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Abstract To advance tectonic models of plateau growth in response to the India-Asia collision,
parameters such as the timing, mechanism (s), and extent of Cenozoic deposition and deformation
throughout the eastern Tibetan Plateau need to be determined. To better understand these parameters,
we examine the Mula basin, located in the southern Yidun terrane, using field data, detrital zircon
geochronology, εHf zircon isotopic values, and thin section petrology. The Mula basin is a NW-SE elongate
(~28 km long and 5–8 km wide) exposure of nonmarine strata ~1,000 m thick, deposited in alluvial
environments. The basin is bound to the northeast by a thrust fault (327, 34°NE) that places Triassic
Daocheng Pluton and Triassic Yidun Group rocks on top of the nonmarine strata. The western boundary is
defined by an unconformable contact between the overlying nonmarine strata and Triassic Daocheng
Pluton and Yidun Group rock. An intrabasin thrust fault, parallel to the basin-bounding fault, places older
nonmarine strata on top of younger nonmarine strata, illustrating postdepositional deformation.
Provenance results indicate that sediment influx originated primarily from localized drainage catchments
and lacked major, well-organized throughgoing systems. A maximum depositional age of 45.5 ± 0.5 Ma,
based on the weighted mean average of the youngest detrital zircon population (s), demonstrates an
Eocene or younger age for strata. We interpret the Mula basin to have developed in a contractional
deformational regime driven by a far-field, upper-crustal response associated with the transition from an
Andean style margin to a continent-continent collisional margin as India impinged upon Eurasia.

1. Introduction

The present-day Tibetan Plateau developed as a result of the India-Asia collision, which initiated at ~55–
60 Ma (DeCelles et al., 2014; Hu et al., 2016; Leech et al., 2005; Najman et al., 2010; Wang et al., 2011).
Because ongoing collisional processes between the Indian and Asian lithosphere can be observed and
measured, and because the plateau is the largest and highest on Earth, researchers use the Tibetan
Plateau to generate ideas regarding tectonic processes driving plateau development. Models aimed at
describing the development of the Tibetan Plateau have invoked mechanisms such as underthrusting
of the Indian lithosphere (DeCelles et al., 2002; Nabelek et al., 2009; Owens & Zandt, 1997; Powell,
1986; Zhao & Morgan, 1987), rigid block translation (Meade, 2007; Tapponnier et al., 1982, 2001;
Thatcher, 2007), distributed continuum deformation (Dayem et al., 2009; England & Houseman, 1986,
1989; England & McKenzie, 1982; England & Searle, 1986) with associated convective removal of mantle
lithosphere (Molnar et al., 1993), and middle to lower crustal flow (Clark & Royden, 2000; Royden et al.,
1997; Schoenbohm et al., 2006). To provide initial crustal parameters that can be used to evaluate these
models, spatial and temporal resolutions of deposition and deformation associated with the India-Asia
collision must be determined. Therefore, stratigraphic ages, sedimentological descriptions, and structural
relationships for Cenozoic strata throughout the Tibetan Plateau (Figure 1) are essential for accurately
describing the progression, amount, and mechanism(s) of deformation associated with the India-Asia col-
lision (DeCelles, Kapp, et al., 2007; Horton et al., 2002, 2004; Yin & Harrison, 2000).

JACKSON JR ET AL. 1

Tectonics

RESEARCH ARTICLE
10.1029/2018TC004994

This article is a companion to Jackson
et al. (2018) https://doi.org/10.1029/
2018TC004995.

Key Points:
• Nonmarine fill of the Mula basin in the
southern Yidun terrane consists of
Cenozoic alluvial strata

• Provenance analyses suggest that
sediment was locally sourced from
Triassic Yidun terrane rock

• The Mula basin developed in a
contractional tectonic setting in
response to the India-Asia collision

Supporting Information:
• Table S1
• Data Set S1

Correspondence to:
W. T. Jackson Jr.,
wjackson@southalabama.edu

Citation:
Jackson, W. T., Jr., Robinson, D. M.,
Weislogel, A. L., Jian, X., & McKay, M. P.
(2018). Cenozoic development of the
nonmarine Mula basin in the Southern
Yidun terrane: Deposition and defor-
mation in the eastern Tibetan Plateau
associated with the India-Asia collision.
Tectonics, 37. https://doi.org/10.1029/
2018TC004994

Received 22 JAN 2018
Accepted 30 MAY 2018
Accepted article online 7 JUN 2018

©2018. American Geophysical Union.
All Rights Reserved.

http://orcid.org/0000-0003-0826-3625
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-9194
http://dx.doi.org/10.1029/2018TC004994
http://dx.doi.org/10.1029/2018TC004994
https://doi.org/10.1029/2018TC004995
https://doi.org/10.1029/2018TC004995
http://dx.doi.org/10.1029/2018TC004994
http://dx.doi.org/10.1029/2018TC004994
http://dx.doi.org/10.1029/2018TC004994
http://dx.doi.org/10.1029/2018TC004994
http://dx.doi.org/10.1029/2018TC004994
mailto:wjackson@southalabama.edu
https://doi.org/10.1029/2018TC004994
https://doi.org/10.1029/2018TC004994


Cenozoic nonmarine strata in the southern Tibetan Plateau’s Lhasa terrane provide insights into the timing of
India-Asia collision (Ding et al., 2005; Orme et al., 2015), the latitudinal migration of the southern margin of
Eurasia (Lippert et al., 2014), the pervasive tectonic stress regime (Leary, DeCelles, et al., 2016; Leary, Orme,
et al., 2016), reconstructions of paleoelevations (Currie et al., 2016; DeCelles, Kapp, et al., 2007; Ding et al., 2014;
Ingalls et al., 2018; Rowley & Currie, 2006), and paleo-drainage reconstructions (Leier, DeCelles, et al., 2007;
Carrapa et al., 2017). Cenozoic nonmarine strata in the northern Tibetan Plateau record the timing of initial,
far-field deformation associated with the India-Asia collision (e.g., Clark et al., 2010), while nonmarine strata in
the southeastern part of the plateau record the clockwise rotation and crustal block extrusion of the
Lanping-Simao terrane (Schoenbohm et al., 2005, 2006).

In contrast to other regions of the Tibetan Plateau, nonmarine successions in the eastern Tibetan Plateau
remain understudied. The Yidun terrane, positioned between the eastern Himalayan syntaxis and the
Xianshuihe fault system, hosts numerous nonmarine basins (Burchfiel & Chen, 2012; Wang et al., 2009;
Wang & Burchfiel, 2000). Because of the Yidun terrane’s position, investigating these nonmarine basins pre-
sents an opportunity to gain insight into the Cenozoic tectonic evolution of the eastern Tibetan Plateau.

The purpose of this study is to document sedimentological and structural data from the nonmarine Mula
basin, located in the southern Yidun terrane (Figure 2). Determining the tectonic development of the Mula
basin and incorporating our findings into a regional perspective will allow for an enhanced understanding
of the spatial and temporal evolution of nonmarine deposition and deformation throughout the eastern
Tibetan Plateau. We present detrital U-Pb zircon geochronology and εHf isotope values, as well as traditional
provenance analyses and fieldmeasurements to address the tectonic setting, stratigraphic age, and sedimen-
tary provenance of the Mula basin fill.

2. Geologic Setting

The eastern Tibetan Plateau consists of a mosaic of terranes that include the Lhasa, Qiangtang, Yidun, and
Songpan-Ganzi, all separated by Paleo- and Meso-Tethys ocean sutures. These terranes contain records of
Paleozoic-Mesozoic rifting and migration from Gondwana, followed by amalgamation to the southern

Figure 1. Distribution of Cenozoic nonmarine strata, faults, and suture zones throughout the Tibetan Plateau. The shaded
area indicates the study area and location of the Mula basin (boundary for Figure 2a). Map adapted from Yin and
Harrison (2000), Horton et al. (2002), and Spurlin et al. (2005). (top left insert) Outline of China with >3.5-km topographic
expression of the Tibetan Plateau (gray shading) and major suture zones delineated. (bottom left insert) Previous
studies conducted on nonmarine strata throughout the Tibetan Plateau summarized herein. Number 3: Yin et al. (1988),
Zhang and Zheng (1994), Liu and Wang (2001), Liu et al. (2001), and Liu et al. (2003). ATF: Altyn Tagh fault; BNS:
Bangong-Nujiang suture; JS: Jinsha suture; KFS: Kunlun fault system; LSTB: Longmen Shan thrust belt; RRF: Red River fault.
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margin of Eurasia, while the intervening suture zones contain mélange and ophiolite rock that record the
closure of ocean basins (Burchfiel & Chen, 2012; Dewey et al., 1988; Yin & Harrison, 2000). The Zhongza
Massif, which now forms the western part of the Yidun terrane, rifted from either the western margin of
the Yangtze block (Wang et al., 1999; Zhang et al., 1998) or the southern Kunlun terrane (Ding et al., 2013;
Pullen, Kapp, Gehrels, Vervoort, et al., 2008) during Early Triassic time. In the wake of the Zhongza Massif
migration, an eastern branch of the Paleo-Tethys Ocean was formed, which contributed space for
widespread deposition of the Songpan-Ganzi and Yidun terrane turbidite complexes during Middle-Late
Triassic time (Roger et al., 2010; Zhang et al., 1998). The Zhongza Massif collided with the Qiangtang
terrane during Middle Triassic time, presently marked by the Jinsha Accretionary Complex (Reid, et al.,
2005). In Late Triassic time, subduction along the eastern Yidun terrane was initiated, marked presently by
the Ganzi-Litang suture and Yidun Arc Late Triassic plutonic field (Hou, 1993; Hou et al., 1993; Peng et al.,
2014). In Late Jurassic-Middle Cretaceous time, the Lhasa terrane collided with the southern margin of the
Qiangtang terrane (Kapp et al., 2005). In Late Cretaceous time northward subduction of the Neo-Tethys
beneath the southern margin of the Lhasa terrane initiated, resulting in the development of the Gangdese

Figure 2. (a) Regional map of the eastern Tibetan Plateau adapted from Burchfiel and Chen (2012) and Wang et al. (2013).
(b) Geologic map of the Mula basin region with locations of detrital zircon and petrology samples.
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magmatic belt (Ding et al., 2005; Van der Voo et al., 1999; Zhang et al., 2010). While much still remains to be
understood pertaining to these Mesozoic collisional events, they ultimately resulted in an Andean-like mar-
gin along the southern margin of Eurasia during Late Cretaceous-Paleogene time, forming a fore arc, conti-
nental magmatic arc, and retroarc foreland basin (Kapp et al., 2003, 2007; Leier, DeCelles, et al., 2007;
Murphy et al., 1997; Pullen, Kapp, Gehrels, DeCelles, et al., 2008), as well as the development of a concomitant
plateau (C. Wang et al., 2008; Zhang et al., 2012).

Following Mesozoic terrane collisions, India rifted from Gondwana, migrated northward as the Neo-Tethys
Ocean subducted, and collided with southern Eurasia in early Cenozoic time (Hu et al., 2016; Royden et al.,
2008, references therein). Paleogene deformation in response to this initial collision is marked by compres-
sional structures and nonmarine deposition throughout the plateau (Yin & Harrison, 2000). In the eastern
Tibetan Plateau, during early Cenozoic time, contractional upper-crustal shortening persisted in conjunction
with the initiation of southeastward extrusion of crustal blocks in response to continental collision (Burchfiel
et al., 1995; Tapponnier et al., 1982, 2001; Wang & Burchfiel, 1997). During late Miocene time strike-slip defor-
mation became the prominent stress regime and further propagated extrusion of crustal material to the
southeast (Leloup et al., 1995; Schoenbohm et al., 2005, 2006). Paleomagnetic studies on Late Cretaceous
through Miocene rocks in the southeastern Tibetan Plateau indicate a significant clockwise rotation of crustal
material since Late Cretaceous time (Haihong et al., 1995; Holt et al., 1991; Huang & Opdyke, 1993).

3. Previous Work

Throughout the Tibetan Plateau, nonmarine Cenozoic strata record upper-crustal deposition and deforma-
tion associated with plateau growth (Yin & Harrison, 2000). These strata tend to be in basins that are elon-
gate in shape, located in the footwalls of thrust faults, and spatially associated with Mesozoic sutures (e.g.,
Spurlin et al., 2005; Studnicki-Gizbert et al., 2008). While precise dating of these basins is difficult (Horton
et al., 2004), nonmarine strata throughout the plateau have been assigned Paleogene ages based on fossil
assemblages, geochronology, and palynological data (BGMRSP, 1991; Dai et al., 2012; Liu et al., 2001;
Rowley & Currie, 2006; Staisch et al., 2014). Over the past two decades, reconstructions of paleoelevation
from nonmarine strata provide the stimulus for debates on the timing of established high-topography and
tectonic evolution of the Tibetan Plateau (Currie et al., 2016; DeCelles, Carrapa, et al., 2007; Ding et al.,
2014; Ingalls et al., 2018; Rowley & Currie, 2006; Xu et al., 2015). The geographic locations of the nonmarine
strata discussed below are in Figure 1.

3.1. Southern Tibetan Plateau

In the southern Lhasa terrane, the Late Cretaceous Takena Formation consists of nonmarine strata developed
in a retroarc foreland basin with sediment derived primarily from the Gangdese volcanic arc (Leier, DeCelles,
et al., 2007). The tectonic setting and development of the Takena Formation suggest that the southern mar-
gin of the Lhasa terrane was characterized by thickened crust and was likely at high elevations immediately
prior to the India-Asia collision (England & Searle, 1986; Leier, DeCelles, et al., 2007). Detrital zircon geochro-
nology results from the Takena Formation reveal age populations at 100–160 Ma, 500 Ma, 600 Ma, 1,000 Ma,
and 1,400 Ma indicative of a typical Lhasa terrane signature (Leier, Kapp, et al., 2007). Lippert et al. (2014) sum-
marize paleomagnetic data in the Lhasa terrane and show that the southernmargin of Eurasia (Lhasa terrane)
remained stable in latitude throughout Cretaceous and Early Paleogene time and subsequently has moved
~8° of latitude since ~50 Ma.

3.2. Central Tibetan Plateau

Kapp et al. (2005) document Middle Cretaceous nonmarine strata unconformably overlying Jurassic suture
zone rock in the Qiangtang terrane anticlinorium. Paleogene deformation in the Qiangtang terrane is char-
acterized by north-dipping thrust faults that cut Eocene-Oligocene redbeds and volcanic rocks in the foot-
wall. Two footwall volcanic tuff layers were dated at 64 and 43 Ma (Kapp et al., 2005). Cretaceous
deformation and denudation are attributed to northward underthrusting of the Lhasa terrane beneath the
Qiangtang terrane along the Bangong-Nujiang suture.

Kapp et al. (2007) and DeCelles, Kapp, et al. (2007) document nonmarine deposition and deformation in the
Nima region along the Bangong-Nujiang suture. Dating of a cross-cutting intrusion establishes a 118-Ma age
for the oldest nonmarine strata, which overlie deep marine strata with a maximum depositional age of
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125 Ma, therefore bracketing the transition from deep marine to subaerial deposition and closure timing of
the Bangong-Nujiang suture to between 118 and 125 Ma (Kapp et al., 2007). Cretaceous-Paleogene
sedimentation was coeval with thrust-faulting, which resulted from northward low-angle subduction of the
Neo-Tethys oceanic lithosphere and Lhasa-Qiangtang terrane collision (DeCelles, Kapp, et al., 2007).
Oxygen-isotope analysis of carbonate nodules indicates regional paleoelevations of >4.6 km during late
Oligocene time (DeCelles, Kapp, et al., 2007). Rowley and Currie (2006) also document paleoelevations of
>4 km in Eocene time for the Lunpola basin in the Lhasa terrane based on oxygen isotopes.

Horton et al. (2002) document nonmarine sedimentation synchronous with Paleocene-Eocene NE-SW short-
ening in the Nangqian-Niuguoda-Xialaxiu-Shanglaxiu basins, located in the Qiangtang terrane. Spurlin et al.
(2005) establish an Eocene age for basins in the Yushu-Nangqian region and quantify minimum NE-SW short-
ening at 61 km. Spurlin et al. (2005) show that igneous intrusive rocks are subduction related, suggesting that
crustal thickening during Eocene time resulted from continent subduction.

3.3. North-Central Tibetan Plateau

The predominantly nonmarine Hoh Xil basin is located in the northern part of the Qiangtang terrane (Liu
et al., 2001; Liu & Wang, 2001). Based on fossil assemblages and magnetostratigraphy, the stratigraphically
lowest Fenghuoshan Group is Paleogene (Yin et al., 1988) and Cretaceous (Liu et al., 2003; Zhang & Zheng,
1994) in age. The stratigraphic highest Wudaoling Group is early Miocene (23–16 Ma) in age based on fossil
assemblages (Zhang & Zheng, 1994). Staisch et al. (2014) establish an age of Late Cretaceous-Eocene
(85–51 Ma) for nonmarine strata based on detrital zircon geochronology. Dai et al. (2012) establish a detrital
zirconmaximum depositional age for the nonmarine strata of 121Ma. Sedimentary provenance analysis from
petrology and detrital zircon geochronology suggests that strata were sourced locally from the Qiangtang
terrane (Dai et al., 2012; Liu et al., 2001; Staisch et al., 2014).

3.4. Eastern Tibetan Plateau

Studnicki-Gizbert et al. (2008) document Paleogene nonmarine deposition and associated compressional
deformation in the Gonjo basin, resulting from the early stages of the India-Asia collision. Studnicki-Gizbert
et al. (2008) illustrate a local provenance for Gonjo sedimentary rocks and document coaxial trends for
Mesozoic and Cenozoic structures, illustrating the difficulty in distinguishing between the multiple phases
of deformation. Tang et al. (2017) establish deposition of Gonjo basin strata prior to 43.2 Ma based on
U-Pb dating of volcanic rocks and indicate the basin attained elevations of 2.1–2.5 km in early Eocene time
from oxygen and carbon stable isotope results.

3.5. Southeastern Tibetan Plateau

Li et al. (2015) use oxygen isotope data from three Cenozoic sedimentary basins in the southeastern Tibetan
Plateau, to suggest that elevations of ~2.6 km may have persisted since middle Eocene time (~40 Ma). Hoke
et al. (2014) utilize carbonate isotope data to evaluate the paleoaltimetry of the southeastern margin of the
Tibetan Plateau, in which they show that the southern Tibetan Plateau established its modern-day elevations
as early as Eocene time. Both of these studies postulate that crustal shortening played a dominant role in
thickening the crust and associated elevation gain, whereas middle to lower-crustal flow did not affect the
region until Miocene time.

3.6. Northeastern Tibetan Plateau

Horton et al. (2004) show nonmarine deposition and deformation in the Xining-Minhe and Dangchang
basins. Basin deposition and deformation is characterized by Late Jurassic-Early Cretaceous extension and
Cretaceous-Paleogene postrift thermal subsidence, followed by Eocene (40–30 Ma) shortening related to
the India-Asia collision. Craddock et al. (2012) document nonmarine deposition associated with SE verging
thrust faults and establish an Early Cretaceous age.

4. Methods
4.1. Field Procedures

The Mula basin was studied over three field seasons in 2013 and 2014. Rock samples were collected for
detrital zircon geochronology and thin section petrology. Sampling distribution and density were controlled
primarily by rock type and accessibility. Field data were collected to document the sedimentological and
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structural relationships present. Detailed rock descriptions, field measurements, and sample locations are in
Table S1.

4.2. Detrital Zircon Geochronology

Six samples from the Mula basin were analyzed for detrital zircon geochronology. One to 4 kg of sample
were collected from sandstone and granule conglomerate. Zircon grains were separated using heavy
mineral separation methods at the University of Alabama. Unknown Mula zircon grains, along with
standard Sri Lanka (Gehrels et al., 2006; Kroner et al., 1987) and R33 (Black et al., 2004) zircon fragments,
were mounted (2.45-cm epoxy), abraded, polished, and imaged (back scatter electron) at the University of
Arizona LaserChron Center following procedures described in Gehrels et al. (2008) and Gehrels (2014).
Ages were collected with a Nu Plasma multicollector LA-ICP-MS (sample 13MB037c) and an Element 2
single collector LA-ICP-MS (samples 13MB043, 13MB044, 13MB035, 13MB054b, and 13MB056a). Zircon
grains were ablated with 25–30 μm diameter laser. Zircon data reduction (background, Hg, and fractiona-
tion corrections) were calculated in the excel software program Agecalc (Gehrels et al., 2008). Isotopic age
uncertainties were additionally evaluated based on the amount of 204Pb, concordance, and concentration
of U and Th (ppm). Grains >900 Ma (based on 206Pb/207Pb ages) were plotted in concordia space and
evaluated based on 25% discordant or 5% reverse-discordant criteria. Grains <900 Ma (based on
206Pb/238U ages) were plotted in concordia space for evaluation. Therefore, the variability in number of
zircon analyses per sample is a result of zircon yield, time and cost, and frequency of discordant analysis.
Zircon data are in figures produced in Isoplot (Ludwig, 2012) and DensityPlotter (Vermeesch, 2012). Full
U-Pb analytical data are in Table S2.

As no diagnostic fossils, dateable volcanic ash layers, or cross-cutting intrusive bodies were identified, we uti-
lized detrital zircon geochronology to calculate maximum deposition ages (MDAs). MDAs are calculated
based on the youngest analyzed zircon grain(s), especially for strata that otherwise do not yield any informa-
tion pertaining to their age (i.e., Barbeau et al., 2009; DeCelles, Carrapa, et al., 2007; Dickinson & Gehrels, 2009;
Fildani et al., 2003; Surpless et al., 2006). However, many geologic factors such as a lull in deposition, isolation
of source material, and field/lab contamination can cause the youngest zircon age(s) to be tens to hundreds
of million years older than the true depositional age (Nelson, 2001; Sircombe, 1999). In addition, only using
the youngest detrital zircon grain to determine the MDA may produce an age younger than the true deposi-
tional age (Dehler et al., 2010; Dickinson & Gehrels, 2003, 2009). Therefore, a more reliable approach is to cal-
culate the weighted mean average of the youngest zircon population with an n value of ≥3 (Dickinson &
Gehrels, 2009; Vermeesch, 2004).

4.3. Detrital Zircon εHf Isotopes

Sixty-two detrital zircon grains were analyzed for εHf-isotopic values by LA-ICP-MS at the University of
Arizona LaserChron Center following methods described by Gehrels and Pecha (2014). Data were collected
using a Nu Plasma HR ICP-MS, coupled to a New Wave 193-nm ArF laser ablation system from existing pits
from previously analyzed detrital U-Pb zircon grains to best ensure that the initial εHf isotope data were
determined from the same domain as the U-Pb age. An average of 10 analyses were collected from each sam-
ple, with the goal to represent each of the prominent age populations identified from U-Pb geochronology
analyses. Full εHf data are in Table S3.

4.4. Petrology

Fifteen thin sections from Mula basin samples were prepared for petrographic analysis. Mineral staining
was included for assistance in potassium feldspar and calcic plagioclase identification. Minerals docu-
mented include monocrystalline quartz, polycrystalline quartz, plagioclase feldspar, potassium feldspar,
volcanic/meta-volcanic lithic fragments, sedimentary/meta-sedimentary lithic fragments, and matrix.
Four hundred framework grains were counted for each sample following the Ganzi-Dickinson method
to minimize grain-size effects (Dickinson, 1970; Ingersoll et al., 1984). Results were plotted in the follow-
ing ternary spaces: (1) quartz total, feldspar, lithics; (2) monocrystalline quartz, feldspar, lithic total; (3)
monocrystalline quartz, plagioclase, potassium feldspar; and (4) polycrystalline quartz, volcanic lithics,
sedimentary lithics to asses associated tectonic settings (Dickinson, 1985; Dickinson & Suczek, 1979;
Ingersoll, 1978), using an excel-based method by Zahid and Barbeau Jr. (2011). Full petrology data are
in Table S4.
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5. Results
5.1. Mula Basin Stratigraphy

The Mula basin contains ~1,000 m of oxidized, red to purple nonmarine
strata in three units (Figure 3). The stratigraphic lowest is unit 1, which con-
sists of an ~5–20 m thick basal conglomerate overlain by ~200–250 m of
interbedded conglomerate, sandstone, and mudstone. Unit 1 basal con-
glomerate clasts are pebble to cobble in size, predominantly matrix-
supported, with <0.5 m thick clast-supported intrabeds, unconformably
overlying the Triassic Yidun Group and Triassic Daocheng Pluton. Clasts
are subangular to subrounded and consist of shale, granite, quartz, sand-
stone, and chert (Figure 4a). Bedding is tabular with no evidence of chan-
nel bases. Clast imbrication (n = 53) in clast-supported conglomerate
intrabeds indicate paleoflow directions to the southwest, west, and south-
east. Above the basal conglomerate is an interbedded sequence of con-
glomerate, sandstone, and mudstone (Figures 4b–4d). Conglomerate
beds are ~0.5–3 m thick, clast-supported, with subrounded granule-sized
clasts. Sandstone beds are ~0.5–3 m thick, fine- to medium-grained, sub-
rounded, predominately feldspathic arenites, although lithic arenites are
present. Overall, unit 1 fines upward.

Stratigraphically above unit 1, unit 2 consists of an ~500–600 m thick
sequence of interbedded sandstone and mudstone, with occasional con-
glomerate beds (Figure 4e). Sandstone beds are ~0.5–3 m thick, fine- to
medium grained, subrounded, predominately feldspathic arenites,
although lithic arenites are present. Mudstone beds throughout unit 2
are massive and range in thickness from tens of cm to hundreds of m.
Overall, unit 2 fines upward.

Stratigraphically above unit 2, unit 3 consists of a 200–300 m thick
sequence of mudstone and shale, with thin (<2 m) sandstone and silt-
stone beds. Mudstone beds throughout unit 3 are massive with variable
bedding thickness. Sandstone and siltstone intrabeds are well-sorted, sub-
rounded to rounded, feldspathic arenites and lithic arenites. The upper-
most part of unit 3 is dominated by mudstone and shale that displays
fissile bedding and green, purple, and red coloring. Unit 3 does not show
a stratigraphic textural pattern.

5.2. Detrital Zircon Geochronology

Cumulative detrital zircon geochronology results (n = 1,502) from the six
Mula basin samples illustrate one primary age population at 200–
250 Ma, along with minor populations at 40–60 Ma, 250–450 Ma, 700–
850 Ma, ~1,800–1,900 Ma, and ~2,500 Ma (Figure 5). The 200–250 Ma
population represents 45.3% of calculated ages. The second largest popu-
lation is the ~1,800 Ma peak, consisting of 14.9%. The youngest population
is 40–60 Ma, representing 5.1% of total analyzed grains. The other 3 popu-
lations present at 250–450 Ma, 700–850 Ma, and ~2,500 Ma constitute
8.7%, 6%, and 5.7% of the cumulative distribution, respectively.

Sample 13MB037c is the highest stratigraphic sample and yields 90 ages
with evidence of all major age populations present in the cumulative data
set, with peaks at 40–50 Ma, 200–250 Ma, 250–350 Ma, 400–500 Ma,
~1,200 Ma, ~1,800 Ma, ~2,200 Ma, and ~2,500 Ma (Figure 5a). Eight zircon
grains from 13MB037c have ages between 40 and 50 Ma, with the young-
est grain at 42 Ma. 13MB044 is located stratigraphically below sample
13MB037c and yields 313 ages with evident age populations at 40–
50 Ma, 200–250 Ma, 250–350 Ma, ~400 Ma, ~1,800 Ma, and ~2,500 Ma

Figure 3. Stratigraphic column for the Mula basin illustrating rock type, loca-
tion of detrital zircon and thin section petrology samples, and measured
paleoflow directions.

10.1029/2018TC004994Tectonics

JACKSON JR ET AL. 7



(Figure 5b). Thirty-six zircon grains from 13MB044 have ages between
40 and 50 Ma, with the youngest grain at 43 Ma. 13MB054b is located
stratigraphically below sample 13MB044 and yields 312 ages with
evident age populations at 40–50 Ma, 200–250 Ma, 300–400 Ma,
~800 Ma, ~1,800 Ma, and ~2,500 Ma (Figure 5c). Ten zircon grains from
13MB054b have ages between 40 and 50 Ma, with the youngest grain
at 44 Ma. 13MB043 is located stratigraphically below sample 13MB054b
and yields 207 ages with evident age populations at 200–250, ~300–
400 Ma, ~800 Ma, ~1,800 Ma, and ~2,500 Ma (Figure 5d). Two zircon
grains from 13MB043 have ages between 40 and 50 Ma, with the
youngest grain at 44 Ma. 13MB035 is located stratigraphically below
sample 13MB043 and yields 292 ages with one evident population at
200–250 Ma (Figure 5e). Two zircon grains from 13MB035 have ages
between 40 and 50 Ma, with the youngest grain at 42 Ma. 13MB056a
is the stratigraphic lowest sample and yields 288 ages with only one
evident population at 250–200 Ma (Figure 5f). Three zircon grains from
sample 13MB056a have ages between 40 and 50 Ma, with the young-
est grain at 44 Ma.

5.3. Detrital Zircon εHf Analysis

εHf isotope analytical results (Figure 6) show that 66% of analyzed zircons
have negative εHf values (41 of 62 grains). Eocene-aged grains have εHf
values of +4 to �4. Triassic-aged grains have εHf values clustered
between �5 and �9. Devonian-Cambrian grains range from εHf +8 to
�27. Neoproterozoic age grains have εHf values from +7 to �2.
Paleoproterozoic age grains cluster between εHf 2 and �4.
Paleoproterozoic-Archean age grains have εHf values of +5 to �5.

5.4. Petrology

Framework-grain modal composition in 13 of 15 samples plot in the
recycled orogenic field for the quartz total, feldspar, lithics provenance
discrimination ternary diagram, while 2 of 15 plot in the dissected arc
field (Figure 7a). The 15 samples plot in the transitional recycled,
recycled orogenic, mixed fields for the monocrystalline quartz, feldspar,
lithic total ternary diagram (Figure 7b). All 15 samples plot in the
recycled orogeny field for the monocrystalline quartz, plagioclase,
potassium feldspar ternary diagram (Figure 7c). Of 15 samples, 13 plot
in the collision suture and fold-thrust belt source field for the polycrys-
talline quartz, volcanic lithics, sedimentary lithics ternary diagram
(Figure 7d).

5.5. Structure

The Mula basin is elongate to the NW-SE with beds oriented ~330,
24–38°E. To the southwest, the Mula basin is bound by unconformable
contacts with the Triassic Daocheng Pluton and Triassic Yidun Group
turbidite rock. To the northeast, the Mula basin is bound by a reverse
fault oriented ~327, 34°NE that places Triassic Yidun Group turbidite
rock on top of nonmarine basin strata (Figures 8a–8c). Another reverse
fault mapped in the southern part of the basin is oriented parallel to
the basin-bounding fault and places unit 2 strata in the hanging
wall on top of unit 3 strata in the footwall (Figures 8b and 8c). The
intrabasin fault decreases in offset toward the northwest, where it
branches into the basin-bounding fault. No growth strata are present
in the Mula basin.

Figure 4. Field photographs from the Mula basin illustrating examples of units
1–3 stratigraphic intervals. (a) Unit 1 matrix-supported conglomerate with
various locally derived clasts. (b) Unit 1 interbedded conglomerate and mud-
stone/siltstone. (c) Unit 1 interbedded conglomerate, sandstone, and mudstone.
(d) Unit 2 interbedded sandstone, mudstone, and conglomerate. (e) Unit 2
interbedded sandstone andmudstone. (f) Unit 3 interbedded shale and siltstone.
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Figure 5. Detrital zircon geochronology results for the Mula basin. Each sample has been area corrected for plotting pur-
poses. The black line represents a kernel density estimation calculated with a 15 bin size. The gray boxes represent 50-Ma
histogram distribution of sample ages. Inserts represent 0–250 Ma for each corresponding sample.
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6. Interpretations and Discussion
6.1. Depositional Environments

Clast compositions from conglomerate measurements are similar to the
local bedrock of Triassic Daocheng Pluton and Yidun Group rock. We inter-
pret the conglomerate layers in unit 1 to be deposited in an alluvial fan
environment based on a predominately matrix-supported architecture,
various clast size distribution and shapes, as well as the presence of have
sheet bedding. Some conglomerate layers exhibit a clast-supported archi-
tecture, which presumably represents traction deposits associated with
episodes of higher fluid flow (Gomez, 1991). Unit 2 deposits are interpreted
to be streamflow alluvial fan environments. Planar cross-lamination in the
sandstone intrabeds indicates current transport, and mudstone interbeds
reflect either muddy debris-flows or pedogenic alteration of fine-grained
streamflow alluvial deposits. The fine grained, planar-laminated siliciclastic
deposits in unit 3 are interpreted to represent fine-grained streamflow allu-
vial facies. Overall, depositional environments suggest decreasing slope of
the alluvial environment over time, either because of erosional degrada-
tion or subsidence along the basin margin, which would drive alluvial fan
retrogradation and migration toward the hinterland (eastward).

Figure 6. εHf data plotted with respect to U-Pb ages. Arrow illustrates path
of Hf isotopic evolution of a typical felsic crust. The reference lines are as
follows: MORB: depleted mantle; CHUR: chondritic uniform reservoir. The
gray parallelograms show interpreted crustal evolution trajectories assuming
present-day 176Lu/177Hf.

Figure 7. Petrology results from nine WGB and EGB samples. (a) Qt-F-L plot. Cl: craton interior, TC: transitional continental,
BU: basement uplift, RO: recycled orogenic, DA: dissected arc, TA: transitional arc, UA: undissected arc. (b) Qm-F-Lt plot. Cl:
craton interior, TC: transitional continental, BU: basement uplift, RO: recycled orogenic, M: mixed, DA: dissected arc, TA:
transitional arc, TR: transitional recycled, LR: lithic recycled, UA: undissected arc. (c) Qm-P-K plot. CBP: continental block
provenance, MAP: magmatic arc provenance, ROP: recycled orogen provenance. (d) Qp-Lv-Ls plot. SCS: subduction com-
plex sources, AOS: arc orogen source, CS-FTBS: collision suture and fold-thrust belt sources.
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6.2. Age of Strata and Tectonic Setting

Assuming that surface uplift resulting from deformational phases correlates to cooling episodes,
our geochronology results can be integrated with preexisting thermochronology in the eastern
Tibetan Plateau to further evaluate the age of Mula basin strata. Investigations utilizing low-
temperature thermochronology in the eastern Tibetan Plateau show Cenozoic cooling episodes in early
Oligocene (29–33 Ma) and late Miocene (9–13 Ma) time (Arne et al., 1997; Kirby et al., 2002; Wang
et al., 2012; Xu & Kamp, 2000). Investigations from the Daocheng Pluton, which the Mula basin
overlies, record two Mesozoic cooling phases as well as the early Oligocene and early Miocene
phases Early Cretaceous and early Miocene cooling episodes (Clark et al., 2005; Tian et al., 2014;
Zhang et al., 2016).

Weighted mean averages for the youngest detrital zircon population from each sample yields Eocene
age from ~43 to 47 Ma (Figure 9). When all Eocene grains are combined into a composite, the
weighted mean average is 45.5 ± 0.5 Ma (Figure 9g), establishing an MDA for Mula basin strata.
While there is no decreasing age trend upsection in our data, Eocene grains do become more preva-
lent in samples from the uppermost stratigraphic part of units 2 and 3. The lack of correlation between
the stratigraphic position and the MDA for each sample suggests that the grains from the youngest
detrital zircon population for each sample were shed from a source that predates nonmarine deposi-
tion. While our MDA of ~45 Ma precludes a Mesozoic age for the Mula basin, the possibility of either
an Oligocene or Miocene age remains.

Field investigations in the eastern Tibetan Plateau show that Paleogene deformation consisted of contrac-
tional and some strike-slip features, associated with the northward impingement of the India plate to the
southern margin of Eurasia (Tapponnier et al., 2001). During Oligocene time the dominant stress regime
in the eastern Tibetan Plateau remained contractional; however, coeval strike-slip faulting in the region
was established (Wang & Burchfiel, 1997). Since late Miocene time, strike-slip faulting has been the per-
vasive stress regime throughout the eastern Tibetan Plateau (Leloup et al., 1995; Zhang et al., 2015). The
parallel trend relationship of the Mula basin thrust fault to the Triassic Ganzi-Litang suture precludes a
tectonic setting interpretation associated with strike-slip deformation (i.e., restraining bend), which would
promote oblique to perpendicular structural orientations between the suture and basin-bounding thrust
fault. Therefore, based on structural indicators with regional stress regimes, our detrital zircon U-Pb
geochronology results, and previously published thermochronology results, we prefer an interpretation
of early Oligocene for the age of the Mula basin.

Figure 8. Schematic cross sections A-A0 , B-B0, and C-C0 from the Mula basin. The cross-section line locations are shown
in Figure 2b.
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Figure 9. Weighted mean average plots illustrating maximum depositional ages for samples (a) 13MB037c, (b) 13MB044, (c) 13MB054b, (d) 13MB043, (e) 13MB035,
(f) 13MB056a, and (g) a composite of all samples combined. The error bars represent 2σ error.
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6.3. Sedimentary Provenance

Field clast counts and thin section petrology suggest that Mula basin strata were sourced locally from the
Triassic Daocheng Pluton and Triassic Yidun Group rocks. To identify the influence of these and other poten-
tial source rocks on the finer-grained basin fill, we compare the detrital zircon results to published zircon data
sets for both the Daocheng Pluton and Yidun Group rocks (Figure 10). Compatibility is shown between Late
Triassic zircon ages from the Daocheng Pluton and Triassic (215–225 Ma) detrital zircons from the Mula basin

Figure 10. (a) U-Pb zircon results for the Triassic Daocheng pluton. (b and c) Regional detrital zircon geochronology results
from the Triassic Yidun Group turbidites from Wang et al. (2013) and Ding et al. (2013). (d) Composite curve for Mula basin
detrital zircon geochronology results. All age populations are represented by the combination of the Triassic Daocheng
pluton (217 Ma) and Yidun Group turbidites.
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(Figure 10a). All other detrital age populations older than Late Triassic in the Mula strata are present in
southern Yidun terrane turbidite detrital signatures (Figure 10b). Therefore, between the Daocheng Pluton
and Yidun Group sources, all detrital zircon age populations in the Mula basin detrital zircon signature are
accounted for except the Eocene population. We interpret these results to illustrate a local provenance for
Mula basin strata.

Identifying the source for Eocene age grains remains puzzling. In other parts of the plateau, the emplacement
of Eocene-Oligocene magmatic bodies is accompanied by the development of nonmarine basins, predomi-
nantly in close proximity to the Jinsha-Jiang and Bangong-Nujiang sutures (Chung et al., 2005; Q. Wang et al.,
2008; C. Wang et al., 2008). Similar basin-pluton relationships also exist to the southeast around the Red River
Shear Zone (Chung et al., 1998; LeLoup et al., 1995; Wang et al., 2001). Therefore, the likely source for the
Eocene age population in Mula basin strata is a Cenozoic plutonic body in the eastern Tibetan Plateau
(e.g., Roger et al., 2000). However, the nearest Cenozoic pluton (Haizi Pluton, Figure 2) is ~75 km to the west
from the Mula basin, and paleoflowmeasurements indicate west-directed transport. The nearest Eocene plu-
ton (Gongga Pluton) east of the Mula basin is presently located ~190 km to the east-northeast along the
Xianshuihe fault (Arne et al., 1997; Xu & Kamp, 2000). Numerous Eocene plutons are present southeast of
the Mula basin between the eastern Himalaya syntaxis and the Ailao Shan shear zone (Wang & Burchfiel,
1997), which upon paleorestoration would presumably have been more proximal to the basin during deposi-
tion. Other possible explanations for Eocene grains could include air transported grains.

The lack of Cretaceous grains in our detrital zircon data is interesting because of the proximity of the
Cretaceous Haizi Pluton (Reid et al., 2007) to the Mula basin (e.g., Figure 2). The absence of Cretaceous

Figure 11. Animation summary of the early Cenozoic evolution of the Mula basin illustrating the progression of thin-
skinned, thrust development and nonmarine basin fill, which resulted from uplift and erosion of Triassic Daocheng plu-
ton and Yidun Group turbidite rock.
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aged grains requires that either Cretaceous plutons were not exposed prior to the development of the Mula
basin or that there was little extrusive magmatism associated with emplacement of these plutons, extrusive
equivalents were removed by erosion prior to the timing of basin deposition, or that there was a negligible
sediment contribution from the area that Cretaceous plutons currently occupy. Biotite Ar/Ar thermochronol-
ogy shows that the Cretaceous plutons in the Yidun terrane passed through the blocking temperature at
~95 Ma, about 10 Myr after emplacement at ~105 Ma (Reid et al., 2007), presumably negating hypotheses
that require Cretaceous plutons to remain unexposed. We interpret the lack to Cretaceous grains to be a con-
sequence of geographic position at the time of Mula basin development because the Haizi Pluton is located
to the west of the Mula basin and paleoflow measurements illustrate westward directed sediment transport.

Eocene and Triassic age εHf results from the Mula basin suggest the strata are sourced from Triassic Yidun
Group and Triassic Yidun Arc rocks, which in turn were derived from Paleozoic and Neoproterozoic crust.
εHf data from Yidun Group turbidites reveal magmatic reworking at ~2,000 and ~2,500 Ma, with the addition
of juvenile material at 800–980 Ma, coinciding with episodic magmatism and crustal growth of the South
China block (Yangtze) (Sun et al., 2009; Wang et al., 2010, 2013; Wang & Zhou, 2012). This correlation, along
with an interpretation that the Zhongza Massif is of Yangtze block affinity (Chang, 2000; Song et al., 2004;
Wang et al., 2013), would imply that Mula basin strata are primarily derived from recycling of the Yidun
Group, which in turn was sourced from erosion of the Zhongza Massif.

The overwhelming amount of Late Triassic zircon grains suggest that the primary source for Mula sediment
was the Daocheng Pluton, with older populations correlating to populations present in Triassic Yidun Group
turbidites. A local sediment source is consistent with other studies of Paleogene nonmarine strata through-
out the plateau (i.e., Horton et al., 2002; Spurlin et al., 2005; Studnicki-Gizbert et al., 2008), which show that in
and north of the Qiangtang terrane, deposition was predominantly nonmarine and constricted to relatively
small local drainage catchments.

6.4. Broader Implications

The tectonic development of the eastern Tibetan Plateau remains a central component to understanding the
evolution of high topography and testing tectonic models. While studies indicate that the central plateau was
at similar elevations as today in Eocene time (Hoke et al., 2014; Tang et al., 2017) and that the northern pla-
teau experienced Eocene deformation and crustal thickening (Clark et al., 2010), uncertainties still remain per-
taining to the eastern Tibetan Plateau. Since the onset of continent-continent collision between India-Asia,
the eastern Tibetan Plateau has undergone multiple phases of deformation associated with the southeastern
extrusion of crustal material. A thermochronology signature of slow Eocene cooling, followed by two rapid
cooling episodes in early Oligocene and late Miocene time, presumably corresponds to the deformational
episodes associated with crustal thickening (Zhang et al., 2016). This study illustrates that the Mula basin
developed in a contractional tectonic setting (Figure 11), most likely in early Oligocene time, thereby brack-
eting the timing of and style of nonmarine deposition and deformation in the southern Yidun terrane. From a
geodynamic perspective this allows for a better understanding of the timing of transition between contrac-
tional and strike-slip deformation in the eastern Tibetan Plateau.

7. Conclusions

Our investigation of the Mula basin, in the southern Yidun terrane, yields the following conclusions:

1. The Mula basin consists of ~1,000 m of nonmarine strata deposited in alluvial environments. Basin strati-
graphic architecture can be separated into three units based primarily off of grain size that illustrates an
overall fining upward trend.

2. The west boundary of the Mula basin is defined by unconformable contacts between nonmarine strata
and the underlying Triassic Daocheng Pluton and Triassic Yidun Group rock. The Mula basin is bound
to the east by a thrust fault that places Triassic Daocheng Pluton and Triassic Yidun Group rock on top
of nonmarine strata. An intrabasin thrust fault, which exhibits a parallel trend to the basin-bounding fault,
places older nonmarine strata on top of younger nonmarine strata in the southern part of the Mula basin.
These structural and stratigraphic relationships indicate that the Mula basin developed in a contractional
tectonic regime and that deformation occurred after deposition of nonmarine strata.

3. A maximum depositional age of 45.5 ± 0.5 Ma, calculated from the youngest detrital zircon population (s),
brackets an Eocene or younger age for the Mula basin. Combined with structural observations and
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previously reported thermochronology results, an Oligocene age for the development of the Mula basin is
proposed.

4. Field clast counts, thin section petrology, detrital zircon geochronology, and εHf isotope results show that
the Mula basin strata were primarily sourced from local, relatively small, drainage systems consisting of
Triassic Daocheng Pluton and Triassic Yidun Group rocks.

5. The Mula basin developed as a far-field, upper-crustal response associated with the plateau outgrowth
resulting from the India-Asia collision, prior to the onset of dominant strike-slip deformation throughout
the eastern Tibetan Plateau.
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