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ARTICLE

Tectono-magmatic events of the Qilian orogenic belt in northern Tibet: new
insights from detrital zircon geochronology of river sands
Shuo Zhanga, Xing Jian a, Alex Pullenb, Ling Fuc, Hanghai Lianga, Dongming Honga and Wei Zhanga

aState Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian Province, PR
China; bDepartment of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA; cDepartment of Petroleum
Exploration, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing, PR China

ABSTRACT
The Precambrian–Palaeozoic evolution of the Qilian orogen is widely debated due to the complex-
ity of the orogen’s structure and the extent of Phanerozoic deformation. In order to identify the
tectono-magmatic events of the Qilian orogenic belt, we conducted detrital zircon U-Pb geochro-
nology on river sediments across the orogen. The results indicate that the detrital zircon ages
mainly comprise five populations: 220–280 Ma, 400–520 Ma, 800–1000 Ma, 1200–2100 Ma, and
2200–2700 Ma. The sediments in the Central Qilian Block exhibit zircon age peaks at ~1.8 Ga and
~1.0 Ga, which support that the Central Qilian Block successively accreted to the Columbia and
Rodinia supercontinents. The sediments in the Quanji Block exhibit zircon age peaks at ~1.8 Ga and
~2.5 Ga, revealing possible affinity of the Quanji Block to the North China Craton prior to the
Neoproterozoic. The detrital zircon age population in 400–520 Ma of all the sediments recorded
the continental aggregation process among the Quanji, Qaidam, and Central Qilian Blocks. The
widespread 200–300 Ma zircon ages in Central Qilian, Quanji, and North Qaidam regions, reflect
a tectono-magmatic event which was most likely associated with the low-angle Paleo-Tethys
subduction at the southern margin of Qaidam Block. Our results underline that the overlooked
Neoarchean to Paleoproterozoic and Permian to Triassic tectono-magmatic events of the Qilian
orogenic belt deserves more attention in the future study. The detrital zircon age populations of
different river sand samples indicate fairly high variability, highlighting that caution should be
exercised while using modern river sand detrital zircon age signatures to track tectono-magmatic
history of such complex orogens.
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1. Introduction

The ~1200 km long, 100–200 km wide Palaeozoic Qilian
orogenic belt is located at the northeast margin of
Tibetan Plateau and composes the west segment of
the central orogenic belt of China (Kunlun-Qilian-
Qinling-Dabie-Sulu orogenic belt). The NW-SE trending
Qilian orogenic belt has been offset to the northwest by
the sinistral Altyn-Tagh fault (Figure 1(b); Wang 1997;
Yue and Liou 1999; Bendick et al. 2000; Yin et al. 2002).
The Qilian orogenic belt is considered to record
Palaeozoic amalgamation history of east Asia as well as
the far-field effect of the Cenozoic collision between
India and Eurasia plates (e.g. Zhang and Zhou 2001c;
Song et al. 2006, 2007, 2009a, 2013; Zhang et al. 2007,
2015a; Wang et al. 2016b; Allen et al. 2017). For this
reason, the Qilian orogenic belt has been widely studied
over the past decades (Xiao et al. 1974, 1978; Wang and
Liu 1976; Li et al. 1978; Dong and Qiu 1984; Zuo 1986;
Zuo and Liu 1987; Xia et al. 1991a, 1991b, 1995, 1996,

1998, 1999, 2003, 2016; Xu et al. 1994; Feng and He
1995a, 1995b, 1996; Zhang et al. 1998a, 1998b, 2007,
2017b; Zhang and Zhou 2001c; Song et al. 2003a,
2003b, 2004, 2005, 2006, 2007, 2009a, 2009b, 2010b,
2013, 2014a, 2014b, 2017, 2019b; Zhang and Meng
2006b; Xiao et al. 2009; Zuza et al. 2013, 2016, 2018;
Yang et al. 2019).

The Qilian orogenic belt has experienced a protracted
multiple-stage tectonic evolution history (Song et al.
2017). The orogen can be divided into five subunits
based on pre-Mesozoic history, i.e. North Qilian suture
zone, Central Qilian Block, South Qilian belt, Quanji
Block, and North Qaidam ultrahigh-pressure (UHP) meta-
morphic belt from north to south (Figure 1(b)), Lu et al.
2002b; Pan et al. 2002; Chen et al. 2013; Song et al. 2013).
Crustal composing of the Central Qilian Block is thought
to have developed as a part of the supercontinent
Rodinia (Tseng et al. 2006; Song et al. 2013, 2014a,
2014b; Wang et al. 2015; Xu et al. 2015, 2016). The
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North Qilian Ocean, which located between the Central
Qilian Block and North China Craton, opened in early-
middle Neoproterozoic due to the upwelling of mantle
plume (Xu et al. 2015, 2016). The Pangea supercontinent
started to amalgamate at ~520 Ma; most major crustal
fragments had accreted by ~300 Ma and Pangea began
to break up by at least ~200 Ma (Olsen 1997; Rogers and
Santosh 2002, 2003; Metcalfe 2013; Stampfli et al. 2013;
Zhao et al. 2018). During the amalgamation of Pangea,
the North Qilian Ocean lithosphere is thought to have
started subducting beneath the Central Qilian Block by
~520 Ma and the North China Craton (or outboard but
now accreted island arc terranes) by ~470 Ma (Wu et al.
2011). The Central Qilian Block and North China Craton
collided in the early Palaeozoic (Song et al. 2004, 2012;
Lu et al. 2006a; Zhang and Meng 2006b; Tung et al.
2007a, 2007b; Wu et al. 2009; Hu et al. 2015; Mu et al.
2018). Ophiolites, arc-, and subduction-related plutons,
low temperature/high pressure metamorphic rocks, and
pre-, syn- and post-collisional granitoids in the Qilian
orogenic belt record this accretionary process (Xiao
et al. 1978; Wu et al. 1993; Zhang et al. 1998a, 1998b;
2001a, 2001b, 2001c, 2001d, 2009c, 2012a, 2012b; Song
et al. 2004, 2006, 2007, 2013, 2017, 2019b; Shi et al. 2004;
Tseng et al. 2007; Yang et al. 2019). In the Mesozoic and
Cenozoic, the Qilian orogenic belt underwent extension
and intracontinental orogenesis (Huo and Tan 1995;
Vincent and Allen 1999; Yang et al. 2001; Zhang et al.
2001a, 2001b; Chen et al. 2003; Yin et al. 2008; Zuza et al.
2016, 2018; Allen et al. 2017).

Although the framework of tectonic evolution has
been widely investigated (Zuza et al. 2018 and reference
therein), various debates about the tectonic evolution of
the Qilian orogenic belt persist. The first issue is the
complex Precambrian evolution of the Quanji Block.
The Quanji Block (also named as Oulongbuluke Block
in some studies) was first proposed by Lu (2002a) based

on petrological analysis and zircon U-Pb dating on the
Dakendaban Group. Three points about the tectonic
recognition of the Quanji Block were proposed, i.e. the
Quanji Block has affinity to the North China Craton (Xiao
et al. 2004; Xing and Lu 2005; Hu et al. 2007; Gong et al.
2012), to Yangtze Block (Chen et al. 2007a, 2007b), and
to Tarim Craton (Lu et al. 2006b). Differentiating among
these tectonic models will be beneficial to better under-
standing the process of continental amalgamation in
east Asia. The second issue is the late Palaeozoic to
early Mesozoic tectono-magmatic history of the Qilian
orogenic belt. Although orogenesis in the Qilian oro-
genic belt, which related to the closure of North and
South Qilian Ocean, finished at ~360 Ma (Wang et al.
2014), a number of magmatic rocks of late Palaeozoic to
Triassic have been documented in southern margin of
the Qilian orogenic belt (Gehrels et al. 2003b; Wu et al.
2009; Dong et al. 2014, 2015; Chen et al. 2015; Cheng
et al. 2017). The proposed mechanisms of this magmatic
activity include: (1) lithospheric subsidence due to inter-
continental subduction (Wu et al. 2009) and (2) penetra-
tive magmatism led by subducted Paleo-Tethys oceanic
plate (Cheng et al. 2017).

Zircon is one of the most stable accessory minerals in
sedimentary environments. It records the magmatic and
metamorphic information of its protolith and is thus
useful in understanding the tectonic evolution of con-
tinents (Belousova et al. 2010; Xu et al. 2010a; Gehrels
2014; Zhao et al. 2016). Detrital zircon geochronology of
river sands can be used to reconstruct continental for-
mation, evolution, and thermal history of crust that is
exposed within river catchments (e.g. Lease et al. 2007;
Yang et al. 2009a; Belousova et al. 2010; Pepper et al.
2016; Gong et al. 2017; Liang et al. 2018). Modern sand
sediments from several rivers across the Qilian orogenic
belt were conducted for detrital zircon U-Pb dating in
previous studies (Lease et al. 2007; Liu et al. 2012b; Gong

Figure 1. (a) Schematic maps of tectonic units in China (Zhao et al. 2001); (b) Tectonic units of the Qilian orogenic belt, sample
locations from this study and previous studies. Red stars mean the sample of this study, circled numbers mean the reference numbers
shown in Table S1.
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et al. 2017; Song et al. 2019a, the detailed information of
samples is listed in Table S1 (Supporting Information
S1)). These target rivers are mainly located in the eastern,
northern, and western parts of the orogenic belt. Based
on the kernel density estimation (KDE) plots of the pub-
lished detrital zircon U-Pb data in Figure 2, it can be
summarized that (1) all of the samples show an age
peak at ~450 Ma, which coincides with the closure of
North and South Qilian Ocean, and the collision among
the Central Qilian Block, Qiadam Block, and North China
Craton; (2) the samples have obviously different detrital
zircon age populations especially in the Precambrian
ages, indicating the complexity of evolution in
Precambrian; (3) a part of samples in study area shows
an age peak at ~250 Ma, which indicates a tectono-
magmatic event in late Palaeozoic to early Cenozoic.

Previously published studies on river sands detrital
zircon U-Pb dating might not cover all of the tectono-
magmatic information due to the complexity of the river
catchments and the complex structure of the Qilian oro-
genic belt (Figure 2(a)). Neoarchean–Paleoproterozoic
age population, which is important to the early evolution
of the orogen, had been usually overlooked in most stu-
dies (Lease et al. 2007; Liu et al. 2012b; Gong et al. 2017;
Song et al. 2019a). In this study, we emphasize two points:
(1) complexity of the orogen basement and associated
Precambrian evolution and (2) late Palaeozoic to early
Mesozoic tectono-magmatic history of the orogen. We
collected river sand samples from the regions where
river sand detrital zircon U-Pb geochronology has been
poorly reported, and compiled all the related zircon U-Pb
ages of ancient sedimentary rocks, modern river sands
and granitoids in the Qilian orogenic belt to have
a better understanding of the tectono-magmatic history
of the orogen.

2. Geological setting

2.1. North-Central Qilian belt

The North-Central Qilian belt consists of the North Qilian
suture zone and the Central Qilian Block. The North
Qilian suture zone is an early Palaeozoic suture zone
dominated by Neoproterozoic to Palaeozoic rocks,
including ophiolite, intermediate-acid arc-related volca-
nic and intrusive rocks, and marine gravity flow deposits.
This lithostratigraphy is interpreted to indicate subduc-
tion of North Qilian Ocean lithosphere and record the
subsequent continent-continent collision between the
Central Qilian Block and North China Craton in the early
Palaeozoic (Zhang et al. 1998a; Xia et al. 1998; Mao et al.
2003; Shi et al. 2004; Yang et al. 2009b; Yang et al. 2016b;

Xu et al. 2010a, 2010b; Song et al. 2006, 2013; Wang et al.
2018). The North Qilian suture zone could be divided
into northern ophiolite belt, middle arc magmatic belt
and southern ophiolite belt. The northern ophiolite belt
of the North Qilian suture zone is composed of ultrama-
fic rocks, ultramafic cumulates, N-type mid-ocean ridge
basalt (MORB), island arc basalt (IAB), ocean island basalt
(OIB) and back-arc basin-related boninites with ages of
449–490 Ma (Zhang et al. 1998; Wang et al. 2005; Xia and
Song 2010; Wu et al. 2010; Xia et al. 2012; Song et al.
2013, 2019b; Chen et al. 2014). The middle arc magmatic
belt consists of boninite complex, arc-volcanic complex
and Caledonian granitic plutons (Song et al. 2013; Chen
et al. 2014). The southern ophiolite belt with the age of
497–550 Ma is composed of mantle peridotite, mafic-
ultramafic cumulate pillow basaltic lavas, and radiolarian
chert (Shi et al. 2004; Tseng et al. 2007; Song et al. 2009b,
2013; Chen et al. 2014).

The upper crust of the Central Qilian Block forms an
imbricate thrust belt with Proterozoic metamorphic rocks
bound by the North Qilian suture zone to the north, the
Quanji Block and South Qilian belt to the south (Wang
et al. 2018). The Precambrian basement of North-Central
Qilian belt is located in the Central Qilian Block. The base-
ment of Central Qilian Block was intruded by plutons with
ages of 750–1190 Ma (Gehrels et al. 2003a, 2003b; Tseng
et al. 2006; Tung et al. 2013; Wu et al. 2017; Zuza et al.
2018). Neoproterozoic rocks display similar lithologies
and compositions to comparable age rocks of the
Yangtze Block and are generally considered to witness
the amalgamation of Rodinia (Song et al. 2012; Xu et al.
2015). Early Palaeozoic orogenesis resulted in I-type (e.g.
granodiorite, tonalite) and S-type granites (e.g. two-mica
granite) in the Central Qilian Block (Cowgill et al. 2003;
Tung et al. 2013, 2016; Huang et al. 2015; Yan et al. 2015;
Yang et al. 2015, 2016a).

2.2. The South Qilian–North Qaidam belt

This belt includes the South Qilian belt, Quanji Block, and
North Qaidam UHP belt. The South Qilian belt is an arc
accretionary system between the Qaidam Block and
Central Qilian Block (Pan et al. 2002). The South Qilian
belt is composed of Palaeozoic rocks. The Cambrian to
early Ordovician ophiolite sequence consists of pillowed
picrite, ocean-island tholeiitic alkaline basalt, gabbro,
ultramafic rocks, and pelagic chert (Fu et al. 2014;
Zhang et al. 2017b), which recorded the closure of
South Qilian Ocean and the collision between the
Qaidam and Central Qilian Block in the early Palaeozoic
(Yang et al. 2019; Song et al. 2019b). The ophiolite
sequence is covered by middle Ordovician arc volcanic
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Figure 2. (a) the location of river sand samples for detrital zircon U-Pb dating; (b–m): the detrital zircon age kernel density estimation
(KDE) plots of river sand samples in this and previous studies; the sample ZY1-1 and DC2-1were collected from Heihe River (Gong et al.
2017); sample 05, 06, 07, 08 and 16 were collected from anonymous rivers (Lease et al. 2007); sample 17H01 was collected from
Haerteng River (Song et al. 2019a); sample 16H01 and CQA339 were collected from Lule River (Liu et al. 2012b; Song et al. 2019a);
sample 16H02 were collected from Yuka River (Song et al. 2019a).The blue stars and KDE plots mean the samples in North-Central
Qilian belt, the rea stars and KDE plots mean the samples in North Qilian-South Qaidam belt. Map followed the Geological Map of
Tibetan Plateau and Adjacent Area (China Geological Survey, 2004).
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rocks, including spilite, pillow basalt, volcaniclastic rocks,
and andesitic porphyry, and they are covered by chert
and carbonate. The Silurian conglomerate unconform-
ably overlays the Ordovician strata, and is imbricated
with the Silurian flysch sediments. The Caledonian gran-
ites introduce these strata and volcanic rocks (Lu et al.
2002c; Zhao et al. 2004b; Xu et al. 2006).

The Quanji Block, currently showing as the
Precambrian basement of South Qilian–North Qaidam
belt, is located among the South Qilian belt, West
Qinling orogenic belt, and the NWW-SEE striking North
Qaidam UHP belt (Figure 2(a)). The Quanji Block is com-
posed of a crystalline metamorphic basement and a non-
metamorphosed sedimentary cover (Hao et al. 2004;
Wang et al. 2006, 2008). The basement consists of the
Paleoproterozoic Delingha Complex, Dakendaban Group,
and Mesoproterozoic Wandonggou Group, the cover
strata consist of Sinian Quanji Group and early
Palaeozoic volcano-sedimentary sequences which overlay
the basement with a divergent unconformity (Li et al.
2007; Chen et al. 2007a, 2007b, 2007c; Liu et al. 2018b).
The Delingha complex and Dakendaban Group under-
went the regional metamorphism at the end of
Paleoproterozoic, this event was recorded by amphibolite
facies and granulite facies rocks (Chen et al. 2007a, 2007b).
Both mineral Sm-Nd isochron age of granulite
(1791 ± 37 Ma) and zircon U-Pb age of rapakivi granite
(1776 ± 33 Ma) indicate that the Quanji Block accreted to
the Columbia supercontinent in the late Paleoproterozoic
(Zhang et al. 2001a; Xiao et al. 2004). A whole-rock Rb-Sr
isochron age (1022 ± 64 Ma) and over grown rims on
zircons (~1.0 Ga) from Wandonggou Group metamorphic
rocks indicate a regional metamorphic event in the
Neoproterozoic (Yu et al. 1994; Wang et al. 2008).

The North Qaidam UHP belt is ~450 km long with
adirectionofNWW-SEE. This continental UHPmetamorphic
belt is located among the Qaidam Block, Quanji Block, and
South Qilian belt. There are four well-documented expo-
sures of early Palaeozoic UHP metamorphic rocks in the
belt: Dulan; Xitieshan; Shenglikou and Yuka from southeast
to northwest (e.g. Yang et al. 1998, 2001, 2002, 2005; Song
et al. 2003a, 2003b, 2004, 2005, 2006, 2007, 2009a, 2009b,
2010b, 2012, 2013, 2014a, 2014b, 2017, 2019b; Mattinson
et al. 2006a, 2006b; Yin et al. 2007; Chen et al. 2007c; Zhang
et al. 2009c; Xiong et al. 2012; Fu et al. 2015; Zhao et al.
2017b). The UHP minerals such as coesites in Yuka eclogite
indicate that thepeakmetamorphismpressure of theNorth
Qaidam UHP belt is 2.8–3.2 GPa and the temperature is
650–700°C (Zhang et al. 2009a, 2009b). Rocks in the North
Qaidam UHP belt contain ortho- and paragneiss; these
rocks intercalated with blocks of eclogite and varying
amounts of ultramafic rocks (Song et al. 2014b). They are

thought to document multi-cycle continental orogenesis
from the Neoproterozoic to Palaeozoic. The granitic
gneisses with a protolith age of ~0.9–1.0 Ga directly indi-
cates that the magmatism and metamorphism during the
formation of Rodinia (Song and Yang 2001; Chen et al.
2007c, 2009; Zhang et al. 2009a, 2009b; Song et al. 2012),
and the 850–820 Ma fragment of Large Igneous Province
(the protolith of Yuka eclogite) suggested the break-up of
Rodinia (Xu et al. 2016). The UHP metamorphism occurred
in 475–420 Ma due to the continental subduction of
Qaidam Block (Song et al. 2003a, 2005, 2006; Xu et al.
2006; Yang et al. 2005, 2019; Yin et al. 2007; Zhang et al.
2008b, 2009a, 2009b, 2010; Chen et al. 2009;Mattinson et al.
2006a, 2006b; Meng and Zhang 2009; Yu et al. 2011).
Furthermore, the Permian-Triassic plutons in the North
QaidamUHP belt are recognized and thought to be related
to subduction at the southern margin of Qaidam (Wu et al.
2009; Cheng et al. 2017).

2.3. Qaidam Block

The supracrustal rocks of the Qaidam Block form an intra-
continental basin within the northeast Tibetan Plateau
(i.e. the Qaidam Basin). The basin is about 1.2 × 105 km2

and contains Mesozoic–Cenozoic fluvial-lacustrine sedi-
ment that range in thickness between 3 km and 16 km
(Sun et al. 2005; Jian et al. 2013, 2014, 2018, 2019b; Zhang
et al. 2018). The crystalline basement of the Qaidam Block
was influenced by at least three tectonic episodes in the
Neoproterozoic, early Palaeozoic, and late Palaeozoic–
Mesozoic. The early Palaeozoic and late Palaeozoic–
Mesozoic events are recorded by pluton emplacement
into the basement rocks. The Cenozoic deformation
within Qaidam Block suggests that it is rheologically
weaker than the Tarim Craton and North China Craton.
Cheng et al. (2017) proposed magmatic rejuvenation as
the primary reason for this mechanical difference. Far
afield stress from the India-Eurasia collision has resulted
in differential Cenozoic shortening across the Qaidam
Basin with ~300 km in the east and ~100 km in west
(Yin et al. 2008; Zuza et al. 2016).

3. Sampling and analytical methods

3.1. Sample description

Three samples QH-01, QH-12 and QH-19 were collected
from three rivers for detrital zircon U-Pb dating. Previous
heavy mineral analysis on these sample (Figure S1 in
Supporting Information S3) of these rivers shows a high
content of hornblende and chlorite, which probably origi-
nate from intermediate-acid igneous rocks and
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metamorphic rocks, respectively. The samples locations are
shown in Figure 2(a). Sample QH-01 (37°2′6.28″N, 99°44′
16.26″E) is a coarse sand sample from the Buha River
(Figure 3(a)). The catchment of the Buha River is within
the South Qilian belt, and most of the tributaries of the
Buha river locate at the northern side of mainstream. The
Silurian molasse, Permian sandstone, shale, Triassic terres-
trial clastic rocks, dominate the strata in the catchment,
with minor Ordovician slate, siltstone, limestone, Neogene
mudstone, andmarlstone. Early Palaeozoic granitic plutons
are exposed at the eastern part of the catchment; and a late
Palaeozoic granitic pluton is in the western part of the
catchment (Figure 3(a)). Sample QH-12 (37°21′54.59″N,
97°29′37.94″E) is a coarse sand sample from the Bayin
River (Figure 3(b)). The mainstream and several tributaries
of the Bayin River originate from the early Palaeozoic grani-
tic plutons. The Silurian (besides siltstone, sandstone, slate),
Carboniferous (besides limestone, sandstone), Permian
strata (besides sandstone, limestone, dolostone) in the
South Qilian belt, and the Paleoproterozoic Dakendaban
Group schist and granulite in the Quanji Block are located
in the Bayin River catchment (Figure 3(b)). Although the
Bayin River locates at the South Qilian belt and Quanji
Block, the detrital zircon geochronology of this sample
could reflect the tectono-magmatic events in the Quanji
Block based on the comparison between the detrital zircon

age distribution of the sample QH-01 and QH-12. Sample
QH-19 (37°40′16.73″N, 95°28′12.11″E) is a fine sand sample
from the Kaketuguole River (Figure 3(c)). The Kaketuguole
River originates from the western South Qilian belt and
erodes the North Qaidam UHP belt. Bedrocks in this catch-
ment are dominated by an early Palaeozoic pluton with an
age of 440.8 ± 7.8 Ma (Zhou et al. 2013). A few late
Palaeozoic plutons are also exposed (Figure 3(c)). The sam-
ple QH-19may indicate the link between the Qaidam Block
and the Central Qilian Block because the Kaketuguole River
erodes the North Qaidam UHP belt.

3.2. Methods

Zircon grains were separated using heavy liquids andmag-
netic separation techniques, and then mounted in epoxy
grain mounts along with the Zircon Plĕovice and Zircon
91,500 referencematerial to correct for elemental andmass
fractionation and NIST610 to determine trace element con-
centrations (Sláma et al. 2008), the weighted mean ages of
standards are shown in Figure S2 (Supporting Information
S3). The zircon crystals from the samples were then exam-
ined with transmitted and reflected light, and then with
cathodoluminescence (CL) to identify inclusions that could
compromise the analyses. The U/Pb and Pb/Pb ratios were
measured using an Agilient 7500a ICP-MS coupled to

Figure 3. (a) The geological map of the catchment of Buha river; (b) The geological map of the catchment of Bayin river; (c) The
geological map of the catchment of Kaketuguole river. Maps followed the Geological Map of Qaidam Basin (China National Petroleum
Corporation and China University of petroleum, 1998).

6 S. ZHANG ET AL.



a GeoLas200 M 193 nm ArF-excimer laser-ablation system
at the MOE Key Laboratory of Orogenic Belts and Crustal
Evolution, Peking University. The analyses were conducted
with a 32 μm diameter beam with a fluence of 15 J/cm2 at
4 Hz. The typical ablation pit depth was 35–50 μm. Isotopic
ratios were calculated with the GLITTER software package
and were corrected for common-Pb by the approach
described by Andersen (2002). Isoplot 3.0 (Ludwig 2012)
was used to determinate the zircon U-Pb dates and to
generate concordia plots. Following the conventional
reporting of detrital zircon dates, the dates with poor pre-
cision (> ±10%), high discordance (> ±20%) were omitted
from the probability density function, the KDE plots, and
from interpretation (e.g. Jian et al. 2019a). The 207Pb/206Pb
ages were adopted for grains older than 1000 Ma, and
206Pb/238 U ages for younger than 1000 Ma (Gehrels et al.
2006, 2008).

4. Results

Detailed U-Pb isotopic data for the analysed detrital
zircon crystals are listed in Supporting Information S2.
CL images and U-Pb concordia diagrams are shown in
Figure S3–S4 (Supporting Information S3).

Total 240 zircons were dated and 4 crystals were not
considered for KDE age plots due to high discordances. The
detrital zircon U-Pb age of sample QH-01 ranges from
222.3 ± 4.98 Ma to 2694.9 ± 23.59 Ma (n = 76). The age
populations cluster intofivemajor agegroups: 200–300Ma,
400–550 Ma, 700–900 Ma, 1400–2100 Ma and
2200–2500 Ma, with age probability peaks at 258 Ma,
440 Ma,775 Ma and 1842 Ma, respectively (Figure 2(h)).
The detrital zircon U-Pb age of sample QH-12 ranges from
237.0 ± 18.04 Ma to 2706.2 ± 21.05 Ma (n = 80). The age
populations cluster into four major age groups:
400–500 Ma, 800–1100 Ma, 1700–2000 Ma and
2100–2500 Ma, with a major age peak at 439 Ma, and
secondary probability peaks at 833 Ma, 1963 Ma, and
2334 Ma. The two youngest grains have concordant ages
of 237.0 ± 18.04 Ma and 248.6 ± 15.59 Ma (Figure 2(i)). The
detrital zircon U-Pb age of sample QH-19 ranges from
254.4 ± 5.32 Ma to 2661.3 ± 26.31 Ma (n = 80). Sixty crystals
yield a predominant population with an age range of
400–500 Ma, and a 447 Ma age peak is defined for these
zircons (Figure 2(j)).

5. Discussion

5.1. The detrital zircon geochronological
characteristics of the Qilian orogen river sand

U/Th ratio is widely used to distinguish metamorphic (U/Th
>10) and igneous (U/Th <10) zircons (Rubatto 2002; Corfu

et al. 2003; Wan et al. 2011; Kirkland et al. 2015). But some
zircons don’t follow this principle (e.g. Song et al. 2006,
2010a, 2019b; Mattinson et al. 2006a). Therefore, the inter-
ior structure is as important as the element ratio in prove-
nance analysis of detrital zircon. In this study, the results
indicate that most zircons with low U/Th ratios (<10) exhi-
bit well-developed crystal faces and magmatic oscillatory
zoning, indicating igneous origin. Six detrital zircons exhibit
high U/Th (>10), two of them (Sample QH-12-09 and QH-
19-02) show well-developed crystal faces and magmatic
oscillatory zoning in CL images (Figure S3), which indicate
igneous provenance. The others exhibit no obvious crystal
characteristics of igneous zircons (Figure S3), we prefer they
formed during metamorphism.

All the previously reported river sand detrital zircon
U-Pb ages and the new data in this study are shown in
Figure 2. The results indicate a fairly high variability of
detrital zircon age signatures.

Eight river sand samples collected in the South
Qilian–North Qaidam belt show two major age peaks at
~450 Ma and ~800 Ma. The Phanerozoic zircons are
generally interpreted to be related to the subduction
of the South and North Qilian Ocean and consequent
continental collisions (e.g. Zhang et al. 2006a; Sun et al.
2012; Yan et al. 2015; Yang et al. 2015, 2016a; Dong et al.
2017; Shao et al. 2017; Xia et al. 2017), and the ~800 Ma
age peak may indicate a tectono-magmatic event in
Neoproterozoic. Note that some samples (e.g. QH-01 in
this study and 16 H-01 and CQA339 in previous studies,
Figure 2(h,k,m)) indicate an obvious contribution from
Permian–Triassic (220–280 Ma) plutons. Additionally,
samples from the east part of the belt (e.g. QH-01 and
QH-12 in this study and 16 in previous study, Figure 2(f–
i)) also show significant Neoarchean–Paleoproterozoic
zircons, which have been always overlooked in previous
tectono-magmatic event evaluations. The wide distribu-
tion in Precambrian ages reflects the evolution history of
the Quanji Block basement (Figure 2).

Four river sand samples collected from the east part
of the Central Qilian Block mainly have Phanerozoic
detrital zircon ages with a major age peak at ~450 Ma
due to the small catchment of the rivers (Lease et al.
2007). One sample (06, Figure 2(d)) therein shows more
various geochronological information, with three zircon
age peaks at ~250 Ma, ~450 Ma, and ~800 Ma, the pre-
Neoproterozoic detrital zircon ages are insignificant in
these reported river sand samples, but are abundant in
the published ancient sedimentary rocks from the
Central Qilian Block, which records the evolution of the
basement of Central Qilian Block.

Two rivers sand samples (DC2-1 and ZY1-1, from the
Heihe River, covering both the Central Qilian Block and
the North Qilian suture zone, Figure 2(a)) collected from

INTERNATIONAL GEOLOGY REVIEW 7



the North Qilian suture zone, show major detrital zircon
age peaks at ~250 Ma and ~450 Ma and secondary age
peaks at ~800 Ma, ~1.8 Ga, and ~2.5 Ga. The sedimentary
strata covered by the Heihe River catchment are domi-
nated by early Palaeozoic strata, and the
Mesoproterozoic Jingtieshan Group (Figure 2(a), Yang
et al. 2016b). Note that the Central Qilian Block and
North China Craton were suggested as major feeders
for these early Palaeozoic and Mesoproterozoic sedi-
mentary strata in the North Qilian suture zone (Xu et al.
2010a, 2010b; Yang et al. 2016b). In this regard, the
samples DC2-1 and ZY1-1 may record the tectonic
events occurred in the Central Qilian Block and North
China Craton, although they were collected in the North
Qilian suture zone.

5.2. Precambrian basement and assembly of
microcontinents

5.2.1. Basement of the Central Qilian Block
The river detrital zircon geochronology in the North-
Central Qilian belt shows a few but wide distribution in
Precambrian ages, with age peaks at ~0.8 Ga and ~1.8 Ga
(The age peak at~2.5 Ga in Figure 2(b) is considered as the
reflect of the detrital zircons from the North China Craton
in this study). Therefore, at least two tectono-magmatic
events occurred in the Central Qilian Block in the
Paleoproterozoic-Mesoproterozoic and Neoproterozoic.

The detrital zircon age probability peak at 1.7 Ga in
the Central Qilian Block is slightly younger than the
~1.8 Ga age peaks in the North China Craton, Tarim
Craton, and Yangtze Block (Figure 4). This difference in
age probability peaks may be an artefact under sam-
pling or the palaeogeographic position of Central Qilian
Block crust (or sediment sources) within the Columbia
supercontinent (e.g. Rogers and Santosh 2002, 2003;
Zhao et al. 2002, 2003, 2004a, 2006, 2011; Zhang and
Meng 2006b; Zhang et al. 2006c, 2011a, 2012b, 2013;
Chen et al. 2009, 2013; Xiong et al. 2009).

The significant detrital zircon age populations in the
range of 0.8–1.0 Ga have also been observed within the
Tarim Craton and Yangtze Block (Figure 4(b,c)). In addi-
tion, the granitic gneissic rocks with the ages 930 ± 8 Ma,
918 ± 14 Ma, and 790 ± 12 Ma in the Central Qilian Block
have been correlated to the early and late Grenvillian
magmatic activities in the Yangtze Block (Tung et al.
2013). The detrital zircon age peak at ~0.9 Ga in the
Precambrian basement of the North Qaidam UHP belt
(Figures 4(g) and 5) and the magmatic and metamorphic
ages of 0.9–1.0 Ga along the North Qaidam UHP belt
indicate a Yangtze-Qilian-Qaidam-Tarim Craton link to
a part of Rodinia called ‘South-West China United
Continent’ (Song et al. 2012). Therefore, we posit that

the crust composing the Central Qilian Block accreted to
the Rodinia supercontinent between 0.9 and 1.0 Ga. The
sample QH-19 was collected in the North Qaidam UHP
belt, but it displays an unimodal age peak at ~450 Ma
and few age population in 0.9–1.0 Ga. Note that the river
system of Kaketuguole River mainly covers the Qaidam
Mountain, dominated by a granitic pluton with the age
of 437–446 Ma (Zhou et al. 2013), although ~850 Ma
continental flood basalts are also exposed (Song et al.
2010b). We favour that most detrital zircons in sample
QH-19 likely came from the Qaidam Mountain.

Fragments of an 820–850 Ma large igneous province,
which result from a mantle plume and crustal extension,
have been documented in the northern margin of the
Qaidam Block (Xu et al. 2016). Coeval mafic-ultramafic
igneous rocks are also present in the Tarim Craton,
Yangtze Block, and southeastern Australia (Powell et al.
1994; Preiss 2000; Wang and Li 2003; Xu et al. 2005). Such
widespread transcontinental rifting events may relate to
the mantle plume activity which led to the break-up of
Rodinia (Li et al. 2008). As a result, the Central Qilian
Block rifted from Australia at 600–580 Ma (Xu et al. 2015).
The relic cores in zircons from ophiolite in North Qilian
suture zone indicate the initial opening of the North
Qilian Ocean at latest at ~710 Ma (Zhang et al. 2007).

In summary, the Central Qilian Block shows affinity to
the Tarim Craton and Yangtze Block in the Precambrian
evolution history, and they together successively experi-
enced amalgamation of the Columbia and Rodinia
supercontinents. The zircon age multi-dimensional scal-
ing (MDS) plot also indicates the similarity of
Precambrian basements in the Central Qilian Block,
Tarim Craton, and Yangtze Block (Figure 6).

Additionally, detrital zircon U-Pb age distributions of
Precambrian basement rocks of the Central Qilian Block
and North Qinling terrane yield strikingly similar age
distributions (Figure 4(d,e)). The understanding of the
Precambrian North Qinling terrane evolution lacks reso-
lution (Dong et al. 2011), however, there is compelling
evidence to suggest that the North Qinling terrane
accreted to Rodinia by ~1.0 Ga before rifting at
~750 Ma (Diwu et al. 2010; Yu et al. 2015b), and later
accreted to the North China Craton at ~640 Ma (Zhu
et al. 2011b). Additionally, the MDS plot of Precambrian
basement detrital zircon age data also shows similarity in
this two tectonic units (Figure 6). We suggest that the
Central Qilian Block and North Qinling terrane had
a similar history from the Mesoproterozoic to the early-
middle Neoproterozoic.

5.2.2. Basement of the Quanji Block
The Quanji Block has two significant Precambrian detri-
tal zircon age probability peaks at ~1.8 Ga and ~2.5 Ga,
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Figure 4. Detrital zircon age KDE plots of Precambrian basement of study- and adjacent areas.
(a) The North China Craton, from the upper Protozoic in Zhuozi Shan (Darby and Gehrels 2006), Wulashan Khondalites (Xia et al. 2006a), Jining Colplex (Xia
et al. 2006b), Songjiashan Group, lower Zhongtiao Group, upper Zhongtiao Group, and Danshanshi Group of Zhongtiao Complex (Liu et al. 2012a); (b) the
Yangtze Block, from the Mesoproterozoic Kunyang Group, Yanbaian Group and Bikou Group, Sinian Lieguliu Formation, and Guanyinshan Formation (Sun
et al. 2009), Neoproterozoic Sibao Group and Langjiaxi Group (Wang et al. 2007), Meso-Neoproterozoic Fanjingshan Group, Neoproterozoic Xiajiang Group
(Wang et al. 2010), Neoproterozoic Shuangqiaoshan Group, Xikou Groups, and Nanhua Sequence (Wang et al. 2013); (c) the Tarim Craton, from the Upper
Neoproterozoic (Gehrels et al. 2011; Carroll et al. 2013), drilling on Precambrian basement (Xu et al. 2013), Mesoproterozoic or Neoproterozoic Aksu
blueschist terrane and Sinian sandstone (Zhu et al. 2011a); (d) the North Qinling terrane, from the Precambrian Qinling Group (Wan et al. 2011) and
Neoproterozoic Kuanping Group (Diwu et al. 2010; Zhu et al. 2011b); (e) the Central Qilian Block, from the Mesoproterozoic to Cambrian (Gehrels et al.
2003a, 2011) Precambrian Yemananshan Group, Huangyuan Group, Maxianshan Group (Tung et al. 2007b), Neoproterozoic Hualong Group (Xu et al. 2007);
(f) the Quanji Block, from the Paleoproterozoic Dakendaban Group (Chen et al. 2009, 2012); (g) North Qaidam UHP belt, from the Proterozoic (Bektas 2013);
(h) the East Kunlun orogenic belt, from the Mesoproterozoic Xiaomiao Formation (Chen et al. 2011), Paleoproterozoic Jinshuigou Group, Mesoproterozoic
Binggou Group (He et al. 2016), Mesoproterozoic Jinshuikou Group (Meng et al. 2017), early Palaeozoic Chitai Group (Yan et al. 2017), and Jian et al.
unpublished data; and (i) River sand ages> 540 Ma in the North-Central Qilian belt (Lease et al. 2007; Gong et al. 2017); (j) River sand ages >540 Ma in the
South Qilian-North Qaidam belt (Lease et al. 2007; Liu et al. 2012b; Song et al. 2019a and this study). The red line in (e) and (g) means the age distributions
from granitoid rocks in the North-Central Qilian belt and South Qilian–North Qaidam belt, age data, and location shown in Table S2 and Figure S6 (Wu et al.
2002, 2009, 2014; Cowgwil et al. 2003; Gehrels et al. 2003b; Zhang et al. 2006a, 2017a; Wang et al. 2008, 2014, 2018; Tseng et al. 2009a; Sun et al. 2012; Yu et
al. 2012, 2015a; Tung et al. 2013, 2016; Chen et al. 2014; Song et al. 2014a; Fu et al. 2015; Yan et al. 2015; Yang et al. 2015, 2016a; Huang et al. 2016;Cheng
et al. 2017; Zhao et al. 2017b)
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respectively (Figure 4(f)). Note that the catchment of the
Bayin River (the sample QH-12 collected from) covers the
South Qilian belt and Quanji block, differing from the
sample QH-01 (within the South Qilian belt), the
Precambrian age distribution of the sample QH-12 is
featured by more concentrative ~1.8 Ga and ~2.5 Ga
ages (Figure 2). It is most likely that these ~1.8 Ga and
~2.5 Ga detrital zircons in sample QH-12 were source
primarily from the Qunaji Block and specifically the
Precambrian strata (Chen et al. 2007a, 2007b, 2007c,
2012, 2013; Wang et al. 2008, 2015; Gong et al. 2012;
Zhang et al. 2014; see sample QH-12, Figure 2(i)).

The prominence of the 2.5 Ga age probability peak is
unique to the Quanji Block and North China Craton in

this study (Figure 4(a,f)). This observation along with the
2.43 Ga granitic pegmatite and 2.47 Ga granitic leuco-
some in Delingha complex, supports the hypothesis of
a thermal-magmatic event around 2.5 Ga (Wang et al.
2008). The granitic gneissic rocks with a 2.37–2.39 Ga
crystallization age in the Quanji Block indicating regional
granitic magmatism which is associated with the crustal
convergence in ~2.5 Ga (Wang et al. 2015). Geochemical
results from protolith of the granitic gneiss in Mohe
(eastern Quanji Block) are thought to have formed dur-
ing a continent-continent collision. The granitic gneiss in
the Quanji Block shows chemical similarities to the TTG
(trondjhemite–tonalite–granodiorite) gneiss in the North
China Craton (Gong et al. 2012). It has been generally

Figure 5. Detrital zircon age KDE plots from previous studies (Gehrels et al. 2003a; Lease et al. 2007; Tung et al. 2007a, 2007b; Xu et al.
2007, 2010a, 2010b; Yan et al. 2007, 2010, 2015; Wang et al. 2008, 2016a; Yang et al. 2009a, 2016b; Chen et al. 2012; Liu et al. 2012b,
2018a; Zhang et al. 2012b; 2015b; Bektas 2013; Yuan and Yang 2015a, 2015b; Zhao et al. 2016, 2017a; Gong et al. 2017; Zuza et al.
2018; Song et al. 2019a, see Table S1 for detailed information).
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accepted that the reworking of continental crust
occurred at ~2.5 Ga in the North China Craton (Zhao
et al. 2000, 2001, 2002, 2005, 2008a, 2008b; Zhai and Liu
2003; Wilde et al. 2004, 2005a; Kröner et al. 2005; Wilde
and Zhao 2005b; Zhai et al. 2005; Geng et al. 2006;
Santosh et al. 2007, 2013; Zhu et al. 2012a). Our data
supports the argument that the Quanji Block was a part
of the North China Craton and experienced the Wutaian
Movement at ~2.5 Ga. The Quanji Block, as part of the
North China Craton during the Paleoproterozoic, was
involved in the Columbia supercontinent (Chen et al.
2009, 2012, 2013; Zhang et al. 2014; Wang et al. 2015).
This is supported by the observed ~1.8 Ga age signal in
the Quanji Block and the basic granulite with
a metamorphic age of 1928 ± 9 Ma in the Quanji Block
(Lu et al. 2017). The MDS plot (Figure 6) also indicates the
affinity between basements of the Quanji Block and
North China Craton.

The Rb-Sr isochron age of the Wandonggou Group
indicates an metamorphism in 1022 ± 64 Ma (Yu et al.
1994), and the Dakendaban Group zircon defined the
common lower intercept age of ~0.9 Ga (Wang et al.
2008). Note that the same period metamorphism and
magmatism widely occurred in the North Qaidam UHP
belt (e.g. Zhang et al. 2008a, 2008b, 2012a; Lin et al. 2006;
Chen et al. 2007b; Song et al. 2012; Yu et al. 2013), recog-
nizing as an multiperiod suture. A basaltic andesite from
theQuanji Block exhibits a zircon U-Pb age 738 ± 28Ma (Lu
2002a), which is consistent with the break-up of Rodinia.

Therefore, the Quanji Block probably collided with Qaidam
Block during the formation of Rodinia and separated with
Qaidam Block when the Rodinia was fragmented.

5.3. Phanerozoic accretionary evolution of the
Qilian orogenic belt

5.3.1. The early Palaeozoic accretion of
microcontinents in Qilian orogenic belt

The detrital zircon age probability distribution of three
samples in this study and other river sand samples in
previous studies all display distribution at 400–500 Ma
with an age peak at ~450 Ma, which indicates the early
Palaeozoic orogenesis in the Qilian orogenic belt.

It is generally considered that the subduction and
closure of the North Qilian Ocean and subsequent con-
tinent-continent collision between the northern Central
Qilian Block and North China Craton occurred in the
early Palaeozoic (Wu et al. 2006, 2011; Yang et al. 2006,
2015; Tseng et al. 2009a; Tseng 2009b; Song et al. 2013;
Tung et al. 2016; Wang et al. 2017; Mu et al. 2018).This
event is well recorded by ophiolite suite in the North
Qilian suture zone (Song et al. 2019b and references
therein), extensive arc-related intermediate-acid plutons
(Figure 4(l,m), Table S2 and Figure S6) and significant
~450 Ma detrital zircon age peak of the Phanerozoic
sedimentary rocks (Figure 5) in the North Qilian suture
zone and Central Qilian Block. In contrast, subduction of
the South Qilian Ocean and collision between the
Qaidam Block and Central Qilian Block were likely more
complex. The South Qilian Ocean subducted beneath
the Quanji Block and Central Qilian Block since 525 Ma
and the ocean closed at the 450 Ma (Lai et al. 1996; Zhu
et al. 2015; Wang et al. 2016b; Mu et al. 2018). As a result,
the Central Qilian Block collided with the Quanji Block
and Qiadam Block at the southeastern and southwestern
margin, respectively. This process was recorded by early
Palaeozoic felsic intrusions, MORB, OIB, and south Qilian
belt ophiolite suite (Lai et al. 1996; Zhang et al. 2005a,
2008b, 2009a, 2009b, 2017b; Zhu et al. 2012b, 2014,
2015; Yang et al. 2015, 2019; Wang et al. 2017; Song
et al. 2019b). The continental subduction of Qaidam
Block occurred at 440–420 Ma pulled by the subducted
oceanic crust at a depth 100–200 km. Exhumation
occurred at ~400 Ma due to delamination of the sub-
ducted oceanic plate and upwelling of the mantle. The
continental subduction is indicated by UHP meta-
morphic rocks and early Palaeozoic continental-melting
granites in North Qaidam (e.g. Yang et al. 1998, 2001,
2002, 2005, 2019; Zhang et al. 2008a, 2009a, 2009b; Song
et al. 2003a, 2003b, 2004, 2005, 2006, 2007, 2009a,
2009b, 2010b, 2012, 2013, 2014a, 2014b, 2017, 2019b;

Figure 6. Non-metric multi-dimensional scaling (MDS) plot of
Precambrian basement of study- and adjacent areas U–Pb
dataset, the reference sees in the caption of Figure 4. Solid
lines and dashed lines in MDS plots mean the closest
and second closest neighbours, respectively (Vermeesch
2013; Vermeesch et al. 2016).
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Wu et al. 2004, 2009, 2014; Mattinson et al. 2006a, 2006b;
Zha et al. 2016). During the subduction and collision, the
Quanji Block converged with Qaidam Block and Central
Qilian Block at south and north, respectively (Figure 7).
This point is supported by the 449–430 Ma metamorphic
age of the Dakendaban Group (Wu et al. 2007; Li et al.
2015; Zha et al. 2016).

5.3.2. Penetrative arc magmatism influence by the
Paleo-Tethys during the Permian to Triassic
The detrital zircon age probability distribution of sam-
ple QH-01 in this study (Figure 2(h)) and some samples
in previous studies (Figure 2(b,d)) display an age popu-
lation of 200–300 Ma. Compared to the Palaeozoic
strata, the Mesozoic strata in North Qilian suture zone
exhibit less age population of ~1.8 Ga and ~2.5 Ga
(Figure 5(b–d)), which reveal minor contributions of

the North China Craton and major contributions of
the Central Qilian Block. The provenance of the
Mesozoic strata in Central Qilian Block can be con-
strained in the Central Qilian Block and South Qilian-
North Qaidam belt, which is indicated by the
Precambrian age in Figure 5(h). Therefore, the
~250 Ma age peak represents a magmatic event in
Central Qilian Block and South Qilian-North Qaidam
belt. As a potential source area, the South Qilian-
North Qaidam belt also provided ~250 Ma age zircons
for the Cenozoic strata in North Qaidam UHP belt
(Figure 6(m)). Additionally, the cotemporaneous plu-
tons present at southern margin of the Qilian
Orogenic belt (Figure S6, Gehrels et al. 2003b; Zhang
et al. 2005b; Wu et al. 2009; Dong et al. 2014, 2015; Chen
et al. 2015; Cheng et al. 2017). Note that tectono-
magmatic event which was due to the subduction of

Figure 7. Tectonic evolution of the Qilian region from the Neoproterozoic to early Mesozoic.
(a) The initial subduction polarity of North Qilian Ocean was southwest and then changed to double subduction (Wu et al. 2011); The South Qilian Ocean
subducted beneath the Quanji Block and Qaidam Block. (b) Continent-continent collision between the Central Qilian Block and island arc, which developed on
the northern limb of the North Qilian Ocean, started by 460 Ma and completed by 420 Ma closing the North Qilian Ocean (Xu et al. 2010a); The Quanji Block
collided with Central Qilian Block at northern margin. The Qaidam Block subducted beneath the Quanji Block and Central Qilian Block after the closure of South
Qilian Ocean at 440–420 Ma. (c) The Paleo-Tethys subducted beneath the Qaidam Block from south at a relatively low angle generating 215–260 Ma plutons
across the Qaidam-Qilian region.
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North and South Qilian Ocean had finished at 360 Ma.
The late Palaeozoic to early Mesozoic tectono-
magmatic orogenesis that occurred in the East Kunlun
orogenic belt, which was likely associated with the
subduction of Paleo-Tethys (Liu et al. 1984; Guo et al.
1998; Luo et al. 2002; Mo et al. 2007; Yang et al. 2009b;
Pan et al. 2012; Huang et al. 2014; Xia et al. 2014; Hu
et al. 2015; Wu et al. 2009, 2016, 2017, 2019a, 2019b;
Shao et al. 2017; Xia et al. 2017; Dong et al. 2017). Wu
et al. (2009) suggested that as the subduction of Paleo-
Tethys, intercontinental subduction occurred in North
Qaidam belt and the lithosphere delamination led to
magmatism in the study area. However, plutons litho-
sphere delamination induced melts would only appears
near the paleo-subduction zone, and therefore cannot
explain the widespread Permian to Triassic plutons
within the Qaidam Block and North Qaidam UHP belt
and 200–300 Ma age population of detrital zircon in the
Central Qilian Block. We propose an alternative that the
spatial and temporal extend of these plutons is relate to
magma generated by the subduction of Paleo-Tethys
oceanic lithosphere (Gehrels et al. 2003b; Cheng et al.
2017). Our model suggests that the Paleo-Tethys sub-
ducted northward, at a variable but relatively shallow
angle, beneath the southern margin of Qaidam Block
(e.g. Kunlun orogenic belt). Figure 7(c) explains the
wide distribution of Permian to Triassic plutons which
were likely caused by low-degree subduction of the
Paleo-Tethys.

6. Conclusions

By combing new U-Pb detrital zircon dates from region-
ally sampling rivers in the Qilian orogenic belt with
previous bedrock investigations, we conclude following:

(1) The river sand detrital zircon geochronology
shows fairly high variability. The age populations
of sample QH-01 cluster into 220–280 Ma,
400–520 Ma, and minor Precambrian age popula-
tion. The age populations of sample QH-12 show
an age peak at 439 Ma, and secondary age peaks
at 833 Ma, 1963 Ma, and 2334 Ma. The age popu-
lations of sample QH-19 cluster to 400–500 Ma,
with few Precambrian age crystals.

(2) The Precambrian zircon age of the sample QH-01
and those reported in the Precambrian basement
indicate that the Central Qilian Block showed
basement similarity with the Tarim Craton and
Yangtze Block. The age peaks at ~1.8 Ga and
~1.0 Ga represent the aggregation of Columbia
and Rodinia, respectively.

(3) The ~1.8 Ga and ~2.5 Ga zircon age peaks of the
sample QH-12 and those reported in the
Precambrian basement indicate possibly similar
tectonic history between the Quanji Block and
North China Craton prior to the Neoproterozoic.
The Neoproterozoic metamorphism in the Quanji
Block indicates the assembly to Rodinia.

(4) The zircon age peak at ~450 Ma in the 3 samples
indicates the collision among the Quanji Block,
Qaidam Block, and Central Qilian Block.

(5) The 220–280 Ma zircon of the sample QH-01 were
related to magmatism caused by low-angle sub-
duction of the Paleo-Tethys at the southern mar-
gin of Qaidam Block.

Highlights

● The Quanji Block was likely a part of North China Craton
during the Pre-Neoproterozoic.

● The Central Qilian Block shows affinity with the Tarim and
Yangtze Craton.

● Paleo-Tethys subduction caused magmatism in the south-
ern Qilian belt in 200–300 Ma.
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