Jiang Shan^{a,*}

^a Department of Nuclear Physics, China Institute of Atomic Energy, P.O. Box 275(50), Beijing 102413, China ^b College of Physics Science and Technology, Guangxi University, Nanning 530004, China

^c College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005, China

ARTICLE INFO

Article history: Received 9 December 2011 Received in revised form 11 January 2012 Available online 3 February 2012

Keywords: AMS ΔE-Q3D detection system ⁵³Mn measurements Suppression factor

ABSTRACT

The AMS facility at China Institute of Atomic Energy has been equipped with a Δ E-Q3D detection system for the measurements of ⁵³Mn. While the sample material of MnO₂ and the extraction ions of MnO⁻ were used previously in AMS measurement of ⁵³Mn with fairly good results, a method has recently been developed with the extraction of MnF⁻ from ion source using MnF₂ and MnO₂ + PbF₂ as sample materials. As a result, a sensitivity of 10⁻¹⁴ (⁵³Mn/Mn) has been achieved. Compared with the original MnO⁻/MnO₂ approach, the method of MnF⁻ extraction, combined with Δ E-Q3D detection technique, demonstrated an improved sensitivity for AMS measurement of ⁵³Mn.

© 2012 Published by Elsevier B.V.

1. Introduction

The determination of cosmogenic ⁵³Mn in terrestrial formations has many interesting applications in many scientific areas. Examples are: (i) the study on the possible existence in iron meteorites and the use as a monitor of Earth surface processes; (ii) the measurement of depth profiles in deep sea ferromanganese crusts for dating on rather long time scales; (iii) measurement of erosion rates over an exposure time scale of millions of years due to its long half life of 3.7 Ma and (iv) dating over tens of million years, well beyond the upper limit of ¹⁰Be/²⁶Al dating. However, the potential of ⁵³Mn dating has not been fully tapped for many years, due to the lack of appropriate method for the determination of ultra-trace ⁵³Mn.

In recent years, two kinds of methods for highly sensitive AMS measurement of ⁵³Mn, e.g., the gas-filled magnet (GFM) combined with multi-element gas-ionization detector and Δ E-Q3D detection system, have been developed at Munich [1], ANU [2], CIAE-AMS [3] groups, respectively, and the initial exploration for exposure dating has been recently carried out by the Munich and ANU groups, respectively [4,5]. The only significant interfering ions for AMS measurement of ⁵³Mn come from the isobar ⁵³Cr. The electron affinity of manganese is negative so Mn does not form negative ions [6], accordingly molecular ions of MnO⁻ were conventionally extracted from the cesium sputter ion source in AMS measurement of ⁵³Mn. Since chromium very readily forms negative CrO⁻ ions

and ⁵³Cr has a natural abundance of 9.5%, the interference from ⁵³Cr constitutes a major obstacle for highly sensitive measurement of ⁵³Mn and relevant applications.

In a recent paper, at least three times ⁵³Cr suppression was reported by extracting MnF⁻, instead of MnO⁻, for AMS measurement of ⁵³Mn [7]. Inspired by this finding, some methods were explored to further determine the suppression of the ⁵³Cr background by the extraction of different manganese molecular ions, and further tap the potential of CIAE-AMS system in the measurement and applications of ⁵³Mn. The experimental setup, performances and results are detailed in this paper.

2. Experimental

2.1. Samples

Commercial MnO₂ and MnF₂ (named C_Blank), commercial MnO₂ + PbF₂ (about 1:3 by volume) (named F_Blank) and homemade MnF₂ from commercial MnO₂ (named H_Blank) were used as blank samples, respectively. A laboratory standard with ⁵³Mn/⁵⁵Mn ratio of 4.47 × 10⁻¹¹ (CIAE ST) was produced by chemical dilution of a Munich ST, ⁵³Mn/⁵⁵Mn = 2.83×10^{-9} , provided by Munich group. All samples used were as received without chemical treatment for the removal of chromium. Each sample was mixed with a similar volume of high purity (99.99%) silver powder for improving thermal and electric conductivity and pressed into one of the Al sample holders of a 40-sample NEC MC-SNICS ion source for AMS measurement.

^{*} Corresponding author. Tel.: +86 1069358335; fax: +86 1069357787. *E-mail address:* jiangs@ciae.ac.cn (J. Shan).

Table 1

Sample code	Sample material	Extraction ion	Normalized ratio (⁵³ Mn/ ⁵⁵ Mn)	Normalized ratio (⁵³ Cr/ ⁵⁵ Mn)	R ^a
Munich ST	$MnO_2 + PbF_2 + Ag (1:3:1)$	MnO ⁻ MnF ⁻	2.83×10^{-9} 2.83 × 10 ⁻⁹	9.68×10^{-7} 5.55 × 10^{-7}	1.74
CIAE ST	$MnO_2 + PbF_2 + Ag(1:3:1)$	MnO ⁻	4.48×10^{-11}	2.46×10^{-7} 1.12 10 ⁻⁸	2.18
F_Blank	$MnO_2 + PbF_2 + Ag (1:3:1)$	MnO ⁻	4.42×10^{-13} (5.88×10^{-13})	1.13×10^{-7} 2.13×10^{-7}	2.51
C_Blank	$MnO_2 + Ag(1:1)$	MnF MnO	$\leq 6.16 \times 10^{-12}$ $\leq 4.42 \times 10^{-12}$	$\begin{array}{c} 8.48 \times 10^{-8} \\ 5.27 \times 10^{-7} \end{array}$	5.98
H Blank	$MnF_2 + Ag(1:1)$ $MnF_2 + Ag(1:1)$	MnF MnF	$<2.61 \times 10^{-12}$ <2.65 × 10^{-12}	8.81×10^{-8} 5.09 × 10 ⁻⁸	10 35 ^b
ii_biaiik			2.03 / 10	5.05 A 10	10.00

Results of ⁵³ Mn/ ⁵⁵ Mn and ⁵³ C	Cr/ ⁵⁵ Mn ratios for CIAE ST and a series of blanks, normalized to Munich ST.

Background was estimated from the F_Blank after normalized and corrected for in Munich ST and CIAE ST values.

The efficiency for ⁵³Mn transmission from its negative molecular ions entering the accelerator until ⁵³Mn events being recorded by the ionization chamber is about 0.3% and 0.24% for extraction ions of MnO⁻ and MnF⁻, respectively. These efficiencies consist of two parts: the transmissions of ions with charge state +11 are ~1% and ~0.8% for extraction of MnO⁻ and MnF⁻, respectively, before entering into Δ E-Q3D detection system, and the Δ E-Q3D detection efficiency of about 30% was caused mainly by the Si₃N₄ absorber stripping yield of ions with the charge state +18. ^a R is suppression ratio of normalized ⁵³Cr/⁵⁵Mn by extracting MnO⁻ over that by extracting MnF⁻, for each kind of sample material.

^b Compared with C_Blank of MnO₂.

Fig. 1. Two-dimensional spectra of ΔE_2 vs ΔE_4 for one ⁵³Mn standard and two blank samples by MnO⁻ extraction from ion source (ΔE_2 and ΔE_4 are energy loss signals from anodes 2 and 4, respectively): (a) for a standard sample with ⁵³Mn/⁵⁵Mn = 4.47 × 10⁻¹¹, counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 1200 s; (c) for a sample of F_Blank (MnO₂ + PbF₂). 1800 s; (e) for a sample of C_Blank (MnO₂), counting time 1800s; (b), (d), and (f) are for the same samples as for (a), (c), and (e), respectively, taken with coincidence gated at ⁵³Mn. All samples used were as received without chemical treatment for the removal of Cr.

2.2. Ion injection and acceleration

The negative molecular ions of MnO⁻ and MnF⁻ were selected for injection into the HI-13 Tandem Accelerator, and the typical output beam current at the Lower Energy Faraday Cup (LEFC) was about 200 nA for both MnO⁻ and MnF⁻. The negative manganese molecular ions were accelerated by the tandem terminal voltage, which was typically set at 11.5 MV. The foil $(3 \ \mu g/cm^2 \ carbon)$ stripping was employed to break up the molecular ions and produce atomic ions with high charge states. The resulting positively charged ions were further accelerated by the same terminal voltage. A 90° double focusing High Energy Analyzing Magnet (HEAM) with

Fig. 2. Two-dimensional spectra of ΔE_2 vs ΔE_4 for one ⁵³Mn standard and three blank samples by MnF⁻ extraction from ion source (ΔE_2 and ΔE_4 are energy loss signals from anodes 2 and 4, respectively): (a) for a standard sample with ⁵³Mn/⁵⁵Mn = 4.47 × 10⁻¹¹, counting time 600 s; (c) for a sample of F_Blank (MnO₂ + PbF₂), counting time 600 s; (e) for a sample of C_Blank (MnF₂), counting time 600 s; (g) for a sample of H_Blank (MnF₂, preparation with commercial MnO₂), counting time 600 s (b), (d), (f), and (h) are for the same samples as for (a), (c), (e), and (g), respectively, taken with coincidence gated at ⁵³Mn. All samples used were as received without chemical treatment for the removal of Cr.

a maximal mass energy product of 200 MeV amu was used to select 53 Mn¹¹⁺ (and 53 Cr¹¹⁺) with an energy of about 135 MeV. None of these processes can achieve the separation of 53 Mn from its stable isobar 53 Cr. By means of the switching magnet the particles were transported further to a Δ E-Q3D detection system for the isobar separation of 53 Mn and 53 Cr and the detection of 53 Mn.

2.3. ⊿E-Q3D detection system

A very homogeneous Silicon Nitride (Si₃N₄) membrane (from Silicon Ltd./UK) with optimal thickness of 4.0 µm (four 1 µm lapped over) was mounted at the entrance of O3D as an absorber to produce different energy losses for ⁵³Mn and ⁵³Cr. After ⁵³Mn¹¹⁺ (and 53 Cr¹¹⁺) ions passed through the Si₃N₄ membrane, ions with the energy of about 110 MeV and the charge state of 18⁺ were analyzed by the Q3D magnetic spectrometer. The isobars of ⁵³Mn and ⁵³Cr were then separated on the focal plane of the Q3D magnet spectrometer according to their different residual energies. The peak distance between ⁵³Mn and ⁵³Cr on the focal plane was about 160 mm. The position separation factors (defined as the ratio of the peak distance to the full-width at half-maximum (FWHM) of each peak) for peak position was 2.6 for the Si_3N_4 foils with thicknesses of 4 μ m. In order to increase the detection efficiency for measuring medium mass nuclides and further separation of isobaric interferences, a multiple-anode ionization chamber (MAIC, four anodes in this work) with an entrance window of $100 \times 40 \text{ mm}^2$ Mylar foil was mounted at the accurately located position of the Q3D focal plane to record the events of the nuclide of interest. The ionization chamber was filled with 38–40 mbar propane for the measurement of ⁵³Mn. By suitable choice of the magnetic field, a suppression factor of about 10⁴ can be achieved for ⁵³Cr ions, while most of the ⁵³Mn ions are recorded by the MAIC [8].

3. Results and discussion

The Munich ST and CIAE ST were first measured for the optimization of measurement conditions, for their relatively high ratios of 53 Mn/ 55 Mn. The results of 53 Mn/ 55 Mn ratios for all samples were obtained by simultaneously measuring the currents of 55 MnF⁻ (or 55 MnO⁻, when MnO₂ sample was used) ions on the low energy Offset Faraday Cup, and the count rate of 53 Mn recorded by the MAIC (after treated by software gated coincidence and background subtraction). The results of 53 Cr/ 55 Mn ratios were obtained in the same way as for 53 Mn/ 55 Mn, except that the count rate of 53 Cr was directly recorded by the MAIC without software gate coincidence. The ratios of 53 Mn/ 55 Mn and 53 Cr/ 55 Mn were both normalized by the Munich ST. Preliminary results for these samples are presented in Table 1.

3.1. Comparison between MnO⁻ and MnF⁻ injection

In the Δ E-Q3D system the combination of the Q3D magnet and the MAIC brought about a very efficient suppression of interfering ⁵³Cr ions. Theoretically, the suppression factor of ⁵³Cr should be the same for extracting MnO⁻ and MnF⁻ in Δ E-Q3D detection system due to their almost equal injection energy and energy loss after passing through the absorber. As shown in Table 1, however, the ratio of ⁵³Cr/⁵⁵Mn by extracting MnF⁻ is several times lower than that by extracting MnO⁻. It implies that ⁵³Cr may be suppressed by a factor of about 2–10 by extracting MnF⁻ in place of MnO⁻ in ion source. This result is consistent with Ref. [7].

3.2. Sensitivity of ⁵³Mn measurements

The suppression of ⁵³Cr in the ionization chamber critically depends on the proper settings of software windows, which can be optimized by using a sample with relatively high ⁵³Mn content, Munich ST sample. These settings were then applied for the measurements of ⁵³Mn in CIAE ST and a series of blank samples. The results of energy loss signal from anode 2, ΔE_2 , versus that from anode 4, ΔE_4 , are shown in Figs. 1 and 2. As shown in (b, d, f) of Fig. 1 and (b, d, f, h) of Fig. 2, nearly all ⁵³Cr counts can be rejected with the software windows for blank samples. For the CIAE ST sample, the ⁵³Mn counts can be reliably extracted by two-dimensional coincidence gated on proper anodes of the MAIC. On the other hand, figures for all blank samples show there are only 0–5 events in M = 53 window after software gate coincidence, corresponding to a ⁵³Cr suppression factor of about 10⁵ in the ionization chamber, based on the total ⁵³Cr counts of 10⁵.

In general, a total suppression factor of about 10^9 can be obtained by a combination of the Q3D magnet and the ionization chamber. In other words, a detection limit of 10^{-15} or even lower is reachable for AMS measurement of ⁵³Mn with the Δ E-Q3D detection system, if the content of chromium in a sample could be reduced to less than 10^{-6} (ppm) level by chemical treatment and the extraction of MnF⁻ ions from ion source is adopted.

4. Summary

Methods for highly sensitive AMS measurement of 53 Mn were explored by extracting different Mn-containing molecular ions in ion source and using different chemical forms of sample materials. Preliminary results indicate that: (1) The 53 Cr suppression factor for MnF₂ sample and MnF⁻ ion extraction is 5–10 times larger than that for MnO₂ sample material and MnO⁻ ion extraction; (2) When the sample material of MnO₂ + PbF₂ is used, 53 Cr suppression factor by extracting MnF⁻ is two times higher than that by extracting MnO⁻. The use of MnO₂ + PbF₂ as sample material not only simplified sample preparation (laboratory synthesis of MnF₂ is not needed), but also improved the sensitivity for AMS measurement of 53 Mn. The extraction of MnH⁻ ions from ion source is going to be tested for AMS measurement of 53 Mn, and that may bring about a further 53 Cr suppression of more than two orders of magnitude, estimated on the basis of the data from the Negative-Ion Cookbook [6].

Acknowledgements

The authors gratefully acknowledge Dr. Gunther Korschinek from the Munich group for the supply of ⁵³Mn standard, as well as to the technical staff at CIAE for smooth accelerator operation. This work was mainly supported by the National Natural Science Foundations of China (NSFC), under Grant No. 11075221.

References

- K. Knie, T. Faestermann, G. Korschinek, G. Rugel, W. Rühm, C. Wallner, Nucl. Instr. Meth. B 172 (2000) 717.
- [2] L.G. Gladkis, L.K. Fifield, C.R. Morton, T.T. Barrows, S.G. Tims, Nucl. Instr. Meth. B 259 (2007) 236.
- [3] K. Dong, M. He, C. Li, H. Hu, Z. Li, S. Wu, J. Liu, Y. Guan, J. Yuan, S. Jiang, et al., Chin. Phys. Lett. 28 (7) (2011). 070703-1.
- [4] J.M. Schaefer, T. Faestermann, G.F. Herzog, K. Knie, G. Korschinek, J. Masarik, A. Meier, M. Poutivtsev, G. Rugel, C. Schlüchter, F. Serifiddin, G. Winckler, Earth Planet. Sci. Lett. 251 (2006) 334.
- [5] T. Fujioka, L.K. Fifield, J.O. Stone, P.M. Vasconcelos, S.G. Tims, J. Chappell, Nucl. Instr. Meth. B 268 (2010) 1209.
- [6] Roy Middleton, A Negative-Ion Cookbook, Department Of Physics, University of Pennsylvania, Philadelphia, PA 19104, October 1989 (Revised February 1990).
- [7] M. Poutivtsev, I. Dillmann, T. Faestermann, K. Knie, G. Korschinek, J. Lachner, A. Meier, G. Rugel, A. Wallner, Nucl. Instr. Meth. B 268 (2010) 756.
- [8] C. Li, M. He, S. Jiang, S. Li, J. Gong, J. Liu, W. Wang, G. He, S. Wu, K. Dong, X. Wang, H. Shen, Nucl. Instr. Meth. A 622 (2010) 536.