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A B S T R A C T

The Zhe-Min mountainous rivers in SE China are characterized by stable tectonics, small–mesoscale drainage
basins, relatively homogenous bedrocks, dense vegetation cover and high rainfall conditions. These rivers deliver
loads of sediments and nutrients to the oceans and always indicate considerably high variability of sediment flux
on short-term timescales. However, short-term sediment compositional variations and transport mechanism by
these mountainous rivers remain poorly understood. Here we target the Minjiang River, use mineralogical and
trace element geochemical data of suspended particulate matters (SPMs) within a one-year hydrological cycle
(from October 2016 to October 2017), riverbed sediments (< 0.063 mm fractions) and SPMs from the main-
stream and major tributaries, to investigate their provenance and transport process. The results indicate that the
SPMs in different seasons have strong seasonal geochemical heterogeneity, with highly positive correlations
between several trace element ratios (e.g. La(CN)/Yb(CN) and Th/Sc) and runoff of the river. Riverbed sediments
and SPMs collected in pairs have distinct geochemical compositions. The riverbed sediments have relatively low
La(CN)/Yb(CN) (ca. 10–15) and Th/Sc (ca. 2–5) ratios, whereas the SPMs have La(CN)/Yb(CN) and Th/Sc ratio
ranges of ca. 14–17 and ca. 4–7, respectively. These findings suggest a predominant hydrologic control on the
Minjiang River sediment transport and geochemical compositions on a seasonal timescale. We conclude that
exposed riverbed sediments are probably selectively recycled in dry-season sediment transport, whereas the
flood-season SPMs are less mixed with riverbed sediments and are likely dominated by particulates directly from
those tributaries and the upper mainstream. We favor that the Zhe-Min mountainous rivers are featured by rapid
sediment delivery in response to hydroclimatic changes and have similar sediment transport behaviors with
those small mountainous rivers in tectonically active regions of the subtropical East Asia (e.g. Taiwan). This case
study also highlights the importance of multi-spatio-temporal scale, heterogeneous river input of chemical
elements to the oceans.

1. Introduction

Rivers serve as the major link between land and sea, historically
discharging annually ca. 36,000 km3 of freshwater and about 20 bil-
lion tons of sediments and solutes (including ca. 0.38 Gt total organic
carbon) to the global ocean (Ludwig et al., 1996; Milliman and
Farnsworth, 2011). The transport of materials by rivers, which provides
essential information both on surface processes (physical, chemical,
biological and anthropogenic) of the continents and on the amount and
nature of terrigenous inputs to the oceans (Martin and Meybeck, 1979;
Gaillardet et al., 1999a; Bridge and Demicco, 2008), is particularly
crucial to better understanding of land-ocean interaction, geochemical

cycle and global change.
Large rivers dominate most of the global population and economy in

the world. These rivers were originally considered to account for the
great mass of water and sediment discharges to the global ocean and
thus have been widespread concerned for decades (Meybeck, 1982;
Gaillardet et al., 1999a, 1999b; Nilsson et al., 2005; Bianchi and
Allison, 2009; Viers et al., 2009). Many large rivers tend to experience
relatively little seasonal or inter-annual variability in sediment dis-
charge, by regulating short-term meteorological events through their
watersheds (Meybeck et al., 2003; Walling and Fang, 2003). By con-
trast, most mountainous rivers behave quite differently from large
rivers. Rivers running across mountains are characterized by steep
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gradients, relatively small drainage basins and the general lack of
downstream sediment storage, resulting in greater erosion rate and less
space for sediment accommodation than those large rivers. Therefore,
mountainous rivers have been recently recognized as much more im-
portant contributors of clastic sediments and particulate organic mat-
ters to the ocean than previously thought (e.g. Milliman and Syvitski,
1992; Kao and Liu, 1996; Wheatcroft et al., 1997; Carey et al., 2005;
Coynel et al., 2005; Kao and Milliman, 2008; Korup, 2012). Because of
these watershed characteristics, mountainous rivers always indicate
considerably high variability in sediment fluxes on seasonal- or event-
timescales (Farnsworth and Milliman, 2003; Milliman and Kao, 2005;
Gislason et al., 2006; Hilton et al., 2008; Sadeghi et al., 2008; Hatten
et al., 2012; Conaway et al., 2013; Goñi et al., 2013). However,
transport mechanism and short-term compositional variability of the
delivered sediments by mountainous rivers remain poorly understood.

Erosion, transport and yield of river sediments are a function of
precipitation, runoff, tectonics, bedrock lithology, basin morphology
and vegetation cover, and even human activity (Milliman and Syvitski,
1992; Walling and Fang, 2003; Leithold et al., 2006; Kao and Milliman,
2008). While seasonal variations of sediment export by mountainous
rivers are usually related to hydroclimatic factors (e.g. seasonal rainfall
and runoff) or differential denudation of sub-watersheds (Mano et al.,
2009; López-Tarazón et al., 2010; Hatten et al., 2012; Navratil et al.,
2012; Goñi et al., 2013), triggers for an extreme sediment transport
event generally include volcanic eruptions, earthquake- and storm-
driven landslide episodes, catastrophic dam breaks and typhoon-gen-
erated mega-floods (Milliman and Kao, 2005; Hilton et al., 2008;
Townsend-Small et al., 2008; Korup, 2012 and references therein;
Milliman et al., 2017; Su et al., 2018). Most previous studies focused on
small mountainous rivers in tectonically active regions, such as the
western coast of North America, New Zealand, Japan and Taiwan (e.g.
Carey et al., 2005; Sadeghi et al., 2008; Conaway et al., 2013; Milliman
et al., 2017), and emphasized the significance of event-triggered ex-
treme sediment export, whereas short-term monitoring of sediment
transport by mountainous rivers in relatively stable regions is rarely
reported. On a global scale, rivers running through tropical and sub-
tropical mountains (most in South and East Asia) deliver the greatest
loads of sediments, organic carbon and nutrients to the ocean (Milliman
and Farnsworth, 2011). This raises awareness of the importance of
mountainous rivers in low latitudes, especially the high rainfall regions.

It is well known that the low latitude East Asia develops two distinct
types of river systems (Fig. 1A). These includes tectonically stable
continental large rivers (e.g. Pearl and Mekong rivers) and tectonically
active mountainous rivers (e.g. rivers on the Taiwan island) (Yang
et al., 2014; Bi et al., 2015). The Zhe-Min Rivers, such as Oujiang,
Minjiang and Jiulongjiang Rivers (Fig. 1B), as important exorheic,
mountainous rivers along the SE coast of China, are developed on the
stable East Asia continent but have obviously different watershed to-
pography (Fig. 1B) and climate from the large rivers. These river basins
are instead under similar subtropical climatic conditions with the
Taiwan rivers (but different geological settings), which are currently
dominated by the East Asian monsoon system and high-frequency tro-
pical cyclone activities (Yin et al., 2010; Chang et al., 2012). How the
Zhe-Min mountainous rivers deliver sediments to the marginal seas
under such backgrounds remains poorly known.

In this study, we target the Minjiang River (Fig. 1) and present grain
size, mineralogical, petrographic and trace element geochemical results
and corresponding interpretations for suspended particulate matters
(SPMs) within a one-year hydrological cycle (from October 2016 to
October 2017) at a fixed location in the lower reach and for riverbed
sediments and SPMs from the mainstream and major tributaries
(Fig. 2A). The aims are to: (1) evaluate the spatial and seasonal varia-
tions in geochemical compositions of the Minjiang River-delivered se-
diments and (2) decipher sediment transport process and mechanism of
this tectonically stable, subtropical mountainous river on seasonal
timescales.

2. Regional setting

The Minjiang River, as the largest river in Fujian Province, SE
China, originates from the Wuyi Mountains and flows east into the East
China Sea (Fig. 1B). The watersheds of the river system mainly sit
500–2000 m above the sea level and spread over the region of 25–29°
north latitude and 116–120° east longitude (Fig. 2), with the drainage
area of ca. 61,000 km2. The river basin is dominated by subtropical
humid monsoon climate and has average annual air temperature of
16–20 °C and annual precipitation of 1500–2000 mm (Zhu et al., 2018).
The catchment is always influenced by tropical cyclones (Yin et al.,
2010; Chang et al., 2012), which can trigger short-term extreme rainfall
and flood events, especially in the downstream regions. This kind of
climatic background leads to highly spatial variability of rainfall in
different seasons, i.e. relatively high precipitation in the upstream
watershed during the March–June and intensive rainfall in the down-
stream watershed during July–September (Yu, 2002).

The Minjiang River basin is on the Cathaysia block under a tecto-
nically stable background. The upstream (such as the tributaries Jianxi,
Futunxi and Shaxi) bedrocks mainly comprise Precambrian meta-
morphic and igneous rocks, Paleozoic sedimentary rocks and Mesozoic
igneous rocks (Fig. 1C–D), whereas the downstream (such as the tri-
butaries Meixi and Dazhangxi) bedrocks are dominated by Jurassic–-
Cretaceous volcano-sedimentary rocks with subordinate Late Yan-
shanian (Cretaceous) plutons (Chen and Jahn, 1998; Li et al., 2014).

The Minjiang River historically export ca. 54 billion m3 of fresh
water and ca. 6 million tons of sediment annually (MWRPRC, 2016).
However, sediment discharge of the river shows a decreasing trend due
to increasing human activities (such as construction of dams and re-
servoirs (Fig. 2A)) along the river in past decades (Dai et al., 2009).
Almost 70–80% of rainfall and runoff occur in the period of April to
September each year (Zhu et al., 2018) and the sediment discharge flux
displays remarkably seasonal and inter-annual variability (Fig. 2B). Due
to the influence of El-Nino and La-Nina climate phenomena, much more
precipitations and rainstorm events happened in 2016 than those in
previous and following years (ICMWRPRC, 2016, 2017). This resulted
in much higher sediment discharge by the Minjiang River in 2016 than
that in 2017 (Fig. 2B).

3. Samples and analytical methods

To obtain SPM samples, river water was collected at surface of river
channels using a clean water sampler. SPMs were then filtered from the
river water through 0.45 μm membranes. Twenty-five SPM samples
were collected nearly semimonthly from October 2016 to October 2017
at the fixed S04 station in the downstream river channel, about 50 km
away from the river mouth (Fig. 2A). Note that the S04 station was not
influenced by tide flow from the ocean during each sampling. We also
collected 13 SPM samples from the major tributaries and different lo-
cations along the mainstream (Fig. 2A) in October 2016. Furthermore,
mud and fine sand sediment samples (Fig. 2A) were collected from
exposed, accessible riverbeds where sediment was deposited during
high water levels. Fractions of< 63 μm were further separated by wet
sieving for grain size, mineralogical, petrographic and geochemical
analysis.

SPM and riverbed sediment (< 63 μm fractions, the same below)
smears were made for petrography analysis. Each targeted sample was
evenly placed at a glass, wet by dripping about 0.1 ml water and then
dried at 110 °C. Canada balsam was employed to adhere the samples to
the glass. The smears were observed under a polarizing microscope
after consolidation.

Grain size distributions of the SPMs and riverbed sediments were
analyzed by a Malvern laser particle analyzer (Mastersizer 3000) at
Xiamen University. The samples were treated with 30% H2O2 and 10%
HCl to remove organic matter and carbonate components, respectively.
Addition of 0.5 M (NaPO3)6 and ultrasonic dispersion were employed to
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ensure complete disaggregation of particles before the grain size ana-
lysis.

Mineralogical analysis of the SPMs and riverbed sediments was
carried out by using a Rigaku X-ray diffractometer (Ultima IV) at
Xiamen University and followed the analytical procedures given by Jian
et al. (2014, 2019). Each powdered sample was continuously scanned
under the conditions of 40 kV, 30 mA, wave length of 1.54, step width
of 0.02° and scanning speeds of 4°/min.

A total of 45 samples were selected for trace element geochemistry
analysis (Table A1 in the Appendix A). All the samples were powdered
by using an agate mortar and were treated by 1 N acetic acid for 24 h to
remove carbonate components. The residues were dried at 50 °C and
then combusted in a muffle furnace at 600 °C for 2 h. The pretreated
samples were then accurately weighed and completely digested by
HNO3-HF mixture acid solutions. An Agilent 7900 ICP-MS at State Key
Laboratory of Marine Geology (Tongji University) was employed for
trace element analysis. The GSR-5 standard materials were used to
monitor analytical quality. Both the analytical accuracy and precision
were estimated to be<10% for most trace elements. The detailed
treatment and analytical procedures were given in Guo et al. (2018)
and Deng et al. (2019).

4. Results

Representative photomicrographs of the riverbed sediments and
SPMs are shown in Fig. 3A–B. The results indicate that the<63 μm
fractions of riverbed sediments have relatively larger detritus than the
associated SPMs, and are rich in blocky quartz, feldspar and lithic
fragments, whereas the SPMs contain a certain amount of flaky micas
(Fig. 3A–B). Laser particle analyzer-based grain size analysis results
show that the SPMs have diverse grain size distributions (Fig. A1 in the
Appendix B) and are mainly composed of silt and clay (mean sizes
ranging of 2–20 μm, Fig. 3C). Furthermore, the analyzed two riverbed
sediments have mean grain sizes of 14–17 μm (Fig. 3C).

The XRD analysis results of the selected SPMs and riverbed sedi-
ments indicate that these sediments are mainly composed of quartz, K-
feldspar, plagioclase and clay minerals (dominated by kaolinite and
illite) (Fig. A2 in the Appendix B). The SPMs therein have compara-
tively higher clay mineral and lower feldspar compositions than the
associated riverbed sediment samples. Besides, the SPM samples are
surprising to have similar or even higher quartz abundances
(46%–64%, averaging in 56%) than the associated riverbed sediment
samples (46%–59%, averaging in 53%).

Trace- and rare earth element data are shown in Table A1. Element
concentrations of all the analyzed samples were normalized to the
Upper Continental Crust (UCC) compositions (Taylor and McLennan,
1985) and are shown in Fig. 4. Fig. 5 illustrates the comparison of trace
element concentrations and representative element ratios for those SPM
and riverbed sediment samples collected in pairs (i.e. at the same lo-
cation). Overall, the Minjiang River sediments have roughly similar
UCC-normalized trace element patterns with the Post-Archean Aus-
tralian Shale (PAAS) and the SPMs discharged by the Yangtze, Pearl and
Mekong rivers (Fig. 4). The analyzed samples display variable large ion
lithophile element (LILE) compositions (e.g. remarkable depletion in Sr
and enrichment in Rb and Cs relative to UCC). Most samples are rich in
rare earth elements (REEs) compared with the UCC (Fig. 4).

The SPM samples have comparatively higher LILE and REE and
lower high field strength element (HFSE, e.g. Zr and Hf) concentrations

than the associated riverbed samples (Fig. 5). Riverbed sample 16MJ-18
has higher heavy REEs (e.g. Tm, Yb and Lu) and much higher HFSE
concentrations than sample 16MJS-10 (Fig. 5), likely due to detrital
zircon enrichment in the riverbed sediment phases. Note that the SPM
samples from upper and lower tributaries and different locations of the
river mainstream in the same season have indistinguishable elemental
ratio values, such as Th/Sc (3.6–7.0), La(CN)/Yb(CN) (13.3–16.6), Th/U
(4.5–5.7) and La/Sc (8.0–13.7) ratios, which are obviously higher than
those of riverbed sediment samples (Fig. 6; Table A1). However, the
SPM samples from different seasons collected at the fixed station S04
(Fig. 2A) have variable Th/Sc, La(CN)/Yb(CN), Th/U and La/Sc ratios,
with the ranges of 2.2–5.1, 7.5–17.6, 3.8–5.1 and 4.8–11.6, respec-
tively. Furthermore, several riverbed sediment samples (16MJ-15,
16MJ-18 and 16MJ-26) show relatively high Hf abundances (11–24)
and Zr/Sc values (51–62) (Table A1).

5. Discussion

5.1. Sediment geochemical variability of the Minjiang River catchment on
multi-spatial scales

Since Sc is generally rich in mafic igneous rocks (Taylor and
McLennan, 1985; McLennan et al., 1993), relatively low Sc abundances
(varying from 4.7–14.7 ppm, averaging 8.9 ppm) of all the samples
reveal a predominant felsic source for the river sediments (Fig. 4; Table
A1). The strong contribution of felsic source rocks is also reinforced by
low La/Th ratios (varying from 1.8 to 2.9, averaging 2.2) and Chon-
drite-normalized REE patterns (i.e. classical light REE enrichment, ne-
gative Eu anomaly and flat heavy REE distribution) of the analyzed
samples, showing the characteristics of PAAS-like sediments (Figs. 4–6;
Fig. A3 in the Appendix B). Although the upstream and downstream
regions of the river catchment are characterized by different bedrocks
(Fig. 1), our data demonstrate that the SPMs from upper tributaries (e.g.
Jianxi, Shaxi and Youxi) have similar REE, Th and Sc features (e.g. the
La/Th, Th/Sc, La(CN)/Yb(CN), Th/U and La/Sc value ranges are indis-
tinguishable) to those from lower tributaries (Fig. 6).

By contrast, the upper tributary SPMs have different LILE features
from the lower tributary SPMs. Specifically, the upper tributary samples
have obviously higher Rb/Sr, αSr (αSr = [Nd/Sr]sed/[Nd/Sr]UCC) and
αBa (αBa = [Th/Ba]sed/[Th/Ba]UCC) values than the lower tributary
samples (Fig. A4 in the Appendix B). It is well known that Sr and Ba are
very active during water-rock interactions and thus tend to concentrate
in weathering solution as weathering progresses (Canfield, 1997;
Gaillardet et al., 1997), while Rb, Nd and Th (the magmatic compat-
ibility of Nd and Th is close to that of Sr and Ba, respectively) are re-
latively immobile and are preferentially retained in weathering residual
solid products. Hence, these trace element-based proxies have been
proposed as useful indicators for evaluating chemical weathering in-
tensity; and to some extent higher Rb/Sr, αSr and αBa values indicate
stronger chemical weathering (Chen et al., 1999; Gaillardet et al.,
1999b; Yang et al., 2004; Jin et al., 2006; Guo et al., 2018). Although
the hydrodynamic sorting during sediment transport, which can lead to
different sediment grain sizes, can impact geochemistry-based weath-
ering proxies (Xiong et al., 2010; Bouchez et al., 2011a, 2011b;
Garzanti et al., 2011; von Eynatten et al., 2012; Jian et al., 2013; Guo
et al., 2018), the analyzed upstream and downstream SPMs have similar
and quite small ranges of mean grain sizes (Fig. 3C) and no obvious
relationship is observed between the grain sizes and the Rb/Sr ratios

Fig. 1. Location and background of the East Asia river-sea system and the Minjiang River. (A) East Asia continental margins and major rivers on the East Asia
continent (modified from Jian et al., 2020). These rivers were mainly derived from the Tibetan Plateau. (B) Representative subtropical mountainous rivers (red lines:
major Zhe-Min rivers; blue lines: major Taiwan rivers) into the sea in SE China. Black arrows indicate the directions of the sediment discharge. (C) Stratigraphic
divisions of the Fujian Province, SE China. 1) Proterozoic; 2) Paleozoic; 3) Jurassic–Cretaceous. (D) Geological map of the Minjiang river basin (Jian et al., 2020).
Note that the upstream river basin is dominated by Proterozoic and Paleozoic rocks, while the downstream regions mainly consist of Jurassic–Cretaceous rocks. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(Fig. A4), indicating a minor control of hydrodynamic sorting on the
SPM chemical weathering intensity proxies. In this case, the geo-
chemical data suggest that the upstream regions (with Rb/Sr, αSr and
αBa value ranges of 3.2–4.9, 13.3–22.0 and 3.7–7.2 (Table A1; Fig. A4),
respectively) of the Minjiang River basin experience stronger chemical
weathering than the downstream regions (with Rb/Sr, αSr and αBa value
ranges of 2.6–3.4, 11.6–12.4 and 2.5–3.9, respectively). This is

consistent with clay mineralogy results which reveal that the upstream
river sediments have higher kaolinite/(illite + chlorite) ratios than the
downstream sediments (Xu et al., 2013; Feng et al., 2014; our un-
published data). Potential explanations for the spatial difference of
chemical weathering intensity of the river basin include, 1) the up-
stream river basin has higher annual precipitation than the downstream
regions due to the monsoon-dominated climate and topography varia-
tions (Yu, 2018); 2) the downstream (and coast) regions always suffer
from typhoon-induced rainstorms which probably increase landslide,
soil erosion and physical weathering (Wang et al., 2012; Huang and
Cheng, 2013) and thus result in relatively low chemical weathering
intensity in the downstream regions.

Our data also show that the SPMs have quite different trace element
concentrations and ratios from the associated riverbed sediments
(Figs. 4–6). This is most likely attributed to the hydrodynamic sorting
process during sediment transport and deposition in which quartz,
feldspar and some heavy minerals tend to place in riverbed sediments,
while SPMs are generally dominated by phyllosilicates (e.g. clay mi-
nerals and micas) (Bouchez et al., 2011a, 2011b; Garzanti et al., 2011).
The inference is reinforced by the differential petrographic composi-
tions of the SPM and riverbed sediment samples, which show that the
SPMs are rich in clay minerals and flaky micas (Fig. 3A–B). A great
number of studies have pointed out that modern sediments or ancient
sedimentary rocks with the same sources but different grain sizes (or
different size fractions of one sediment sample) are expected to have
distinct major, trace and rare earth element concentrations and ratios
(e.g. Cullers, 1994, 1995; Nesbitt et al., 1996; Vital and Stattegger,
2000; Singh, 2009; Garzanti et al., 2010; Lupker et al., 2011; Jian et al.,
2013; Guo et al., 2018; Deng et al., 2019). Physical sorting can dom-
inate transport and deposition of sediments based on grain size, shape
and density and thus results in mineralogical and geochemical differ-
entiation (Garzanti et al., 2010). For instance, all the riverbed samples
in this study have much higher Zr/Sc values than the associated SPM
samples. This can be attributed to the enrichment of zircon (Belousova
et al., 2002) in the riverbed phases. The overwhelmingly higher con-
centrations of REEs and LILEs in most SPMs than associated riverbed
sediment samples (Fig. 5), are due to the comparative enrichment of
clay minerals and flaky micas in the suspended phases (Fig. 3A–B). This
is supported by the XRD-based mineral composition analysis results
which indicate relatively high kaolinite (and similar quartz contents)
compositions in the SPMs (Fig. A2; Fig. 5). Although most previous
studies emphasized quartz (or calcite) dilution resulting in low con-
centrations for most trace elements in bedload or sandy sediments (e.g.
McLennan et al., 1990; Cullers, 1995; Singh and Rajamani, 2001;
Roddaz et al., 2006; Bouchez et al., 2011a, 2011b), we favor the major
control of phyllosilicates on sediment trace element concentrations in
this study. Some trace elements, such as REEs, can easily enter the clay
mineral lattice or be adsorbed onto the clay mineral surface, which can
result in one to two orders of magnitude higher trace element con-
centrations of clays than those of quartz and feldspar (Condie, 1991;
Vital et al., 1999; Garzanti et al., 2011).

5.2. Geochemical and provenance variability of the Minjiang River-
discharged sediments on seasonal timescales

The geochemical results of SPMs collected at the S04 station
(Fig. 2A) in different seasons of 2016–2017 demonstrate strong varia-
tions in some trace elements (Fig. 7). Specifically, the SPMs of Octo-
ber–November 2016, late March–April 2017 and June–August 2017
have relatively higher La/Sc (most in the range of 7.7–11.6), Th/Sc
(3.6–5.1), Th/U (4.5–5.1) and La(CN)/Yb(CN) (14.0–17.6) ratio values
than the SPMs of other periods (the La/Sc, Th/Sc, Th/U and La(CN)/
Yb(CN) ratios ranging 4.8–8.4, 2.2–4.7, 3.8–4.7 and 7.5–14.6, respec-
tively) (Table A1).

Long-term monitoring results demonstrate a decrease trend in se-
diment discharge of the Minjiang River during the past decades and
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at S04 stationDry season SPMs

Flood season SPMs

< 63 m fractions of riverbed sedimentsμC

Qtz

Qtz

Mica
Mica

Lms

Lms

Mean grain size (     )
Fig. 3. Representative photomicrographs of the analyzed riverbed sediments
and SPMs. (A) Riverbed sediment sample 16MJ-26 (< 63 μm fractions). (B)
SPM sample 16MJS-14. (C) Mean grain size values of all the analyzed samples.
Qtz: quartz; Lms: metasedimentary lithic fragment.
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human activities (such as construction of dams and reservoirs) are re-
garded as a principal cause for the decline of sediment flux (Dai et al.,
2009; MWRPRC, 2016). The Shuikou Reservoir, as the most important
reservoir in the middle mainstream (Fig. 2A), optionally increased
flood-discharge (marked by sharp declines of the water level) after
several strong rainfall events during the sampling seasons (Fig. 7).
However, the geochemical signals of the seasonal SPMs did not respond
to the water release events (Fig. 7). This means that the dams and re-
servoirs play a minor role in geochemical compositions of the dis-
charged SPMs on the seasonal timescales. Other human activities, such
as land use and river sand mining, might seasonally vary, but are hard
to be precisely quantified for this mesoscale river basin. Furthermore,
there is no obvious correlation between these trace element ratios and
mean grain sizes (Fig. A5 in the Appendix B), implying that hydro-
dynamic sorting-induced mineralogical differences might not be the
major control on these chemical elements. These element ratios (e.g.
monthly average values of La(CN)/Yb(CN) and Th/Sc) display highly
positive correlations with monthly runoff data of the river instead
(Fig. 8). Therefore, we suggest a hydrologic control on the trace ele-
ment geochemical compositions (i.e. seasonal heterogeneity) of the
Minjiang River-discharged SPMs. As expected, the Minjiang River dis-
played comparatively high water-discharges during those three periods

with high sediment trace element ratios (Fig. 7). The late March–April
and June–August 2017 therein were wet seasons when the river basin
experienced high precipitations (Fig. 7). Although October–November
is generally regarded as a comparatively dry season and the river basin
is always rainless in this period, the October–November 2016 Minjiang
River catchment had much more precipitations than the same period of
previous and following years (ICMWRPRC, 2016, 2017). Furthermore,
two typhoon-triggered rainstorm events (Meranti and Megi typhoons)
happened in late September 2016 (Fig. 7). These climatic backgrounds
and events resulted in fairly high runoff conditions of the Minjiang
River in October–November 2016 (Fig. 7).

We further find that the SPMs of high-runoff period (i.e. high-water
stage or so-called flood season) have similar La/Sc, Th/Sc, Th/U and
La(CN)/Yb(CN) ratio values with the upper and lower tributary SPMs,
whereas these element ratios of the low-runoff period (i.e. low-water
stage or so-called dry season) samples are close to or even lower than
those of the analyzed riverbed sediments (Fig. 7). This reveals distinct
provenance and transport mechanisms of the Minjiang River-delivered
sediments in flood and dry seasons. We favor that solid materials on
exposed riverbeds and overbanks are selectively recycled during the
transport process in dry seasons. For example, detrital zircons, as
common ultra-dense grains (> 4.5 g/cm3) in bedload sediments
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(Garzanti et al., 2010), are probably not largely resuspended in shallow
water of the river, since the dry season SPM samples have similar Zr and
Hf concentrations and Zr/Sc ratios with the wet season samples (Table
A1). Therefore, we contend that the surface water of the Minjiang River
carries mixed riverbed-suspended sediment load into marginal seas
under such conditions (Fig. 9A–B). By contrast, in flood seasons, surface
water of the Minjiang River carries sediments that are most directly
derived from the SPMs of those tributaries and upper mainstream
(Fig. 9C–D). Although we only investigated the SPMs from the surface
water, SPMs within the river water column are probably less mixed and
have highly geochemical heterogeneity in such conditions (e.g. Bouchez
et al., 2011a, 2011b; Garzanti et al., 2011; Luo et al., 2012).

Furthermore, LILEs-based proxies (e.g. Rb/Sr and αBa) and our un-
published SreNd isotope data (Jian et al., 2020) indicate that the up-
stream bedrocks likely contributed more materials for the Minjiang
River-discharged SPMs than the downstream bedrocks during high
precipitation seasons in the upstream regions (e.g. March–early April
and May–June 2017) (Fig. A6 in the Appendix B), conversely the dis-
charged SPMs were mainly derived from downstream regions during
typhoon-dominated seasons (e.g. July–August 2017) (Fig. A6). This
means that the geochemical compositions of the seasonal SPMs corre-
spond well with the spatiotemporal variations of precipitation and
therefore climate variability also likely serves as a major control to
regulate the transport process and compositions of the Minjiang River
sediment into the East China Sea (Jian et al., 2020).

5.3. Implications for sediment erosion and transport by subtropical
mountainous rivers in East Asia

Physical erosion of mountainous regions, especially those tectoni-
cally active mountains under humid climatic conditions, contributes to
supply fresh mineral surfaces to weathering environments and thus play
a significant role in regulating global carbon cycles as well as climate on
both modern and geologic timescales (e.g. France-Lanord and Derry,
1997; Dadson et al., 2003; Riebe et al., 2004; Galy et al., 2007;
Willenbring and von Blanckenburg, 2010). Note that the modern global
erosion rate is usually inferred from suspended load flux of rivers (e.g.
Galy and France-Lanord, 2001). The occurrence of exposed riverbed
sediment recycling into suspended load under low runoff conditions
(i.e. dry seasons) of the Minjiang River (Fig. 9) suggests that the con-
tributions of these kinds of mountainous rivers to the global erosion
rate would sometimes be overestimated. This case study highlights that
the short-term transport mechanism variability should be taken into
account when evaluating erosion rate of continental mountains.

Given that most large rivers (e.g. Yangtze, Ganga and Amazon
rivers) have large flood plains, deltas and widespread lakes, short-term
sediment transport by those rivers can always be modulated by their
large drainage basins and therefore the flux and compositions of their
discharged sediments tend to display relatively little seasonal or inter-
annual variability (Meybeck et al., 2003; Walling and Fang, 2003). In
this case, sediments probably experience a complex sedimentary re-
cycling and trapping history and much of the sediment load can be
stored for long time periods (e.g. Dosseto et al., 2006; Li et al., 2016).
By contrast, mountainous rivers (e.g. rivers on the Taiwan island) have
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relatively small drainage basins, steep gradients and limited down-
stream sediment storage. They are more likely and easily to respond to
short-term (e.g. seasonal- or event- timescales) environmental changes
(Milliman and Syvitski, 1992). Under these backgrounds, sediments
generally undergo less-recycling and fast-transport and the discharged
sediment compositions always display great variations over different
spatial-temporal scales (Mano et al., 2009; Hatten et al., 2012; Navratil
et al., 2012; Goñi et al., 2013; Li et al., 2016; Milliman et al., 2017;
Deng et al., 2019).

The Minjiang River provides a typical example of mountainous
rivers in which hydrologic variability, especially climate-induced hy-
drologic changes, play an important role in short-term sediment
transport and compositions of discharged sediments (Jian et al., 2020).
As the sediment transport models shown in Fig. 9, changing river flow
conditions throughout the hydrological cycle influence the sorting
process of SPMs, which can explain the seasonal variability of geo-
chemistry observed in the river surface SPMs. Previous studies on other
Zhe-Min Rivers (e.g. Jiulongjiang and Mulanxi Rivers) and Taiwan
rivers also underlined hydrologic controls on material transport over
short-term timescales (e.g. Milliman and Kao, 2005; Hilton et al., 2008;
Wei et al., 2016; Milliman et al., 2017; Su et al., 2018; Deng et al.,
2019). Although the Zhe-Min rivers (Fig. 1) are developed on the tec-
tonically stable East Asia continent (similar to the Yangtze and Pearl
rivers), they likely display similar sediment transport behavior with
those small mountainous rivers in tectonically active regions of the
tropical and subtropical East Asia where the modern climate is mainly
controlled by the East Asian monsoon system and incidental tropical
cyclones (Yin et al., 2010; Chang et al., 2012). In addition to the sea-
sonal geochemical heterogeneity of the sediments into the seas, the

Zhe-Min mountainous rivers are also supposed to have differential se-
diment transport regimes and compositional variability on inter-annual
(e.g. the difference between October 2016 and October 2017, shown in
Fig. 7) and event (e.g. typhoon-triggered rainstorms and meta-floods)
scales.

5.4. Implications for geochemical cycles at the land-ocean interface

As stated above, the Minjiang River-discharged sediments demon-
strate strong spatial and seasonal geochemical heterogeneity
(Figs. 4–7). We also found the highly heterogeneous geochemical
compositions between riverbed and SPM samples collected in pairs
(Fig. 5). A great number of investigations on the small mountainous
rivers in East Asia indicate huge geochemical variability of sediments
into the oceans over event-timescales and multi-spatial scales (e.g.
Hilton et al., 2008; Milliman et al., 2017; Deng et al., 2019). Although
there hasn't been a relatively long-term (e.g. several decades) geo-
chemical monitoring data on SPMs from these mountainous rivers,
these rivers show strong inter-annual variability of sediment fluxes
(Fig. 2B; Kao and Milliman, 2008; Dai et al., 2009) and are expected to
have sediment geochemical heterogeneity on inter-annual timescales.
Collectively, these findings and assumptions suggest the importance of
multi-spatio-temporal scale, heterogeneous mountainous river input of
chemical elements (as well as isotopes) to the ocean.

There have been several attempts to establish a comprehensive
database on chemical compositions of SPMs in world rivers (Martin and
Meybeck, 1979; Martin and Whitfield, 1983; Gaillardet et al., 1999b;
Viers et al., 2009). We contend that the seasonal geochemical hetero-
geneity, as well as the highly variable sediment discharge over time by
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the mountainous rivers, can intensively influence elemental fluxes and
budget at the land-ocean interface. Furthermore, our findings underline
that the multi-spatio-temporal scale elemental and isotopic variations
of the high-sediment-output mountainous rivers should be considered
in reconstructions of geological and climatic events utilizing elemental

and isotopic geochemistry data of ancient clastic sedimentary records.

6. Conclusions

This study combines grain size analysis, mineralogy, petrography
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and trace element geochemistry of riverbed sediments and SPMs from
the Minjiang River, SE China and yields the following conclusions:

1) The upper and lower tributary SPMs of the Minjiang River have
different LILE features but similar REE, Th and Sc features. These
SPMs have significant differences of most trace element concentra-
tions and ratios from the associated (i.e. collected in pairs) riverbed
sediments, due to the influence of hydrodynamic sorting process
which results in the relative enrichment of clay minerals in the
suspended-load phases.

2) The discharged SPMs in a one-year hydrological cycle demonstrate
strong geochemical variations, with highly positive correlations
between La(CN)/Yb(CN) and Th/Sc ratios and the river runoff data.
SPMs during high-runoff periods therein have similar La/Sc, Th/Sc,
Th/U and La(CN)/Yb(CN) ratio values with the upper and lower tri-
butary SPMs, whereas these element ratios of samples in low-runoff
periods are close to or even lower than those of the analyzed riv-
erbed sediments.

3) The results of the discharged SPMs in different seasons indicate a
hydrologic control on the sediment transport and geochemical
compositions of the Minjiang River. This river has similar sediment
transport behavior to those small mountainous rivers in tectonically
active regions of the tropical and subtropical East Asia. Our findings
also highlight the importance of multi-spatio-temporal scale, het-
erogeneous river input of chemical elements to the oceans.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.margeo.2020.106120.
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