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A B S T R A C T

Weathering, as an important process in the earth surface system, can be significantly influenced by tectonics and
climates over long time scales. Here, we use mineralogical, petrographic and geochemical data of a paleo-
weathering profile developed on basement granodioritic rocks of northern Qaidam basin, northern Tibet, to
reconstruct early Eocene weathering conditions and to discuss how paleoclimates and tectonics dominated the
weathering process. The results indicate that neoformed mineral phases in weathering products are dominated
by smectite, and the profile has overwhelmingly low chemical index of alteration values (ca. 51–59) and sig-
nificantly decreasing micropetrographic index values (from 25.0 to 0.2) from bottom to top. These findings
suggest that the basement rocks experienced mild chemical weathering but relatively intensive physical
weathering. We favor that non-steady-state weathering, in which mechanical erosion rates compare favorably
with rates of chemical weathering, prevailed in northern Tibet during the early Eocene. The weathering con-
ditions were likely an integrated response to active tectonism and dry climates at that time. Furthermore,
chemical element mobility evaluation demonstrates that most of large ion lithophile elements and light rare
earth elements (LREEs) of granodioritic rocks are quite active during weathering and can be easily leached even
under mild chemical weathering conditions. Significant mass loss of Al and LREEs in upper weathered samples
probably reflects acidic weathering conditions, which were likely due to extremely high atmospheric CO2 level
during the early Eocene. This study, from the unique perspective of weathering process, suggests that intensive
deformation and rapid tectonic erosion occurred in northern Tibet during the early Eocene, as a far-field re-
sponse to the India-Eurasia collision. It also agrees with warm and relatively dry climates, which were likely
attributed to the global greenhouse climates and the Paleogene planetary-wind-dominant climate system in Asia,
respectively.

1. Introduction

Chemical weathering is a crucial process to control the evolution of
the earth surface system, by shaping landscapes, supplying nutrients
and trace elements from lithosphere to biosphere and regulating global
chemical cycles. Silicate weathering in particular effects the global
carbon cycle and thereby global climate through the consumption of
atmospheric CO2 that is eventually stored as carbonates in the oceans
(Berner, 1995; Kump et al., 2000). Therefore, chemical weathering of
silicate rocks is generally regarded as an important sink of atmospheric
CO2 over geologic timescales and has attracted considerable attention
for decades (e.g. White and Blum, 1995; Gaillardet et al., 1999; West

et al., 2005; Misra and Froelich, 2012).
It is well accepted that climatic (e.g. temperature, precipitation and

runoff), tectonic (e.g. relief, uplift, exhumation and physical erosion)
and internally lithological (e.g. ultramafic, mafic and felsic) factors
serve as principal controls on weathering process over different time
scales (e.g. Raymo and Ruddiman, 1992; Bluth and Kump, 1994; White
and Blum, 1995; Riebe et al., 2001; Jacobson et al., 2003; West et al.,
2005; Dixon et al., 2012). In this case, paleoweathering study can offer
a unique perspective to evaluate and reconstruct tectonic and climatic
conditions during the earth's history.

Several approaches can be applied to investigate paleoweathering
and associated controlling factors. While elemental and isotopic
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geochemistry data of paleo-seawater have been usually used to re-
construct the global chemical weathering rates during the earth's his-
tory (Hodell et al., 1991; Lear et al., 2003; Foster and Vance, 2006;
Misra and Froelich, 2012), ancient siliciclastic sediments have been
often taken as research objects to evaluate paleoweathering intensity of
their source regions (e.g. Nesbitt and Young, 1982; McLennan, 1989;
Condie, 1993; Nesbitt et al., 1997; Jian et al., 2013b). However, caution
should be exercised while using sediment compositional (e.g. miner-
alogical and geochemical) proxies to track paleoweathering history,
since several factors in addition to chemical weathering might influence
sediment compositions during the whole source-to-sink process, such as
complicated paleodrainage system, contribution of multiple sources,
sorting of detrital minerals and diagenetic alteration (Condie et al.,
1995; Fedo et al., 1995; Nesbitt et al., 1996; Garzanti et al., 2010; Jian
et al., 2013b). Study on a paleoweathering profile could avoid these
effects, which is able to provide in-place data for evaluating weathering
conditions during the development of the profile. Hence, paleo-
weathering profiles have been often concerned and investigated to re-
construct tectonic and climatic history during the earth evolution (e.g.
Holland and Beukes, 1990; Nedachi et al., 2005; Driese et al., 2011).

The early Eocene, commonly referred to as the Early Eocene
Climatic Optimum (Zachos et al., 2001), was a crucial period during the
Cenozoic. The earth then was characterized by high atmospheric CO2

levels (> 1000 ppmv) (Pagani et al., 2005; Lowenstein and Demicco,
2006) and greenhouse climates (Sloan and Rea, 1995; Zachos et al.,
2001, 2008). Meanwhile, the Indian and Eurasian plates collided (at ca.
55–50Ma), which has been regarded as one of the most significant
tectonic events on the earth during the Cenozoic. Subsequently in-
tensive deformation, crustal thickening and uplift generated high-relief
topography over a region of approximately 3 million km2, i.e. the Ti-
betan Plateau (Yin and Harrison, 2000). It is well known that the early
Eocene northern Tibet had regionally dry climates and was in active
tectonic settings (e.g. Wang et al., 1999; Sun and Wang, 2005; Yin et al.,
2008a; Clark et al., 2010; Zhuang et al., 2011; Yuan et al., 2013; Jian
et al., 2018). Although previous studies suggest that intensified che-
mical weathering of continental silicates prevailed and the ocean en-
vironment was drastically perturbed during the Paleocene–Eocene
thermal maximum (Robert and Kennett, 1994; Zachos et al., 2005),
how the climates and tectonics controlled the early Eocene weathering
in the northern Tibet remains elusive questions.

In this study, we focus on a well-preserved granodioritic paleo-
weathering profile underlain by Cenozoic sedimentary rocks of the
Qaidam basin, northern Tibet (Fig. 1), and present mineralogical, pet-
rographic and geochemical data and corresponding interpretations. The
aims are to: (1) evaluate weathering conditions in northern Tibet
during the early Eocene and (2) explain how the tectonics and paleo-
climates influenced surface weathering over a geologic timescale.

2. Geological setting

The Cenozoic Qaidam basin is the largest sedimentary basin in the
northern Tibetan Plateau and sits 2.7–3 km above sea level. It is cur-
rently located in a very active tectonic background and is bounded by
three large mountain ranges (i.e. Eastern Kunlun, Qilian and Altun
Mountains) which stand up to 5 km above sea level (Fig. 1A–B). The
formation of the current basin-range system is a result of on-going
convergence between the Indian and Eurasian plates (Yin and Harrison,
2000; Yuan et al., 2013). Although most structures in the north margin
of the plateau have been proven to initiate since the middle Miocene,
evidence accumulated recently suggests that widespread deformation
and rapid exhumation occurred during the early Eocene (Yin et al.,
2008a; Clark et al., 2010; Zhuang et al., 2011; Jian et al., 2018) and the
northern boundary of the plateau was established once the India-Eur-
asia collision commenced (e.g. Yuan et al., 2013 and reference therein).

The current Qaidam basin, as a part of the western China, has dry
and cold climates due to high elevations, long distances away from

oceans and the Asia monsoon system (Molnar et al., 1993; An et al.,
2001; Sun and Wang, 2005). Previous pollen, paleobotanical, sedi-
mentological and geochemical evidence demonstrates that the Eocene
Qaidam basin had arid to semiarid climates (Wang et al., 1999; Sun and
Wang, 2005; Wang et al., 2011; Guo et al., 2017). Evaporite layers
(such as halite and gypsum) are widely distributed in the Eocene se-
dimentary strata of the basin (Wang et al., 2011; Guan and Jian, 2013;
Guo et al., 2017). The regionally dry conditions are commonly sug-
gested to be governed by the Paleogene planetary-wind-dominant cli-
mate system, which resulted in a zonal arid band extending from East
China to Central Asia (Liu and Guo, 1997; Sun and Wang, 2005; Zhang
et al., 2007). Besides, given the global greenhouse climate (e.g. Sloan
and Rea, 1995; Zachos et al., 2001, 2008) and the paleo-latitude of ca.
30° N based on paleomagnetic measurements (Wu et al., 1997), the
Qaidam basin probably had relatively warm climates during the early
Eocene.

The Paleogene strata of the Qaidam basin include the following
stratigraphic units: 1) Lulehe Formation (E1+2, ~53.5–~46Ma); 2) Xia
Ganchaigou Formation (E3, ~46–~35.5Ma, can be divided into lower
and upper parts, i.e., E31 and E32); 3) Shang Ganchaigou Formation (N1,
~35.5–~22Ma) (e.g. Jian et al., 2013a; Ji et al., 2017). Both outcrop
geological mapping and hydrocarbon exploration drilling data indicate
that the Paleogene mainly unconformably lies on Jurassic–Cretaceous
sedimentary strata or contacts with pre-Cenozoic basement by faults
(Guan and Jian, 2013 and reference therein). Although E1+2 strata are
widely distributed in the basin (e.g. Yin et al., 2008b), the Maxian
paleohigh (Fig. 1C), where the pre-Cenozoic crystalline basement is
directly underlain by E31 strata (Fig. 1D; Fig. 2), is supposed to be one
of the few exposed areas within the basin area during the early Eocene
(Guan and Jian, 2013; Jian et al., 2018). Weathered basement crys-
talline rocks and overlying E31 sedimentary rocks were fortunately and
continuously collected along with the drilling of the hydrocarbon ex-
ploration Well MB14 in this area (Fig. 1C–D). Hence, rock cores from
Well MB14 provide ideal materials for early Eocene weathering profile
investigation.

3. Sample collection and analytical methods

The obtained weathering profile is 3.5m in length and can be
macroscopically divided into four layers with different alteration de-
grees (Fig. 2), including a 0.4m saprolite layer (Layer 4), fractured and
slightly weathered bedrock (1.1 m, Layer 3), slightly weathered to fresh
bedrock (1.5 m, Layer 2) and fresh bedrock (0.5 m, Layer 1). Eight
samples were collected along the weathering profile (Fig. 2).

The samples were made to thin-sections for petrographic study.
Modal analysis of seven selected samples was carried out using point-
counting method and ca. 400 points were counted for each sample.
Samples for mineralogical and geochemical analysis were first crushed
and then powdered to 200 mesh with an agate mortar.

A Rigaku Ultima IV X-ray diffractometer (XRD) at Xiamen
University was used for whole-rock mineral and total clay fraction
(< 2 μm) composition analysis. The< 2 μm particles were separated
following the Stoke's law and were concentrated using a centrifuge. The
resulting pastes were then air-dried on glass slides before XRD scan-
ning. Each sample was continuously scanned under 40 kV, 30mA, wave
length of 1.54 and step width of 0.02° conditions. Scanning speeds were
4°/min and 2°/min for whole rock analysis and<2 μm fraction ana-
lysis, respectively. A MDI jade software was employed for data
smoothing, peak picking and phase identification.

Major element compositions were determined by an X-ray fluores-
cence (XRF) spectrometer at the Research Institute of Uranium Geology
(Beijing). The sample powders and lithium metaborate flux were mixed
in 1:10 and fused at 1050 °C in a PteAu crucible. The well-mixed melt
was cooled and then a glass disk was made for XRF analysis. The loss on
ignition (LOI) values were obtained by measuring the weight loss after
heating the sample at 980 °C.
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Trace and rare earth element compositions were analyzed using an
ELEMENT ICP-MS at the Research Institute of Uranium Geology
(Beijing). Prior to the mass spectrum analysis, the sample powders were
accurately weighed (25mg) and completely dissolved by HF-HNO3-

HClO4 mixture acid solutions in high-pressure-resistant Teflon beakers.
The detailed analytical procedures were given in Jian et al. (2013b).
For the major, trace and rare earth element geochemical analysis, in-
ternational standards of GSR-4 and GSR-5 were used to monitor
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analytical quality. The accuracy was estimated to be<2% for all major
element oxides (except MnO (4%)),< 10% for all trace elements except
Co (19%) and Be (15%).

4. Results

4.1. Petrography

Petrographic observations indicate that the profile is composed of
coarse-grained granodioritic rocks. Fresh samples primarily consist of
plagioclase, quartz, biotite and K-feldspar, while accessory minerals
include hornblende, sphene, zircon and chlorite. Samples from Layer 2
are characterized by slight plagioclase sericitization (Fig. 3E–F), while
samples from Layer 3 are featured by different degrees of plagioclase
sericitization and abundant microfractures and voids (Fig. 3B–D). The
saprolite sample (i.e. Sample MB14–01) shows strong alterations
(Fig. 3A) but the granodioritic texture remains. Point counting-based
modal compositions of the analyzed samples are shown in Table 1. The
results reveal relatively low abundances of plagioclase and biotite, and
high fracture proportions in the upper samples. Sample MB14–02,
which is located at the top of Layer 3, has the most abundant (31.6%)
microfractures and voids (Table 1, Fig. 3B).

4.2. Mineral compositions based on XRD analysis

The whole-rock XRD analysis results of six selected samples and
total clay fraction (i.e. < 2 μm) XRD patterns of three upper samples are
shown in Fig. 4. Diffraction patterns of the whole-rock powder samples
show consistently strong peaks of quartz and plagioclase in lower
samples, and demonstrate decrease of plagioclase abundances in upper
weathered samples. Furthermore, the upper samples (in particular
Sample MB14–01) have new peaks (d=9.1 Å; Fig. 4A), which can be
identified as barrerite (Fig. A1 in the Supplementary Material). The<
2 μm fractions of the analyzed upper samples are dominated by
smectite, with subordinate illite (Fig. 4B).

4.3. Major element compositions

Major element geochemical data are shown in Table A.1 (in the
Supplementary Material) and are illustrated with depths in Fig. 5A. The
fresh and slightly weathered to fresh bedrocks have high SiO2
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(65.11–65.33 wt%), Al2O3 (17.04–17.50 wt%), CaO (3.94–4.31 wt%)
and Na2O (3.95–4.11 wt%) contents and low Fe2O3(T), K2O, MgO,
MnO, TiO2 and P2O5 contents, as well as relatively low LOI values
(1.43–1.71 wt%). All the samples have relatively constant Ti and P
contents. The upper samples of the profile have higher LOI values (up to
5.31 wt%) and show significant depletion in Ca and Na, slight depletion
in Al, and obvious enrichment of Fe and Mn (Fig. 5A).

4.4. Trace- and rare earth element compositions

Trace- and rare earth elemental data are shown in Table A.1 (in the
Supplementary Material). Fig. 5B indicates the variations of re-
presentative trace and rare earth element (REE) contents with sampling
depths. The results demonstrate that the upper weathered samples
display remarkable depletion in Be, Sr and Ba, while the contents of Th,
Sc, Cr, Nb, Y and most REEs (except La and Ce) have no obvious

correlations with depths (Figs. 5–6). It is worth noting that some trace
elements (e.g. Th, Sc, Nb, Eu, Zr and Hf) reveal highly variable abun-
dances in the three slightly weathered to fresh bedrock samples (Table
A.1). Although the analyzed samples have fluctuant total contents of
REEs (64.8–122.7 ppm), the chondrite-normalized patterns are roughly
consistent (except Ce) among the samples of different depths (Fig. 6).
Compared with the lower samples, the upper samples show positive Ce
anomalies (chondrite-normalized, with the Ce/Ce⁎ ranges from 1.19 to
1.50) and have relatively low La contents and LaN/YbN values (Table
A.1).

5. Interpretation and discussion

5.1. Alteration and weathering intensity of the early Eocene weathering
profile

Petrographic observation results (Figs. 2–3) indicate well-developed
macro-cracks and intragranular microfractures in the upper weathered
samples of the profile, implying relatively extensive disintegration and
thus intensive physical alteration of the basement granodiorite. The
decrease of plagioclase in the upper weathered samples and significant
peaks of smectite in the< 2 μm fraction XRD patterns (Fig. 4) suggest
that conversion of plagioclase to smectite was likely to dominate the
chemical weathering process on the profile. It is well known that
smectite can be one kind of neoformed weathering products of plagi-
oclase, although other mineral phases, such as kaolinite, gibbsite and
several forms of halloysite, can also be involved in (Banfield and
Eggleton, 1990; Wilson, 2004), depending on weathering conditions
and degrees (e.g. Aoudjit et al., 1995; Nesbitt et al., 1997). Further-
more, barrerite, which is known as a sodium-rich zeolite (the ideal
chemistry is (Na, K, Ca)2Al2Si7O18·7H2O) of the stilbite group, is present
in the upper layers of the profile (Fig. 4A). The barrerite is extremely
uncommon in the world and is usually known to form under post-
magmatic hydrothermal alteration (e.g. Ghobarkar et al., 1999; Pe-
Piper, 2000; Fuentes et al., 2004; Gottardi and Galli, 2012). In addition,
it can also be formed by direct crystallization in the presence of Na-rich
seawater (e.g. Di Renzo and Gabelica, 1997). In this study, we infer that
the barrerite was generated due to possible Na-rich fluids percolating
through upper part of the bedrock, since the Cenozoic northern Qaidam
basin was in continental environments (Zhuang et al., 2011; Guan and
Jian, 2013) and we can't find any evidence to support post-magmatic
hydrothermal alteration.

Weathering indices are useful tools in characterizing weathering
profiles and quantifying the degree of weathering. Various weathering
indices based on petrographic and geochemical data have been pro-
posed by many researchers for over the years (e.g. Irfan and Dearman,
1978; Nesbitt and Young, 1982; Fedo et al., 1995; Price and Velbel,
2003 and references therein). The Micropetrographic Index (Ip), de-
vised by Irfan and Dearman (1978), is defined as a ratio among un-
weathered primary minerals and weathered minerals (also including

Table 1
Petrographic modal compositions and micropetrographic index (Ip).

Sample Modal compositions based on point-counting data Micropetrographic index calculation

Qtz Pl Kfs Bt Others Microfractures and voids Unweathered Weathered Ip

MB14–01 25.3 20.9 2.2 7.7 30.8 13.2 18.7 68.1 0.23
MB14–02 24.1 26.6 2.5 8.7 6.5 31.6 21.5 46.8 0.27
MB14–03 25.0 50.0 4.3 6.5 2.2 12.0 41.3 46.7 0.70
MB14–04 20.0 56.0 3.0 12.0 3.0 6.0 74.0 20.0 2.85
MB14–06 22.0 58.7 1.8 11.0 1.8 4.6 93.6 1.8 14.57
MB14–07 21.1 56.8 3.2 12.6 2.1 4.2 93.7 2.1 14.83
MB14–08 21.2 55.8 3.8 12.5 3.8 2.9 96.2 1.0 25.00

The modal data are in volume percent. The micropetrographic index (Ip) was proposed by Irfan and Dearman (1978). Qtz: quartz, Pl: plagioclase, Kfs: K-feldspar, Bt:
biotite, Unweathered: unweathered primary minerals, Weathered: weathered minerals including neoformed phases, Ip=unweathered/(weathered+microfractures
and voids). Others mainly include accessory minerals (e.g. hornblende, sphene, zircon and chlorite) and neoformed minerals.
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secondary phases together with microcracks and voids), and thus tends
to decrease as far as weathering goes on. The Chemical Index of Al-
teration (CIA), proposed by Nesbitt and Young (1982), is calculated as
the ratio [Al2O3/(Al2O3+CaO+Na2O+K2O)*100] in molecular
proportions, where CaO represents Ca content in silicate minerals only.
The CIA has been widely used to quantify degree of chemical weath-
ering for (paleo-) weathering profiles and to reconstruct source region
chemical weathering conditions for ancient and modern sediments. The
Plagioclase Index of Alteration (PIA), is calculated as the ratio
[(Al2O3–K2O)/(Al2O3+CaO+Na2O–K2O)∗100] in molecular propor-
tions, was proposed by Fedo et al. (1995) to unravel the effects of K-
metasomatism in sedimentary rocks and paleosols. Since the fresh
bedrock samples have abundant plagioclases (Table 1, Fig. 3), the PIA is
favored for chemical weathering evaluation of plagioclase in this study.
Both the CIA and PIA values tend to increase along with increasing
weathering degrees and these ratio calculations yield values of ca. 50
for fresh rocks and values close to 100 for final products of weathering,
i.e. clay minerals such as kaolinite, chlorite and gibbsite. Furthermore,
the ratios between plagioclase and quartz contents (Pl/Qtz ratios, based
on petrographic data) are also calculated.

The results are shown in Table 1 and Fig. 7. The Pl/Qtz ratios, CIA
and PIA values vary from 2.8 to 0.83, from 50.8 to 59.0 and from 50.9
to 60.4, respectively. Note that the CIA and PIA values of the uppermost
sample (i.e. MB14–01) might be a little bit underestimated because the
presence of barrerite (barrerite has CIA and PIA values of ca. 50) which
is possibly due to Na-rich fluid percolation rather than silicate weath-
ering. Although the point-counting-based Pl/Qtz ratios display obvious
decrease from bottom to top weathered samples, the petrographic re-
sults indicate slightly chemical alterations on the plagioclase (Fig. 3).

The upper weathered samples only have slightly higher CIA and PIA
values than the fresh bedrock sample, implying that the basement
crystalline rocks underwent mild chemical weathering during the early
Eocene. The presence of smectite, as the major neoformed mineral in
weathering products (Fig. 4B), also reveal immature chemical weath-
ering of plagioclase (Banfield and Eggleton, 1990; Wilson, 2004).
However, the Ip values of the samples vary from 14.83 to 0.23, and the
upper weathered samples have abundant intragranular microfractures
and voids and show much lower Ip values than the fresh bedrock
sample (Table 1; Fig. 7). Note that both physical and chemical weath-
ering can result in decrease of the Ip values (Irfan and Dearman, 1978).
This means physical weathering (such as mechanical breakdown and
disintegration of rocks) contributed most extent of the basement
weathering and resulted in much lower Ip values of the upper samples
(Fig. 7). Collectively, we conclude that the basement granodioritic
rocks experienced mild chemical weathering but relatively intensive
physical weathering during the early Eocene.

5.2. Evaluation of chemical element mobility

We assume no chemical loss or gain for fresh bedrock. Elements
such as Zr and Ti are usually regarded to be chemically immobile
during bedrock weathering (Nesbitt, 1979; Braun et al., 1993). Tau (τi)
values, which represent the fractional mass gain (τ > 0) or loss
(τ < 0) relative to unweathered bedrock material, are commonly used
to quantify the changes in elemental concentrations that occur with
weathering (e.g. Dixon et al., 2012; Berger et al., 2014). τi values can be
calculated as:
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Fig. 5. (A) Vertical variations of the major element compositions (in wt%) along the paleoweathering profile. (B) Vertical variations of representative trace- and rare
earth element compositions (in ppm) along the profile. The vertical axis indicates the distance below the surface of the profile.
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where Ti is selected to represent an immobile element, isample and
ibedrock are concentrations of element i in the weathered samples and
unweathered bedrock samples, respectively, and Tisample and Tibedrock
are the corresponding titanium concentrations. Then, a negative τ value
indicates that the element is lost during weathering, a τ value close to
zero implies no loss or gain, whereas a positive τ value indicates a gain
of the element. Note that τ values close to −1 means almost 100%
chemical depletion during weathering.

The τ values of major, trace and rare earth elements for the
weathered samples are shown in Table A.2 (in the Supplementary
Material) and Fig. 8 (because of possible Na-rich fluid percolating, the τ
values of Sample MB14–01 might have high uncertainties). The results
show that Na and Ca have significantly negative τ values for the upper
weathered samples and thus were mobile and leached during the early
Eocene weathering. Elements Fe, Mg and Mn have positive τ values
(Fig. 8), indicating enrichment of these elements in the upper layers,
which is probably attributed to previous exposure and oxidation. Most
of large ion lithophile elements (LILEs), such as Sr, Ba and Cs, have

distinctly negative τ values for those weathered samples (Fig. 8), im-
plying significantly chemical losses even under mild chemical weath-
ering.

Although the weathered samples have roughly similar REE patterns
with the fresh bedrock sample (Fig. 6), the light rare earth elements
(LREEs), except Ce, have significantly more negative τ values (for in-
stance, τ values of La are as low as −0.3 to −0.5) than middle and
heavy rare earth elements (MREEs and HREEs) (Table A.2 and Fig. 8).
This means that LREEs in granodioritic rocks are quite active and can be
easily leached even under mild chemical weathering conditions,
whereas MREEs and HREEs are relatively immobile. This finding im-
plies that caution needs to be taken when using REE patterns (LaN/YbN)
or LREE-related proxies (such as La/Th (Floyd and Leveridge, 1987)
and SmeNd isotopes (McLennan et al., 1993)) to trace sedimentary
provenance. For instance, the LaN/YbN and La/Th values display sig-
nificant decreases with enhanced chemical weathering (Fig. 9). It is
noteworthy that Ce has significantly higher τ values than La and Pr,
indicating different geochemical behaviors from other LREEs (Fig. 8).
The geochemical results demonstrate nearly no Ce anomaly (chondrite-
normalized) in the fresh bedrock sample, while the upper weathered
samples have obviously positive Ce anomalies (Table A.1 and Figs. 6,
9). The Ce/Ce* values of the analyzed samples show highly positive
correlations with Mn and Fe contents (Fig. A2 in the Supplementary
Material), which might suggest the preferential adsorption or copreci-
pitation of CeO2 on FeeMn (hydro)oxides coatings in oxic environ-
ments compared to La and Pr (Braun et al., 1990; Mongelli, 1993; Su
et al., 2017). Therefore, we favor the positive Ce anomalies are due to
surface exposure and oxidation rather than silicate weathering. It is also
consistent with previous studies on several modern granitoid weath-
ering profiles which indicate that surface granitoid rocks have much
higher Ce/Ce* values than the lower granitoid rocks, although the
lower bedrocks experienced intensive chemical weathering (e.g. Bao
and Zhao, 2008). By contrast, the τ values of Eu varies from −0.2 to 0,
revealing very slightly chemical loss and have similar ranges with Sm
and Gd. This implies that Eu is reasonably inactive during mild
weathering of plagioclase. It is reinforced by the relationships between
Eu/Eu* and CIA values, which indicate no changes of Eu/Eu* with
increasing CIA values (Fig. 9).

5.3. Tectonic and paleoclimatic implications

As mentioned above, the early Eocene weathering profile under-
went relatively intensive physical but mild chemical weathering al-
teration. Dominant smectite in neoformed weathering products
(Fig. 4B) and low CIA and PIA values (Fig. 7) suggest that the weath-
ering profile was in Zones III–IV of an idealized weathering profile, as
shown in Fig. 10A. And the analyzed samples are plotted close to the
regions of Zones III–IV in the A-CN-K diagram (Fig. 10B). We favor that
the uncoupled chemical and physical weathering conditions were due
to active tectonism during the early Eocene. This can be explained as
follows. In tectonically active regions, mechanical erosion rates gen-
erally compare favorably with rates of chemical weathering and non-
steady-state weathering occurs (Nesbitt et al., 1997). In this case, in-
tensely weathered profiles cannot be developed, because the profile
materials are eroded before chemical weathering can produce the mi-
neralogy of highly weathered bedrock. Such conditions result in pro-
duction of sediments with mineralogy and geochemistry reflecting in-
cipiently weathered zones of profiles (Nesbitt et al., 1997). The
published geochemical data of the early Eocene sedimentary rocks in
the northern Qaidam basin (Jian et al., 2013b; Song et al., 2013), which
indicate low CIA and PIA values, exactly suggest overwhelmingly mild
chemical weathering intensities of their source regions (Fig. 10B). This
means that the mild chemical weathering was a regional rather than a
local condition in northern Tibet. It is well acceptable that the northern
Tibet was located in active tectonic settings during the early Eocene and
deformation initiated across the north margin of the plateau shortly
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after the India-Eurasia collision (e.g. Yin et al., 2008a; Clark et al.,
2010; Duvall et al., 2011; Zhuang et al., 2011). And the early Eocene
deformation in northern Tibet was a fast and short-lived event (Jian
et al., 2018), which was probably a far-field response to the collision
and thus made for intensive uplift and rapid erosion at that time.

Furthermore, the mild chemical weathering conditions could also be
resulted from relatively dry climates (i.e. low supply of water) in
northern Tibet during the early Eocene. The dominant smectite in the
neoformed weathering products (Fig. 4B) also supports the dry cli-
mates, which tend to create poorly-drained conditions favorable for
smectite formation during the weathering (e.g. Istok and Harward,
1982; Aoudjit et al., 1995; dos Santos et al., 2017). There was a Pa-
leogene zonal arid band extending from East China to Central Asia due
to a planetary-wind-dominant climate system (Liu and Guo, 1997; Sun
and Wang, 2005; Zhang et al., 2007), and the northern Tibet was in-
volved in. Previous pollen analysis results of the Qaidam basin de-
monstrated relatively high percentages of xerophytic taxa in the early
Eocene sedimentary rocks (Wang et al., 1999), implying relatively dry

climates prevailed during the weathering time of the analyzed profile.
The dry climate condition is also supported by the widespread lacus-
trine carbonates (e.g. dolomite) and evaporite sediments (e.g. gypsum
and halite) in the early Eocene strata of the basin (Wang et al., 2011;
Guan and Jian, 2013; Guo et al., 2017).

The chemical loss of Al during weathering, as indicated by a de-
creasing trend of Al/Ti ratios with chemical weathering intensity
(Fig. 9), might reveal low pH values for the early Eocene weathering
solution (Nesbitt and Muir, 1988). This conclusion is also reinforced by
the highly-leached LILEs (e.g. Sr, Ba and Cs) and the mobilized LREEs in
the upper weathered layers (Figs. 8–9). Nesbitt (1979) has proposed
that some REEs can be removed into solution from granodioritic rocks
under acidic weathering conditions. Contributions of soil waters and
organic acids produced by vegetation were possibly insignificant for the
weathering solution, since soil and vegetation was undeveloped in the
profile (Fig. 2). Rather, the acidic weathering conditions were most
likely caused by extremely high atmospheric CO2 level during the early
Eocene (Sloan and Rea, 1995; Pearson and Palmer, 2000; Pagani et al.,
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2005; Lowenstein and Demicco, 2006). It is widely recognized that the
atmospheric pCO2 of early Eocene was probably as high as 1000 to
2000 ppmv (e.g. Pagani et al., 2005; Lowenstein and Demicco, 2006)
and the greenhouse climate and pCO2 were well coupled during that
time (Zachos et al., 2008; Hyland and Sheldon, 2013). However, the
mild chemical weathering degree of the analyzed profile (Fig. 7) sug-
gests that the warm climate (i.e. high temperature) was probably not
the major controlling factor for the early Eocene weathering in the

northern Tibet.

6. Conclusions

The mineralogy, petrography and elemental geochemistry in-
vestigation of the granodioritic paleoweathering profile reveals the
following conclusions:
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1) Weathering indices based on geochemical data and dominant
smectite in neoformed mineral phases indicate that the basement
crystalline rocks underwent quite mild chemical weathering,
whereas petrographic indices suggest that physical weathering
played a significant role on the whole weathering process. This
implies remarkable discrepancy between physical and chemical
weathering alteration on the basement rocks. It is suggested that
non-steady-state weathering, in which mechanical erosion rates
compare favorably with rates of chemical weathering, prevailed in
northern Tibet during the early Eocene.

2) This study provides a case to evaluate chemical element mobility of
granodiorite weathering. The results indicate that most of LILEs,
such as Sr, Ba and Cs, display significantly chemical loss during
weathering. LREEs in granodioritic rocks are quite active and can be
easily leached even under mild chemical weathering conditions,
therein Ce shows positive anomalies due to surface oxidation. These
findings imply that caution needs to be exercised when using LREE-
related proxies to trace sedimentary provenance.

3) Large chemical losses of Al, LILEs and LREEs suggest an acidic
weathering condition, which was probably a response to the ex-
tremely high atmospheric CO2 level and greenhouse climates during
the early Eocene. However, the regionally uncoupled chemical and
physical weathering conditions were most likely attributed to dry
climates governed by the Paleogene planetary-wind-dominant cli-
mate system and intensive tectonic deformation and erosion as a far-
field response to the India-Eurasia collision.
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