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A B S T R A C T

To aid early warning and prevent the outbreak of green tides in the Yellow Sea, both the growth and photo-
synthetic performance of Ulva prolifera were studied after culture in different temperatures (18, 22, and 26 °C)
and light intensities (44, 160, and 280 μmolm−2·s−1). Furthermore, their instantaneous net photosynthetic
performance (INPP) was studied to determine the resulting environmental acclimation. The relative growth rates
of U. prolifera significantly decreased in response to increasing temperature, while they increased with increasing
light intensity. Culture at higher light intensities significantly increased INPP, while higher temperatures de-
creased the INPP. Culture at lower temperatures lowered INPP, while increased growth temperature increased
the effect. These results suggest that high temperatures during the cold season inhibited U. prolifera growth.
However, low temperatures during the warm season increase biomass and may cause a large-scale green tide.
These results help to understand the correlation between U. prolifera blooms and extreme weather.

1. Introduction

Green tides as a consequence of the proliferation of green algae such
as Ulva and Chaetomorpha have been reported worldwide. Considerable
blooms of green macroalgae have already happened in Europe
(Denmark, Netherlands, France, and England), Asia (China, Japan, and
Korea), North America, and Australia (Choi et al., 2010; Kim et al.,
2011). Since 2007, Ulva blooms have consecutively occurred along the
coastal areas of the Yellow Sea. In June 2008, the world's largest green-
tide with an affected area of about 600 km2 occurred along the coast of
the Yellow Sea near Qingdao in China, severely threatening the 2008
Olympic Games sailing regatta (China Ocean News, 2008; Liu et al.,
2010), causing considerable economic loss for the local government
(Liu et al., 2009). The enormous biomass of green algae was suggested
to destruct marine ecosystems and destroy ecological service functions,
since it promotes oxygen depletion of both the water column and the
benthic environment (Lomstein et al., 2006). Furthermore, green algae
can negatively impact coastal ecosystems via rapid expansion and via
interfering with coastal nitrogen and carbon cycles (Lomstein et al.,
2006; Nelson et al., 2008). Therefore, increasing focus has been di-
rected to green tide research with particular attention on its blooming
mechanisms. According to previous records, no signs were observed
prior to the sudden bloom (Liu et al., 2010; Zhang et al., 2014).

Numerous researchers have tried to explain the Ulva bloom.

According to previous studies, Ulva microscopic propagules were
widespread throughout the southern Yellow Sea, and Porphyra aqua-
culture rafts contributed to the attachment of Ulva spores (Huo et al.,
2014; Zhang et al., 2016). Moreover, different species of Ulva showed
varied competitive advantages, such as Ulva prolifera showed higher
nutrient uptake (eg. with an N uptake rate of 33.9 μmol g−1 DW·h−1

and P uptake rate of 11.1 μmol g−1 DW·h−1), growth (eg. U. prolifera
with a growth rate of 37%·d−1) and diverse reproductive system than
non-bloom forming Ulva species (Huo et al., 2013; Liu et al., 2013; Fan
et al., 2014; Gao et al., 2017a,b). Especially the distinctive growth and
reproductive strategies of Ulva spp., including enlarging tubular dia-
meter, formation of new branches, release of zoids, and polarized
growth, result in a high growth rate during green-tide formation (Ye
et al., 2008; Zhang et al., 2016). These findings indicated Ulva as
bloom-forming genus.

The influence of ecological factors on the growth and proliferation
of U. prolifera have also been studied (Dan et al., 2002; Luo et al., 2012;
Zhang et al., 2013; Gao et al., 2017a). Seaweeds enhance biomass via
photosynthesis; however, excessive light intensity affects both photo-
synthesis and growth (Copertino et al., 2006; Gao et al., 2016). The
level of nutrients including combined nitrogen, phosphorus, and dis-
solved inorganic carbon influences the photosynthesis, growth, and
nutrient contents of macroalgae (Xu et al., 2014; Sjøtun et al., 2015;
Ueno et al., 2017). Damaging nitrogen could increase the
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photoprotective capacity of Ulva and sufficient nutrients dissolved in
the Yellow Sea ensured the rapid growth of Ulva species (Zhang et al.,
2013). In addition, Dan et al. (2002) reported the suitable salinity range
for the release of reproductive cells of U. prolifera of about 13.2–45.3,
with a light intensity above 16 μmolm−2·s−1. Furthermore, salinity
levels of 20 and 35 have been suggested as helpful for the growth of
Ulva spores (Sousa et al., 2007). Moreover, the photosynthesis and
growth showed differences in response to different temperatures, CO2

and pH levels (Xu and Gao, 2012; Li et al., 2016; Gao et al., 2017b).
In response to an increasing frequency of climatic fluctuations and

extreme weather events, tolerance and adaptive performance of sea-
weeds to variable environmental factors have received more attention.
Over the past 40 years, the temperature of the oceans increased with a
rate of 0.1 °C per decade (IPCC, 2013). Since seaweeds showed a dif-
ferent tolerance to temperature, both abundance and distribution of
seaweeds changed apparently after acclimation to environmental
changes (Gallon et al., 2014; Sjøtun et al., 2015; Piñeiro-Corbeira et al.,
2016). More recently, the correlation between the occurrence and dis-
tribution of seaweeds with temperature and varying salinity were re-
ported (Sjøtun et al., 2015). Although the oceanic temperature follows
an increasing trend in the long-term, temperature fluctuations have
always been observed. A further study suggested that global warming
enhances the frequency of extreme weather (Sun et al., 2016). When
extreme weather occurs, environmental factors such as light intensity,
transparency, and temperature change considerably during a short
time, which raises new challenges for seaweed survival, even leading to
succession and bloom of several species.

Previous studies have demonstrated the advantageous physiological
characteristic of Ulva, particularly in response to climate changes (Xu
and Gao, 2012; Cui et al., 2015; Sun et al., 2016; Gao et al., 2017b).
However, no clear evidence was presented to date to explain the
blooming mechanisms and the relationship between Ulva bloom and
extreme weather. We therefore hypothesized that photosynthetic per-
formances of Ulva serve to address the environmental variation. To test
this hypothesis, we chose the dominate bloom species U. prolifera for
this study and investigated its growth and photosynthetic performance
when cultured at different light intensities and temperatures. For the
first time, we exposed the experimental algae under instantaneous light
intensities and temperature conditions to study their instantaneous
photosynthetic performance. The results of this study will be helpful to
understand the Ulva blooming mechanisms with relation to physiolo-
gical acclimation. Particularly, the relationship between algae bloom
and a fast-changing environment has been investigated, which will
benefit the early warning and thus, the prevention of green tides.

2. Materials and methods

2.1. Sample collection and preparation of the Ulva materials

In May 2011, about 50 g thalli of Ulva at the vegetative state and at
a length of about 7 cm were collected from the Lianyungang sea area
(119.38 E, 34.58 N), Jiangsu province, China. The temperature and
salinity at the sampling site were 22 °C and 28, respectively. Algae were
cleaned of debris and epiphytes, gently rinsed using sterile seawater,
and transported to the laboratory in a cool box at about 5 °C. Molecular
methods were adopted to identify Ulva prolifera (Zhang et al., 2016).
The healthy thalli of U. prolifera were cultured in tanks at 20 °C,

12:12 L:D photoperiod, and 100 μmol m−2 s−1 light intensity for two
days prior to the experiments (Jiangnan, Ningbo, China). The natural
seawater enrichment medium was obtained from sterile natural sea-
water under addition of 60 μM NaNO3 and 8 μM KH2PO4 and gentle
bubbling with filtered air.

2.2. Experimental design

Three light intensities (44, 160, and 280 μmolm−2 s−1) and three
temperatures (18, 22 and 26 °C) were set via GXZ-300C intelligent
llumination incubators (Jiangnan, Ningbo, China). Therefore, a total of
nine growing/instantaneous conditions were used (see Table 1).
Healthy thalli were cultured in 500ml conical flasks in filtered natural
seawater (salinity 30, enriched with 60 μM NO3

− and 8 μM PO4
3−) at a

stocking density of 0.02 g L−1, and three triplicates were conducted per
treatment. The photoperiod was set to 12:12 light:dark. The seawater
medium was vigorously aerated and exchanged every two days; fresh
weight was measured to evaluate the growth rate. After one week, the
net photosynthetic rates (NPR) of U. prolifera were measured in the
acclimation conditions and also after a sudden transfer to all conditions
(i.e., 81 treatments were performed).

2.3. Measurement of growth

The fresh weight was obtained during the experiment and was used
to calculate the growth rate of seaweeds according to the following
formula: RGR = 100*(lnW2-lnW1)/(T2-T1), where RGR represents the
relative growth rate (%·day−1), W1 and W2 represent the fresh weight
at days T1 and T2, respectively.

2.4. Measurement of net photosynthetic rate

A Clark-type oxygen electrode (YSI Model 5300, USA) was used to
measure the net photosynthetic rates of U. prolifera in response to dif-
ferent conditions. The thalli were cut into segments with a length of
about 1 cm, and then restored under growth conditions for 1 h (Zhou
et al., 2016). After that, about 0.05 g of fresh weight thalli of every
condition was introduced into a photosynthetic chamber containing
8mL seawater. The photosynthetic rate was measured using normal
seawater, the time for measurement was less than 6min, and the O2

concentration in seawater medium exceeded less than 10% at the end of
measurement. The treatments under different light and temperature
conditions were randomly distributed among the O2 measurements.

2.5. Statistical analysis

All data analyses were conducted using the software Origin 9.0 and
are displayed as mean ± standard deviation. A normal distribution
(Shapiro-Wilk, p > 0.05) of the data under every treatment was con-
formed and the variances were equal (Levene's test, p > 0.05). Two-
way or three-way ANOVA (Tukey's post-hoc test) were used to test for
differences using the SPSS 17.0. P < 0.05 was considered to be sig-
nificant.

3. Results

The effects of light and temperature on the growth of U. prolifera are

Table 1
Treatments of different light intensity and temperature.

Treatment 44 μmolm−2·s−1 (LL) 160 μmolm−2·s−1 (ML) 280 μmolm−2·s−1 (HL)

18 °C (LL) LL-LT ML-LT HL-LT
22 °C (ML) LL-MT ML-MT HL-MT
26 °C (HL) LL-HT ML-HT HL-HT
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shown in Fig. 1. Two-way ANOVA showed that light and temperature
had an interactive effect, and both light and temperature exerted a main
effect on the RGR of U. prolifera (see Table 2). A post hoc Tukey HSD
comparison (P=0.05) showed that RGR decreased with increasing
temperature at all conditions during the experiment, U. prolifera
showed an RGR of 3.15–39.31%·d−1 and the highest RGR was observed
at 18 °C and 280 μmol m−2·s−1. The RGR at the lowest light intensity
(44 μmolm−2·s−1) was significantly lower than that at higher light
intensities (160 and 280 μmol m−2·s−1) (p < 0.05); however, no sig-
nificant difference was found between algae at 160 μmolm−2·s−1 and
at 280 μmol m−2·s−1 (p > 0.05).

Results showed an interactive effect between light and temperature,
and both light and temperature exerted a main effect on net photo-
synthetic performance of U. prolifera (Table 2 and Fig. 2). Post hoc
Tukey HSD comparison (P=0.05) demonstrated that the NPR in-
creased with increasing light intensity and temperature. High NPR va-
lues of 43.64–250.00 μmolO2·g−1·h−1 were observed at a temperature
range from 18 to 22 °C, which was significant higher than the NPR of
14.76–121.50 μmolO2·g−1·h−1 obtained at 26 °C (p < 0.05). The
lowest NPR of 14.76 μmolO2·g−1·h−1 was obtained at 26 °C and
44 μmolm−2·s−1, while the highest NPR of 250.00 μmolO2·g−1·h−1

was obtained at 22 °C and 280 μmol m−2·s−1.
These results showed that NPR were significantly influenced by both

growth light and temperature (p < 0.05) (Table 3). U. prolifera cul-
tured at higher light intensities showed significantly higher in-
stantaneous NPR, whereas culture at higher temperatures resulted in
significantly lower instantaneous NPR (p < 0.05). NPR at the low light
intensity of 44–160 μmol m−2·s−1 showed no significant differences

(p > 0.05), but was significantly higher than that at the high light
intensity of 280 μmol m−2·s−1 (p < 0.05). Net photosynthetic perfor-
mances were significantly influenced by temperature and indeed, U.
prolifera at the lower temperature showed higher net photosynthetic
performances (p < 0.05).

Three-way ANOVA showed that both growth light and temperature
exerted a main effect on NPR of U. prolifera (Table 4). U. prolifera cul-
tured at different temperatures showed significantly different photo-
synthetic performances in response to instantaneous temperatures
(Fig. 3). Photosynthetic performances of U. prolifera cultured at a low
temperature of 18 °C were significantly influenced by instantaneous

Fig. 1. Relative growth rate (RGR) of U. prolifera growing at different temperature and
light intensity conditions in 1 week. n= 3 per treatment of light and temperature com-
bination.

Table 2
Two-way analysis of variance for the effects of light and temperature on RGR and net
photosynthetic rates (Photo). Temperature*light means the interactive effect of tem-
perature and light, df means degree of freedom, F means the value of F statistic, and Sig.
means p-value.

Source SGR Photo

df F Sig. df F Sig.

Temperature 2 51.76 < 0.001 2 162.696 < 0.001
Light 2 150.837 < 0.001 2 599.543 < 0.001
Temperature*Light 4 9.944 < 0.001 4 20.747 < 0.001
Error 18 18

Fig. 2. Net photosynthetic rates of U. prolifera growing at different temperature and light
intensity conditions after 1 week. n= 3 per treatment of light and temperature combi-
nation.

Table 3
Instantaneously net photosynthetic performances (NPR) of U. prolifera growing at dif-
ferent conditions. n = 3 per treatment of light and temperature combination. Data
showed as values + SD.

Measurement
temperature (°C)

Growth light
intensity
(μmol·m−2 s−1)

Growth
temperature
(°C)

NPR
(μmolO2·g−1·h−1)

44 18 52.16 ± 6.95
44 22 38.72 ± 5.75
44 26 39.68 ± 6.87
160 18 38.84 ± 11.36
160 22 52.68 ± 15.57
160 26 24.48 ± 2.2
280 18 28.12 ± 10.98
280 22 22.86 ± 10.78
280 26 35.58 ± 4.5

22 44 18 139.08 ± 15.71
44 22 116.68 ± 18.25
44 26 112.44 ± 20.45
160 18 138.88 ± 12.44
160 22 162.42 ± 28.68
160 26 69.64 ± 14.49
280 18 145.08 ± 5.3
280 22 105.84 ± 9.84
280 26 119.4 ± 2.55

26 44 18 200.56 ± 20.82
44 22 158.28 ± 17.92
44 26 158 ± 32.43
160 18 211.88 ± 24.78
160 22 237.6 ± 29.46
160 26 96.76 ± 13.95
280 18 239.76 ± 8.71
280 22 160.74 ± 0.93
280 26 165 ± 19.52
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temperatures (p < 0.05). U. prolifera cultured at mid and high tem-
peratures showed significantly higher instantaneously photosynthetic
performances at temperatures between 18 and 22 °C than at a high
temperature of 26 °C.

4. Discussion

Environmental acclimation of growth can be used to explain boh the
wide distribution and bloom of opportunistic macroalgae. In previous
studies, algal growth rates have been reported to be regulated by en-
vironmental factors such as nutrient level, irradiance, and temperature,
while salinity significantly influenced the distribution (Taylor et al.,
2001; Lideman et al., 2012; Kim et al., 2016). Given the relatively
stable salinity conditions during different years and seasons and the
decades of eutrophication of the Yellow Sea, both salinity and nutrient
levels were regarded as basic rather than inducing factors of algae
outbreak (Paerl, 1997; Wu et al., 2015, 2017). In contrast, the seasonal
variation of day-night light period and temperature should be con-
cerned. Indeed, due to global warming, extreme weather rapidly and
more frequency induces changes of irradiance and temperature (Sun
et al., 2016). Thus, studies about the influence of light intensity and
temperature on the adaptive and acclimate performance of algae have
attracted increasing attention. This study focused on the bloom stage of
a green tide. Prior to the experiment, the field environmental conditions
during the bloom stage were evaluated. According to a field survey, the
field temperatures increased from 10.45 °C to 27.49 °C (Wu et al.,

2015). However, the light intensity of the sea surface ranged below
30 μmolm−2 s−1 on rainy days, between 30 and 300 μmolm−2 s−1 on
cloudy days, and generally above 300 μmolm−2 s−1 on sunny days; the
maximal light intensity was approximately 2000 μmol m−2 s−1 (Cui
et al., 2015). In the present study, the growth pattern of U. prolifera
agreed with previous studies (Wu et al., 2000; Xu et al., 2014; Cui et al.,
2015). However, different experimental designs or different adaptive
abilities of algae at the sampling sites might strongly influence the re-
sulting growth patterns.

Algae collected from different sampling sites showed different
growth performances in a new environment, which has been suggested
to be the result of long-time environmental acclimation. At optimal
light or temperature, algae growth increased with acclimation time,
while it decreased under sub- and supra-optimal conditions (Eggert and
Wiencke, 2000; Lideman et al., 2012). The same phenomenon was
observed in a previous study by Novaczek et al. (1990). However, in the
present study, after culture at low light and temperature conditions, U.
prolifera showed lower photosynthetic rates when exposed to sudden
higher light levels and temperature. While higher photosynthetic rates
were observed in response to sudden lower temperature and light, after
U. prolifera had been cultured at high levels of temperature and light.
These findings show that specific physiological performance does not
correspond to the light/temperature growth pattern and a similar
phenomenon was demonstrated in a previous study on Antarctic algae
(Eggert and Wiencke, 2000). Thus, to explain the observed phenom-
enon, the total metabolism including photosynthesis and respiration
acclimation should be considered.

The involvement in photosynthesis of efficient CO2 concentrating
mechanisms (CCMs) of macroalgae has been reported before (Kremer

Table 4
Three-way analysis of variance for the effects of growth light, growth temperature and
measurement temperature on net photosynthetic rates (NPR). df means degree of
freedom, F means the value of F statistic, and Sig. means p-value.

Source NPR

Growth
temperature
(oC)

Growth light
(μmol·m−2 s−1)

Measurement
temperature (oC)

df F Sig.

18 2 4.382 0.067
44 22 2 5.115 0.051

26 2 7.7 0.022

18 18 2 0.26 0.779
160 22 2 6.481 0.032

26 2 10.295 0.011

18 2 3.259 0.11
280 22 2 15.386 0.004

26 2 7.794 0.021

18 2 5.601 0.042
44 22 2 1.436 0.309

26 2 229.783 < 0.001

22 18 2 52.034 < 0.001
160 22 2 1.688 0.262

26 2 94.683 < 0.001

18 2 90.075 < 0.001
280 22 2 2.525 0.16

26 2 26.622 0.001

18 2 0.286 0.761
44 22 2 4.681 0.06

26 2 7.64 0.022

26 18 2 3.088 0.12
160 22 2 20.15 0.002

26 2 38.864 < 0.001

18 2 1.879 0.232
280 22 2 15.896 0.004

26 2 71.79 < 0.001

Fig. 3. Net photosynthetic performances of U. prolifera at different measurement condi-
tions. Boxplots are displayed as is standard, the boxes as the ends of the lower and upper
quartiles, whiskers extending to highest and lowest values that are within 1 interquartile
range (IQR) of lower/upper quartile. n= 3 per treatment of light and temperature
combination. (LT, MT, HT indicate different measurement temperatures of 18, 22 and
26 °C, respectively).
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and Küppers, 1977; Roberts et al., 2007; Xu et al., 2012; Gao et al.,
2016). The mechanisms have been suggested as biological advantages
to enhance the capacity of carbon fixation, biomass accumulation, and
environmental acclimation via photosynthesis of alga (Liu et al., 2013).
Thus, both distribution and growth of U. prolifera were observed on
Pyropia rafts and rocks in winter under low daytime irradiance (Liu
et al., 2010; Zhang et al., 2014). In addition, a living U. prolifera thallus
was found under a shading condition caused by thick mats in summer,
where the upper-most layers of algae were exposed to high solar ra-
diation. The above acclimation was a result of light acclimation after
growth at different light conditions. However, how a sudden change of
light levels influenced the net photosynthetic performance of U. pro-
lifera was not obvious in most cases in the present study.

In contrast, U. prolifera cultured at different temperatures showed
significantly different photosynthetic performances to sudden tem-
peratures changes (Fig. 4). With increasing growth temperatures, the
net photosynthetic performances of algae at other instantaneous con-
ditions decreased. These findings indicate that temperature acclimation
significantly influenced instantaneous net photosynthetic performances
of algae. To explain this phenomenon, mechanisms of changeable
temperatures influencing photosynthesis should be considered. After
long-term exposure to low temperatures, the concentrations of both
photosystem II reaction centers and light-harvesting pigments de-
creased (Machalek et al., 1996; Ueno et al., 2017). Furthermore, higher
levels of photosynthetic enzymes or iso-enzymes were synthesized
(Mann, 1991; Scherner et al., 2016). While supra-optimal temperature
led to structural changes of photosynthetic proteins, even causing de-
naturation, photosystem II was inhibited, resulting in decreased pho-
tosynthesis (Fork et al., 1979; Sendall et al., 2015).

In our experiment, the net photosynthetic rate was obtained via O2

release; thus, temperature acclimation of respiration had to be con-
sidered. A previous study showed that respiration increased three-to six
times when temperature increased from 0 °C to 10 °C; however, pho-
tosynthesis increased two-to three times, which indicated high tem-
perature sensitivity of respiration. Changes of respiratory enzyme
concentration were observed, while no evidence for changes of tem-
perature optima of respiration were found under temperature accli-
mation (Wiencke et al., 1993). Accordingly, respiration was more
temperature sensitive than photosynthesis. Thus, net photosynthetic
performance was a meaningful metric to evaluate the temperature
tolerance of algae, which has previously been suggested by Kübler et al.
(1991).

Generally, our data suggests that high temperatures would inhibit
the growth of U. prolifera during the cold season, resulting in a decrease
of biomass, which would be meaningful for the prediction of the initial
biomass of green tide algae. In contrast, the sudden appearance of cold
weather during the warm season would lead to a sudden increase of U.
prolifera biomass, thus potentially causing a large-scale green tide. In
future, the frequency of extreme weather can be expected to enhance
due to global warming; consequently, the boom of harmful algae, such
as U. prolifera, will also increase. Accordingly, the floating patches of
Ulva originating from the Pyropia yezoensis farms in Southern Yellow
Sea then travelled northward towards Shandong Province, driven by
prevailing winds and currents (Keesing et al., 2011). The samples col-
lected from Lianyungang area also come from the origin, indicating the
results of the study can explain the green tide phenomenon in Yellow
Sea. However, more research should be conducted to further predict the
bloom of U. prolifera.

Fig. 4. Photosynthesis ratios of U. prolifera at different measurement conditions to at growth condition. The red dot represent net photosynthetic rate under growth conditions. n= 3 per
treatment of light and temperature combination. (LT, MT, HT indicate different measurement temperatures of 18, 22 and 26 °C, respectively; LL, ML and HL indicate light intensities of
44, 160 and 280 μmolm−2·s−1, respectively). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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