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ABSTRACT

Mud crabs, Scylla paramamosain, are one of the most economical and nutritious crab species in China and South
Asia. Inconsistent with the high development of commercial mud crab aquaculture, effective immunological
methods to prevent frequently-occurring diseases have not yet been developed. Thus, high mortalities often
occur throughout the different developmental stages of this species resulting in large economic losses. In recent
years, numerous attempts have been made to use various advanced biological technologies to understand the
innate immunity of S. paramamosain as well as to characterize specific immune components. This review
summarizes these research advances regarding cellular and humoral responses of the mud crab during pathogen
infection, highlighting hemocytes and gills defense, pattern recognition, immune-related signaling pathways
(Toll, IMD, JAK/STAT, and prophenoloxidase (proPO) cascades), immune effectors (antimicrobial peptides),
production of reactive oxygen species and the antioxidant system. Diseases affecting the development of mud

crab aquaculture and potential disease control strategies are discussed.

1. Introduction

The mud crab (Scylla paramamosain), mainly distributed in the Indo-
Western Pacific region, has become a globally important economic
aquaculture species and a very popular sea food in the South-East Asian
countries [1]. In the past two decades, the mud crab farming industry
has developed rapidly over the world, and S. paramamosain has become
the leading crab species cultured in China [2]. However, the production
is still unable to meet the increasing consumer market demand, and the
market price has consistently remained at a high level. Therefore, fur-
ther promoting development of the mud crab farming industry has
become an urgent issue. However, past efforts have failed to raise crab
production because many key scientific and technological problems
associated with its culture have not been effectively resolved.

Among the challenges faced by the industry, increasing outbreaks of
infectious disease in mud crab farming have become severe due to viral,
bacterial and parasitic diseases. The “milky disease” and “sleeping
disease” are two of the most serious diseases, which could cause up to
60-70% mortalities, resulting in mass economic losses [3,4]. A large
number of parasites Hematodinium sp. and several vibrios such as Vibrio
cincinnatiensis, Vibrio parahaemolyticus and Aeromonas hydrophila were

detected in “milky disease” crabs, whereas the “sleeping disease” is
reported to be caused by viral infection including mud crab reovirus
(MCRYV), mud crab dicistrovirus (MCDV) and novel mud crab tombus-
like virus (MCTV) [5-7]. Some other bacteria, such as Vibrio alginoly-
ticus, Vibrio anguillarum, Aeromonas sobria, Leucothrix mucor, and Thio-
thrix sp. have also been isolated and identified from diseased crabs
[8,9]. Additionally, the white spot syndrome virus (WSSV) is known to
infect mud crabs [10]. Although little research have been done on
fungal diseases in crustaceans, it is reported that in the embryonic and
larval developmental stages, especially in the high mortality stage of
zoea I, the mud crab could be infected by several fungi, such as La-
genidium sp., Siropidium sp. and Haliphthoros sp [9,11]. Eggs could not
hatch after infection, and infected larvae had poor phototaxis, whose
activity were significantly weakened, or even died [12].

The hard carapace and the external cuticle are the crabs’ first line of
defense; they not only provide an effective physical barrier, but also
produce immune factors to protect crabs against the attachment and
penetration of pathogens. As found in other invertebrate immune sys-
tems, mud crabs rely primarily on innate immunity, including both
cellular and humoral immunity, to combat invading pathogenic mi-
croorganisms. This immunity can provide effective protection against
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the broad spectrum of threats and dangers faced, as cascades of mole-
cules can be rapidly activated, i.e., within a few hours. The risk level of
infection is first recognized by pattern recognition receptors (PRRs) and
then these initiate downstream signal pathways, such as Toll/IMD
signaling and the proPO system. At a second level, the hosts fight the
infection through hemocytes phagocytosis, melanization and cytotoxi-
city, which will generate reactive oxygen species (ROS). In parallel,
various immune effectors are produced, which include antimicrobial
peptides (AMPs), cytokines, antioxidant enzymes and heat shock pro-
teins.

In the past few years, identifying the defense mechanisms of the
mud crab immune system has become a research priority. Although the
complete mitochondrial genome DNA sequence of S. paramamosain has
been determined [13], genomic DNA information remains unavailable.
Comparative transcriptomic and proteomic analysis have become
powerful tools to study the immune response to mud crab pathogens
[14-16]. Here, we review the recent advances in S. paramamosain im-
munity to identify potential tools that will allow development of ef-
fective strategies to protect cultured crabs from infection.

2. Hemocytes and gills

Once pathogens break through the hard shell, the first protective
barrier in crustaceans, they gain entry into the hemolymph, and a series
of cellular immune responses are stimulated, involving different types
of hemocytes. First, hemocytes remove the invading pathogens by
phagocytosis, encapsulation, and formation of nodules. Secondly, he-
mocytes participate in wound healing by releasing cytosolic coagula-
tion factors. Hemocytes are also involved in the synthesis of important
humoral immune factors, such as AMPs. In S. paramamosain, three types
of hemocytes have been described based on their morphological char-
acteristics: granulocytes (GCs) that represent on average 5.27% =+ 0.42
standard error (SE) of the total, semigranulocytes (SGCs), and hyali-
nocytes (HCs), representing 76.03% # 3.34 and 18.70% = 3.92, re-
spectively [17]. It has been demonstrated that GCs and SGCs exhibit
stronger phagocytic ability than HCs upon bacterial (V. alginolyticus)
and viral double-stranded RNA analog Poly (I:C) challenge [17].
However, in freshwater crayfish Astacus astacus, HCs are capable of
phagocytosis, SGCs have a limited function in phagocytosis and GCs
have no phagocytosis function [18]. SGCs and GCs are the major sto-
rage cells for the proPO system in A. astacus, but the specific functions
of various types of hemocytes are still largely unknown in S. para-
mamosain.

To further understand the immune response of hemocytes to pa-
thogens, cDNA library construction and high throughput sequencing
techniques (transcriptomic and proteomic analysis) have been em-
ployed to identify immune related genes under different treatments,
such as bacterial lipopolysaccharides (LPS), V. alginolyticus, V. para-
haemolyticus and WSSV challenge [14,16,19,20]. Since phagocytosis is
the most important immune response for hemocytes, multiple related
genes have also been found to show pronounced induction in both
mRNA and protein levels, especially upon bacterial infection, such as
actin, small GTPases (myosin, Rab5, Ras) and flotillin-1 [14,16,19,20].
Flotllin-1 in S. paramamosain (designated as SpFLT-1), a lipid raft gene,
was demonstrated to be involved in the process of bacterial entry [21].
The distinct role of other phagocytosis-related genes remains to be
elucidated. These cDNA libraries provide much valuable information,
as they allow further investigation of the function of specific genes in
the mud crab immune system. Among them, many humoral immune
factors have also been identified, such as Toll, IMD, janus kinases/
signal transducer and activator of transcription proteins (JAK/STAT)
and mitogen-activated protein kinase (MAPK) signaling pathway genes,
proPO-system related genes, heat shock proteins, antioxidant enzymes,
AMPs and caspase mediated apoptosis. Most of these will be discussed
in detail in the following sections.

Gills also play a role in the immune defense of crustacean against
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pathogens. However, the immune response during bacterial infection
can impair the gills' respiratory function [22]. The situation is further
aggravated if crabs are found in hypoxic invasive environments. Thus,
transcriptomic analysis showed that there were more downregulated
genes, such as the expression of proPO and antilipopolysaccharide
factor (ALF), in gills of S. paramamosain under MCRV infection than
that were found in the control group. This indicates that MCRV might
weaken the crab's immune system by inhibiting many important im-
mune related genes [15]. Despite this, the MAPK signaling pathway was
found to be activated, and thus may play a very essential role in the
immune response to MCRV infection. Further research is needed to
identify the underlying molecular mechanism.

3. Immune-related receptors

Innate immune recognition plays an important role in identifying
non-self-infected signals through an array of PRRs, which serve as in-
fection indicators. And hemocytes in invertebrates become a very good
model for studying PRRs’ recognition activity. These receptors bind
conserved features of molecules shared by microorganisms such as
bacteria, viruses, referred to as pathogen-associated molecular patterns
(PAMPs) [23]. In S. paramamosain, several PRRs have been identified
(listed in Table 1), such as Toll-like receptors (TLRs) SpToll and SpToll2
[24,25], lipopolysaccharide and f-1,3-glucan-binding protein (SpLGBP)
[26], C-type lectin B (SpCTL-B) [27], and scavenger receptor B (Sp-SRB)
[28]. Other proteins, such as the Down syndrome cell adhesion mole-
cule (SpDscam) have been reported to be a hypervariable PRR by al-
ternative splicing [29]; the leucine-rich repeat proteins (SpLRR) also
play a crucial role in the recognition process [30]. In addition to PRR
proteins, the transforming growth factor-f§ (TGF-3) receptor (SpTSR1)
played a novel function in mediating nuclear factor-kB (NF-xB) sig-
naling and regulating AMPs expression.

3.1. Toll-like receptors and LRR proteins

The first Toll gene (SpToll or SpTolll) was characterized from S.
paramamosain, and encoded 1005 amino acid (aa) residues [25]. Sub-
sequently, the full-length cDNA sequences of another Toll-like receptor
(SpToll2) were obtained with a 2646 bp open reading frame (ORF)
[24]. Both of them exhibit a typical TLRs structure, namely a few ex-
tracellular leucine-rich repeat (LRR) domains (15 for SpToll, 6 for
SpToll2), a transmembrane domain and an intracellular Toll/IL-1 re-
ceptor (TIR) region. Among them, LRR domains play a key role in re-
cognizing PAMPs. In Drosophila, Tolls could only recognize Gram-po-
sitive (G*) bacteria [31]. However, recombinant SpTolll-LRR and
SpToll2-LRR proteins showed high binding affinity to not only G*
bacteria, such as Staphylococcus aureus and Beta Streptococcus, but also
Gram-negative (G™) bacteria, such as V. parahaemolyticus and Escher-
ichia coli. The mechanism involved needs to be further investigated.
Both SpTolll and SpToll2 are widely distributed in tissues of S. para-
mamosain, and were significantly induced by V. parahaemolyticus, S.
aureus, Poly (I:C) and WSSV. Since nine Tolls have been reported in
Drosophila [31], it is still unknown whether additional Tolls are present
in the mud crab.

The LRR protein has also been found in S. paramamosain. It contains
a 1893bp ORF and encodes 630 aa with 17 LRR domains and five po-
tential N-glycosylation sites [30]. Although it could be induced by V.
alginolyticus and B. streptococcus infection and Poly (I:C) challenge, its
recognition function remains to be confirmed.

3.2. Lipopolysaccharide and beta-1, 3-glucan binding protein

The LGBP is another typical PRR that functions as a biosensor of G~
bacteria and fungi in the fruit fly Drosophila. An LGBP gene (SpLGBP)
from S. paramamosain has been recently identified [26]. It has an ORF
of 1092 bp, encodes 364 aa and contains two predicted integrin-binding
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motifs, a protein kinase C phosphorylation site, and -glucan and
polysaccharide recognition motifs. The recombinant SpLGBP could bind
to LPS and peptidoglycan (PGN) and agglutinate both G™ and G~
bacteria, through a Ca®*-dependent process. It is noteworthy that
SpLGBP showed high level transcripts in late embryonic, zoea I larval
stages of S. paramamosain. Furthermore, SpLGBP was significantly up-
regulated upon V. parahaemolyticus and LPS challenge in hemocytes and
hepatopancreas of the mud crab.

3.3. C-type lectin

It is well-known that C-type lectins (CTLs) constitute one of the
lectin superfamilies. They exhibit a variety of functions during pa-
thogen invasion, such as non-self-recognition, microorganism adhesion
and aggregation, hemocytic phagocytosis and bacterial removal
[33-35]. In S. paramamosain, a new CTL, SpCTL-B, was identified, with
a full-length ¢cDNA of 1278 bp and 348 bp ORF, containing a predicted
single carbohydrate-recognition domain (CRD). The recombinant
SpCTL-B has strong binding and agglutination activities of several G*
(S. aureus, f-hemolytic Streptococcus) and G~ bacteria (E. coli, A. hy-
drophila, V. alginolyticus, V. parahaemolyticus), as well as strong immune
response to V. parahaemolyticus, LPS, Poly (I:C) and WSSV. It helps cells
to eliminate invading bacteria, plays a role in hemocytic phagocytosis,
and can regulate expression of some AMPs, such as SpCrustin, SpHistin,
and SpALFs. The underlying mechanisms involved remain unclear.

3.4. Scavenger receptor

Scavenger receptors (SRs), another superfamily of PRRs, play cri-
tical roles in phagocytosis and apoptosis processes [36]. There are eight
different classes of SRs (from A to H). Among them, only the class B
scavenger receptor (SRB) has been reported in S. paramamosain (Sp-
SRB) [28]. Its full-length cDNA is 2593 bp with an ORF of 1629 bp and
the predicted protein contains a CD36 domain with two transmembrane
regions. It could be induced by bacteria (V. parahaemolyticus), virus
(WSSV), LPS and Poly (I:C). The recombinant Sp-SRB was demonstrated
to be capable of binding different microbes, such as fungus (Sacchar-
omyces cerevisiae), G~ bacteria (V. parahaemolyticus, V. alginolyticus, A.
hydrophila and E. coli), and G* bacteria (S. aureus and B. streptococcus).
In addition, Sp-SRB could inhibit the replication of WSSV, contribute to
bacterial removal and regulate the expression of AMPs to protect the
crab from infection.

3.5. Dscam

The Down syndrome cell adhesion molecule (Dscam), a member of
the immunoglobulin (Ig) superfamily, has been reported to play a role
in both the nervous and the immune system [37]. SpDscam was found
in S. paramamosain, with a 6069bp ORF, encoding 2022 aa [29]. It has
ten Ig domains, six fibronectin type III domains and a transmembrane
domain. Similar to the PRRs mentioned above, SpDscam could also be
induced by V. parahaemolyticus and showed strong binding activity to
this bacterium. Because of its alternative splicing characteristic,
SpDscam may form different types of genes to recognize invading mi-
croorganisms and plays a key role in the innate immunity of S. para-
mamosain.

3.6. TGF-f3 receptor

It is suggested that the transforming growth factor-f (TGF-f) re-
ceptor (SpTBR1) may play an important role in the innate immunity of
the mud crab S. paramamosain [38]. SpTBR1 could not only be induced
by both bacterial (V. alginolyticus) and viral analog (Poly (I:C)) infec-
tions, but also influenced the expression of NF-kB signal pathway re-
lated genes, including SpRelish, SpDorsal, SpCrustin and SpALF2-6. It
needs to be further clarified, however, whether this is a new signaling
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pathway mediated by SpTBR1.
4. Signaling pathways
4.1. Toll signaling pathway

In Drosophila, two evolutionarily conserved signaling pathways, Toll
and IMD, have been extensively studied [39]. Upstream of Toll sig-
naling pathways, there are some PRRs, such as the PGN recognition
protein (PGRP) and glucan-binding protein (GNBP), and several en-
zymes including modular serine protease (ModSP), Clip-serine pro-
teases (Clip-SPs), Grass, Persephone (PSH), Spatzle-processing enzyme
(SPE) and Spatzle (Spz) [40-44]. They activate and trigger downstream
signaling to regulate the expression of different AMPs. In the latter
processes, the cleaved Spz will bind to Toll to generate an active Toll
dimer, and then interact with an adaptor MyD88, which will recruit
another adaptor Tube and a protein kinase Pelle and TNF receptor as-
sociated factor, TRAF6, and finally translocate Dif or Dorsal to nuclear
[45].

As an invertebrate, S. paramamosain may exhibit a similar signaling
pathway as a protective mechanism from pathogen infection. The Toll
and IMD signaling pathways also play an important role in the mud
crab's innate immune system. In the Toll pathway, the PPRs SpTolll and
SpToll2 have been previously mentioned. Additionally, SpMyD88 was
characterized, which contains a 1419 bp ORF encoding 472 aa [46]. It
consists of a death domain, a Toll/interleukin-1 receptor (TIR) domain,
and a C-terminal extension (CTE) domain. Pull-down assays proved that
SpMyD88 showed strong binding activity to SpToll. Both could be up-
regulated by Vibrio harveyi infection [46]. The downstream factors,
SpTube and SpPelle were reported: the full-length cDNAs of SpTube and
SpPelle were 3825 bp with a 1578 bp ORF and 3825 bp with a 3420 bp
OREF, respectively. Both contained a death domain and a kinase domain,
and their expression increased markedly in hemocytes upon V. harveyi
and S. aureus challenge. SpTube could bind to both SpMyD88 and
SpPelle forming a trimeric complex. All the reported Toll signaling
pathway genes in the mud crab, such as SpTolll, SpToll2, SpMyD88,
SpTube, SpPelle showed high expression in hemocytes, gills and hepa-
topancreas, especially in hemocytes, which are known to be the major
immune defense sites in crustaceans. The full-length cDNA of
SpDrorsal, which is 2393bp long with a 1995 ORF encoding 664 aa has
also been obtained. The deduced protein contained a Rel homology
domain (RHD) and an Ig-like/plexins/transcription factors domain
(IPT). The SpDorsal gene expressed at high level in hepatopancreas, and
V. alginolyticus challenge significantly increased SpDorsal expression at
3h post infection (hpi) and 72 hpi [47].

These results demonstrated that all the above genes could be up-
regulated upon pathogen infection and may modulate the transcripts of
several AMPs [24]. After knocking down the expression of SpTolll and
SpToll2, some of the selected AMPs (SpALF1-6, SpCrustin, SpHistin,
SpArasin, SpGRP and SpHyastatin) showed a marked decrease post V.
parahaemolyticus or S. aureus infection, as was observed for other
downstream pathway genes (SpMyD88, SpTube, SpPelle and SpTRAF6).
Overexpression of SpTolll and SpToll2 could enhance the promoter
activities of SpALF1-6 in the mud crab. Taken together, these Toll sig-
naling pathway genes may play important roles in host defense against
pathogen invasion in S. paramamosain (Table 2). However, the up-
stream enzymes of Toll signaling pathways are largely unknown and
need to be further investigated.

4.2. IMD signaling pathway

The Drosophila IMD signaling pathway is triggered by sensing of G~
bacteria or viruses through receptors which recruit IMD, the caspase-8
homolog Dredd and the adaptor protein Fadd [48]. Dredd cleaves IMD
and activates the Takl/Table 2 complex that will phosphorylate the
IkB-kinase (IKK) complex. The latter is responsible for the
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phosphorylation of Relish to translocate it into the nucleus and regulate
AMPs transcription [48].

In S. paramamosain, several IMD pathway genes have been char-
acterized, such as SpIMD, SpTAK1, SpTAB1, SpIKKf, SpIKKe1l, SpIKKe2
and SpRelish [47,49,50]. The ORF of SpIMD was 513 bp that encodes a
170 aa protein; it contained a typical death domain. Both of SpTAK1
and SpTAB1 were cloned with 1782 bp and 1533 bp ORF, containing
conserved domains (Serine/threonine protein kinases domain for
SpTAK1 and Serine/threonine phosphatases, family 2C domain for
SpTABI) [50]. The SpIKKf, SpIKKel and SpIKKe2 cDNA contained 2382
bp, 2400 bp, and 2331 bp ORF encoding 793 aa, 799 aa and 776 aa,
respectively. All of them have the kinase domains and a leucine zipper.
The full-length cDNA sequence of SpRelish was 4071 bp with a 3585 bp
ORF encoding 1194 aa; similar to SpDorsal, it contained a RHD and IPT
domain. Both SpIMD and SpRelish showed high expression in gills,
while SpTAKI and SpTABI in hepatopancreas and the three SpIKK
genes exhibited a high level of transcription in hemocytes. Hemocytes
and gills are the most important immune defense sites in S. para-
mamosain. In the bacterial (V. alginolyticus) infection assay, all the IMD
signal pathway genes could be significantly up-regulated, and the ex-
pression of SpTAK1, SpTAB1 and SpIKK genes showed a pronounced
increase upon virus analog (Poly (I:C)) challenge.

A functional study suggests that SpIMD, SpTAK1 and SpTAB1 could
affect the downstream pathway genes and AMPs, including SpIKKf,
SpRelish, SpALF1-6 and SpCrustin [47,50]. Knock down SpIMD, SpTAK1
or SpTABI can significantly down-regulate those genes, and were
shown to play a role in bacterial removal in hemolymph [47,50].
Moreover, SpIKKs could trigger downstream signaling and activate the
expression of mammalian NF-kB using the NF-xB luciferase reporter
system, thus indicating its conservation from crustaceans to mammals.
In turn, SpIKKf can also modulate the expression patterns of AMPs. In
the SpIKKf-silenced hemocytes, the transcripts of AMPs (SpALF1-6 and
Spcrustin) clearly decreased upon bacterial (V. parahaemolyticus) and
Poly (I:C) challenge [49]. Relish, as a key transcription factor for AMPs,
was found to not only regulate the expression of crustin, but also affect
the enzyme activity of phenoloxidase (PO) and superoxide dismutase
(SOD), and apoptosis of hemocytes of S. paramamosain following WSSV
and V. alginolyticus infection [51]. However, other IMD pathway genes
still need to be characterized, such as Dredd and Fadd. Taken together,
these results indicate that the IMD signaling pathway plays a vital role
in the innate immunity of S. paramamosain, as summarized in Table 2.

4.3. JAK/STAT signaling pathway

The JAK/STAT signaling pathway has been demonstrated to parti-
cipate in the antiviral defense process in mammals and Drosophila, in
which JAK is a core member [52,53]. SpJAK has recently been identi-
fied from S. paramamosain [54]. It has a 3300 bp ORF encoding 1099 aa
with three conserved domains (FREM, SH2 and TyrKc). SpJAK was
induced by MCRYV, poly (I:C), V. parahaemolyticus and LPS (Table 2). In
addition, it activated SpSTAT, another key member in JAK/STAT sig-
naling pathway, for nuclear localization [54]. Further study suggested
that SpJAK could protect crabs from MCRYV infection by activating JAK/
STAT signaling pathway, which might induce the expression of antiviral
genes [54]. However, elucidating these antiviral genes is urgently
needed.

4.4. Prophenol/phenol oxidase cascade

The prophenol/phenol oxidase cascade, also known as the proPO
system, is one of the most efficient and important immune recognition
and defense systems in crustaceans, equivalent to the complement
system in vertebrates. Members of this system identified from S. para-
mamosain include proPO [55], proPO activating factors (clip domain
serine proteinases (Clip-SPs)) (SpPPAF1 and SpPPAF2 [56], Sp-cSP [571],
SpcSP [58], SP5 [59], Sp-SPH [60,61]), and the non-clip domain SPs
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(SP3 [59], SpCHY [62]) (listed in Table 2). The cell adhesion protein
peroxinectin is also involved in the proPO system [63,64], and is de-
signated as Sp-PX in S. paramamosain [65]. Hemocyanin was reported to
exhibit PO activity in crustaceans [66,67]. Four hemocyanins (SpHc1,
SpHc2, SpHc3, and SpHc4) were isolated from S. paramamosain.

Most of the proPO system members (proPO, SpcSP, SP3, SP5, Sp-
PX), were predominantly distributed in hemocytes, some with mod-
erate expression (SpPPAF1, SpPPAF2, Sp-SPH), and others (Sp-cSP,
SpCHY and SpHc) with relatively low expression. Typically, the com-
ponents of the PO system are present in granulocytes in the form of
inactive zymogen. A series of enzymatic reactions can be triggered by
invading pathogens. They were found to be significantly induced by
either V. alginolyticus (proPO, SpCHY), V. parahaemolyticus (Sp-SPH, Sp-
cSP, SpcSP, SP3, SP5, Sp-PX, SpHc, SpPPAF1 and SpPPAF2), LPS (Sp-cSP
and SpcSP), V. harveyi (Sp-PX), S. aureus (SP3, SP5 and Sp-PX), Poly
(I:C) (Sp-cSP), WSSV (Sp-cSP and Sp-PX), or MCRV (Sp-PX). Among
them, some clip-SPs, such as Sp-cSP [57] and SpcSP [58] exhibited
strong antimicrobial activity against both G* and G~ bacteria tested in
vitro. Further study indicated that clip-SPs also plays a vital role in cell
adhesion (Sp-SPH [61]), hemolymph clotting (SpcSP [58]), bacterial
binding (SpcSP and Sp-SPH), activation of AMPs (SP3 and SP5 [59])
and regulation of the proPO system (SpcSP, SP5 and Sp-SPH). More-
over, the recombinant Sp-SPH could protect crabs against A. hydrophila
or V. parahaemolyticus infection. The proPO system in S. paramamosain
is still not well understood, and the mechanism involved in pathogen
defense requires further investigation.

5. Antimicrobial proteins

Antimicrobial peptides (AMPs) are very important components and
effectors of innate immunity and have been found throughout the entire
lifespan in vertebrates and invertebrates. They not only play key roles
in the defense against foreign microbial infections, but can also activate
and modulate other immune reactions [68]. Although some anti-
bacterial active substances were isolated even earlier, insect cecropin A
was the first AMP discovered in 1981 [69]. Soon thereafter, the pre-
sence of AMPs was reported in other species. Schnapp et al. [70]
characterized the first crustacean AMP from the hemocytes of the shore
crab, Carcinus maenas in 1996, and found that it is rich in proline, with
6.5 kDa molecular weight and shows resistance activity in response to
both G* and G~ bacteria. Crustacean AMPs are considered a source of a
new generation of antimicrobial agents that have broad prospects for
application [71].

5.1. Crustin

Crustin is a class of cationic AMPs with a signal peptide, multi-do-
main region in the N-terminus and a whey acidic protein (WAP) domain
in the C-terminus, with molecular weights ranging from 7.0 to
14.0kDa. It has various functions including antibacterial, antiviral,
protease inhibitory activity and humoral immune regulation.

In S. paramamosain, six crustins have been reported [72-75]. De-
pending on their different N-terminal regions, CrusSp, SpCrus3, SpCrus4
and SpCrus6 are classified as type I crustin (cysteine-rich), whereas
SpCrus2, SpCrus5 belong to the type II crustin group (glycin-rich).
These crustins all predominantly express in gills, the principal immune
response organ in crustaceans, indicating that the gills may be the main
site that generates/secrete these crustins. In contrast, most crustins in
other crustaceans are reported to mainly express in hemocytes [76].

The recombinant SpCrustins exhibited strong antibacterial activity
in response to G* bacteria as is known for other crustins, but weak
activity against G~ bacteria, except for SpCrus2 and SpCrus5. Among
these, SpCrus2 showed strong inhibition of growth of several G~ bac-
teria (V. alginolyticus, V. parahaemolyticus, V. harveyi, and E. coli) and a
fungus (Candida albicans), which might be partly attributable to this
crustin's novel cysteine distribution pattern [73], and also showed
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Table 3 (continued)
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CRD: cysteine-rich domain; GRD: glycin-rich domain; ED: ejaculatory duct; PED: posterior ejaculatory duct; P: penis.
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relatively strong antimicrobial activity against V. parahaemolyticus and
C. albicans [73]. Most of the crustins could be up-regulated by bacterial
challenge (V. parahaemolyticus and S. aureus), but not WSSV, except
SpCrus6. In particular, rSpCrus6 was reported to be able to bind to the
recombinant envelope protein (rVP) 26 of WSSV, but not rVP28, and it
could inhibit to some extent the replication of WSSV [75]. The results of
in vitro microorganism and various microbial polysaccharides binding
activity assays demonstrated that all SpCrustins exert binding activity
towards selected G* and G~ bacteria, fungi and carbohydrate com-
ponents (LPS, lipoteichoic acid (LTA), PGN and f3-glucan) on microbial
surfaces. Moreover, they can only agglutinate G* bacteria whose ac-
tivity would increase in the presence of Ca®*. Bacterial binding and
agglutination may be the major modes of action of crustins in exerting
their antimicrobial activity [77]. However, the mechanism explaining
their specific high antibacterial and agglutination activity on G* bac-
teria needs to be further elucidated.

5.2. ALFs

ALFs, another well-known members of the AMPs family, are capable
of binding and neutralizing the G~ bacteria component LPS, thus
playing an important role in the innate immunity of crustaceans. This
factor is widely expressed in marine crustaceans and has a broad
spectrum of antimicrobial activity [78-80]; ALFs contain a conserved
LPS-binding domain (LBD) which may exhibit significant antibacterial
or antiviral activity. Seven ALFs have been found in the mud crab S.
paramamosain, including ALESp [81], ALFSp2 [82], Sp-ALF1 and Sp-
ALF2 [83], SpALF4 [84], SpALF5 [85] and SpALF6 [86] (listed in
Table 3).

They display diverse immune functions in this crab species. Most of
them are predominantly distributed in hemocytes, except SpALF5
whose highest expression level has been registered in the brain.
Bacterial (V. harveyi, V. parahaemolyticus, and S. aureus) or LPS chal-
lenge significantly up-regulated the expression of SpALF4-6. The tran-
scripts of SpALF4 and SpALFS5 also increased upon WSSV infection, but
not that of SpALF6. Either recombinant SpALFs or the SpALFs derived
synthetic LBD peptide exhibit strong antimicrobial activity against G*
and G~ bacteria, and even against fungi (S. cerevisiae and C. albicans).
Additionally, the recombinant protein of Sp-ALF1 and Sp-ALF2 can
effectively inhibit the replication of WSSV, and show differential
binding activity toward selected microorganisms and bacterial carbo-
hydrate components.

5.3. Other cationic AMPs

Several other cationic AMPs, which are highly expressed in hemo-
cytes, were isolated from S. paramamosain including SpHyastatin
[87,88], the proline-rich antimicrobial peptide SpPR-AMP1 [89],
arasin-likeSp and GRPSp [90]. Among them, SpHyastatin mRNA ex-
pressed at a higher level during developmental stages from megalopas
to adult crabs compared to other tested AMPs, thus indicating its po-
tential protective role during the long lifespan of S. paramamosain.
Knocking down SpHyastatin transcription results in the reduction of
crab survival rate when challenged with V. parahaemolyticus [88]. It
could also be up-regulated by either V. parahaemolyticus infection or
LPS stimulation. Moreover, recombinant SpHyastatin shows some
binding activity towards LPS and LTA, and exhibits strong anti-
microbial activity against A. hydrophila, Pseudomonas fluorescens and S.
aureus. SpPR-AMP1, a proline-rich, 6.5kDa small AMP, could be sti-
mulated by PGN [89]. Either recombinant or synthesized SpPR-AMP1
can inhibit the growth of G* bacteria Micrococcus luteus and G~ bac-
teria V. harveyi. Two smaller cationic AMPs, arasin-likeSp and GRPSp,
with 4.4kDa and 3.0kDa for the mature peptides, respectively, have
been identified and characterized. They both contain a glycine-rich
region and several cysteine residues. Similarly, they could be up-regu-
lated upon bacterial infection and both synthetic peptides exhibited
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antimicrobial activity against different bacteria.
g E
5.4. Anionic AMPs g g
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Most of the AMPs isolated from S. paramamosain are cationic pep- ;EJ §
tides, and the anionic AMPs are only a minority. Wang et al. [91-93] 2E£3g
oo o . g E 5 E
reported a new male-specific anionic AMP, scygonadin, from S. para- 32g =
mamosain. It is highly expressed in the male crab reproductive system SEEE§
and has reproductive immune function [94,95]. Another new anionic o -E’ é § 'E
AMP with 65% homology to scygonadin was identified soon thereafter, % & 3 £ ks
and named SCY2 [96]. It shows relatively strong antibacterial activity Z 3 8 :‘; g
against G* bacteria tested, and a unique mating-induced expression Z fEFEEEE 22822282
pattern. The SCY2 gene and protein are predominantly expressed in the
male ejaculatory duct during the premating stage, and exhibit much
lower expression in female crabs. However, after mating, it could be =
clearly detected in the seminal vesicle of the female crab. It is note- £y
worthy that its expression is significantly induced at mating and with = E EE E
exogenous progesterone stimulation, but could not be directly induced o a "g 2 i 2 i
with LPS or bacterial challenge. These results indicate that SCY2 is S5 % % %
involved in the reproduction of the mud crab. It may play a role in S ; ; i %‘ E EE 5§
reproductive immunity by maintaining an aseptic environment inside z T g §§ § § §
the seminal vesicle, thus ensuring successful fertilization [96]. § % g § g E _E E _E
5.5. Other immune factors iz 8 8 S8Es3F8FFE 2
Some immune factors in S. paramamosain can also display anti- 5
microbial activity, such as a novel i-type lysozyme, Splys-i, which 5 5 5 5 5 5 )
showed high expression in the intestine of S. paramamosain [97]. Al- £ i i i i i i
though Splys-i lacks typical muramidase activity, it was up-regulated by % . RGN
bacteria and was able to inhibit bacterial growth via binding and ag- ég 5 \é é 5 ;; é
glutination acF1v1t1es. Another type of lys.ozyme, a c—ty.pe %ysozyifme 3 E S g oo HEEAEEE
(SpLyzC) was isolated from S. paramamosain recently which is mainly
distributed in hepatopancreas and gills. Similar to Splys-I, SpLyzC ex- § 4 - -
hibited antimicrobial activity against bacteria, particularly the crab . i E, 3 § §
pathogen V. parahaemolyticus [98]. % g 2 £ NN ~§ B ~§
Sphistin, which is derived from the histone H2A and characterized < _;S _“é R i% 255
by 38 aa, exhibits strong antimicrobial activity, especially against some g 8§ 8 zaf £ex8i:
aquatic pathogens, such as A. hydrophila, P. fluorescens and Pseudomonas £ 5 ox ZHE : 5 :’ : g
stutzeri [99]. A truncated Sph12-38 from sphistin showed a potentially ‘3 g g &g ; et : _;:v it _;:v
stronger activity against some G* and G~ bacteria than two other g B & A& ;; _é } E _é é E
truncated proteins Sph20-38, Sph30-38 as well as Sphistin, such as % g g %) g GO G A A A A A A
. . . S . w TEESEIE ZZZZIE
Shigella flexneri (0.75-1.5 uM minimum inhibitory concentration (MIC)
value for Sph12-38, but 1.5-3 uM, 3-6 uyM and more than 48 yM MIC £ 2
value for Sphistin, Sph20-38 and Sph30-38) [116]. The above-men- & é - : )
tioned AMPs are summarized in Table 3. 'g g g . &2 =
=% Z . 2 =] 2
g| 5 o g = = = _ =
6. ROS and antioxidant enzymes gl = g | & £ 4 ©=E 0©IO
S| 22 |8 & 038 aeeeaer
AlEE |2 © Ez&s EIZEZZEZIE
6.1. ROS generation 0:3 -
The generation during phagocytosis of reactive oxygen species g & T B Zsg 83gaS 2
(ROS), which are highly toxic to microbes, are considered as an efficient £ 5
immune defense in invertebrates. The levels of superoxide anion and E .“E’
nitric oxide increased significantly upon LPS challenge in S. para- gl 2 ~ o 2 e o
mamosain [100], as did the levels of hydrogen peroxide, H,O,, in the g| 8 5 8 8¢ & ERRa IR
hemolymph during V. parahaemolyticus infection [101]. Dual oxidases e § § % NN % 553 23 =
(DUOXs) were found to be responsible for ROS production. Two DUOXs ,rg < S 5 2Zz8 SS55ELs
(SpDUOX1 and SpDUOX2) were characterized in the mud crab [101]. g a
Both are transmembrane proteins containing a peroxidase homologous g = g 2 _
domain in the extracellular region; they predominantly distributed in g S 8 272 é
the hepatopancreas, and could be induced by V. parahaemolyticus or - g g-: ;m ‘é é 3
LPS. Suppression of SpDUOXs by RNAi reduced the ROS level and in- E s g g £3¢& ‘g
creased the bacterial count, indicating its important role in ROS pro- 21 B s 5 23 ] &
duction and bacterial removal (Table 4). Recently, a p38 MAPK gene +8| g 8§ 8 §84 « s
from S. paramamoain named as Spp38 has been cloned and character- % f ] T % £ °§- E EREREER
ized. The results showed that decreased expression of Spp38 by RNAi or SR = =8 sRe sasaas
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p38 inhibitor would down-regulate the mRNA levels of SpDUOX1 and
SpDUOX2, indicating the role of Spp38 in regulating ROS production
[102].

6.2. Antioxidant enzymes

Overly induced residual ROS and reactive oxygen intermediates
(RO can cause host cell damage. Therefore, the antioxidant enzymatic
system is critical to eliminate ROS/ROI and thus protect the host from
the associated toxic effect. The antioxidant enzymes identified in S.
paramamosain include catalase (CAT) [103], SOD [103], thioredoxin
reductase (TrxR) [104], and six peroxiredoxins [105,106] (Table 4). It
has been shown that either the mRNA level or the enzymatic activity of
CAT and SOD increased markedly after LPS challenge. The transcripts
of SpTrx1 also significantly enhanced during V. parahaemlyticus infec-
tion, as was the activity of TrxR. As has been well established, the
peoxiredoxins (Prxs) family can exhibit peroxidase activity toward a
wide range of cellular peroxides which play an essential role in the
antioxidant system. A total of six peoxiredoxins (Prx1-6) have been
identified from S. paramamosain. The recombinant proteins of SpPrxs
could reduce the H,O, level in a typical dithiothreitol (DTT)-dependent
manner. Their expression patterns vary in different tissues, but most of
them show highest expression levels in the hepatopancreas. Each Prx
protein plays a different role in response to various biotic and abiotic
stresses. Only the expression level of SpPrx3 significantly enhanced in
the hepatopancreas after V. alginolyticus challenge; SpPrx1/2, 5-1, and
5-2 showed a marked reduction. However, all six Prxs were sig-
nificantly up-regulated under either Poly (I:C) stimulation or cadmium
stress. The above results demonstrate the rapid response of the anti-
oxidant system and its important role in the crab immune system.

7. Development of application strategies and perspectives

Based on research progress on mud crab immunity, a schematic of
the innate immune system of S. paramamosain is shown in Fig. 1. Fur-
ther characterization of immune related factors such as AMPs would
allow development of potential immune-protection strategies for ap-
plication in crab aquaculture. For example, recombinant SpHyastatin
injection could modulate some V. parahaemolyticus responsive genes in
S. paramamosain and increase the survival rate of crabs challenged with
V. parahaemolyticus [88]. Similarly, the mortality rate of crabs de-
creases significantly when the recombinant Sp-SPH protein is pre-in-
cubated with A. hydrophila or V. parahaemolyticus before bacterial
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challenge, but not with V. alginolyticus [61]. The mini-chromosome
maintenance protein (MCM7) was demonstrated to play an essential
role in WSSV replication and V. alginolyticus infection [117], evidence
that knocking down of MCM7 could increase the mortality of WSSV or
V. alginolyticus infected crabs. The glutaminyl-peptide cyclotransferase
(QPCT) that functions in post-translational modification is found to
regulate the expression of proPO and AMPs of S. paramamosain [107].
Suppression of QPCT can also increase the mortality of WSSV or V.
alginolyticus infected crabs, but the mechanisms involved are distinct
and still largely unknown.

In recent years, probiotics has been widely used to protect aquatic
animals from pathogen infection [108-111]. Bacillus strains are one of
the most popular probiotics in aquaculture. Two Bacillus strains in-
cluding Bacillus subtilis DCU and Bacillus pumilus BP have been isolated
and cultivated from the mud crabs’ intestinal microbial communities
[112]. Upon V. parahaemolyticus challenge, crabs treated with DCU- and
BP-supplemented diets for 30 days showed a significantly higher ex-
pression level of antioxidant enzymes (CAT and SOD) and proPO,
whose activity is tolerant of low pH and high bile concentrations, than
controls. More importantly, treated crabs had a markedly higher sur-
vival rate than the control group, which indicates the potential appli-
cation value of probiotics in mud crab aquaculture.

In addition to probiotics, the use of immune-stimulants also pro-
vides an effective protective strategy. Cao et al. [113] found several
immune-enhancing proteins in S. paramamosain upon rhubarb poly-
saccharide treatment, including hemocyanin, chymotrypsin, crypto-
cyanin, C-type lectin receptor, and ferritin protein, as well as en-
hancement of the activity of some enzymes, such as PO, alkaline
phosphatase and alkaline phosphatasein. The underlying molecular
mechanism requires further investigation.

Additionally, researchers have applied some natural products in
crab aquaculture, such as epigallocatechin-3-gallate (EGCG), the most
abundant poly-phenol extracted from green tea. This compound was
demonstrated to protect S. paramamosain from WSSV infection by in-
hibiting virus replication and triggering several immune pathways in-
cluding those of proPO and JAK/STAT [114]. Little is known about the
JAK/STAT signaling pathway and its target genes in mud crabs.
Therefore, there is still a long way to go to clarify the innate immunity
of mud crabs.

Currently, a limited number of approaches for disease mitigation
have been developed. These studies provided valuable information to
establish strategies useful for disease control in mud crabs. However,
considerable research to elucidate the specific molecular mechanism in
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the immune system of crabs is urgently needed before application in
mud crab aquaculture is feasible.

At present, there are still two major problems that seriously dis-
courage the development of mud crab aquaculture. One is the technical
problem of artificial breeding of mud crabs, and the other is the low
survival rate they exhibit during their development and reproduction.
Due to their growth and development characteristics, mud crabs un-
dergo ca. 21 molts from the embryonic stage to sexual maturity. During
the molting process, large-scale morphological changes occur in the
outer shell, and the newly formed stratum corneum is very fragile and
extremely vulnerable to infection by foreign microorganisms, resulting
in high mortalities. So far, effective measures to reduce or control the
mortality of mud crabs during the molting period have not been de-
veloped for application in the aquaculture industry. Since the molting
stage is highly susceptible to infection by pathogenic microorganisms, it
is important to prevent or control the low survival rate during the
molting period using an immunological approach, but little is known
about the immunity of the molting period during the development of
mud crabs. Understanding the immune characteristics of the molting
stage of mud crabs and its associated important immune factors is of
great scientific significance and applied value. In addition to focusing
on the immune system itself, consideration should also be given to the
physiology of crabs, such as metabolism. Zhang et al. reported that V.
parahaemolyticus infection could altered the energy biosynthesis asso-
ciated metabolites of S. paramamosain [115].
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