
ORIGINAL PAPER

Metaproteomic analysis of bacterial communities in marine
mudflat aquaculture sediment

Rui Lin1,2,4 • Xiangmin Lin2,3 • Tingting Guo2,3 • Linkun Wu2,3 • Wenjing Zhang1,6 •

Wenxiong Lin2,3,5

Received: 16 March 2015 / Accepted: 12 June 2015 / Published online: 14 July 2015

� Springer Science+Business Media Dordrecht 2015

Abstract Bacteria living in marine sediment play crucial

roles in the benthic–pelagic interface coupling process.

However, the complexity of the marine environment and

the abundance of interfering materials hamper metapro-

teomic research of the marine mudflat environment. In this

study, a modified sequential protein extraction method was

used for marine mudflat sediment metaproteomic investi-

gation. For marine sediment samples in cultured clam

mudflat, more than 1000 protein spots were visualized in a

two-dimensional gel electrophoresis map and 78 % of 194

randomly selected spots were successfully identified by

mass spectrometry. We further applied this method to

compare long-term clam aquaculture and natural mudflat

sediment and identified 53 altered proteins from different

microbe resources, which belonged to different functional

categories or metabolic pathways. We found that proteins

involved in stress/defense response process, ATP regener-

ation and protein folding more inclined to increase

abundance while arginine biosynthesis and signal trans-

duction process related proteins preferred to decrease in

clam cultured mudflat sediment. Meanwhile, proteins were

abundant in pathogens of bivalves, such as Vibrio and

Photobacterium, and decreased in Acinetobacter, after

about 8 months clam cultured. Furthermore, the terminal

restriction fragment length polymorphism assay was per-

formed to compare microbial community composition

between sediments mentioned above. Results showed that

the top three enrich genera in natural sediment were Cy-

tophaga, Butyrivibrio and Spirochaeta, while Cytophaga,

Spirochaeta and Azoarcus were found enrichment in long-

term mudflat aquaculture sediment.

Keywords Marine mudflat sediment � Metaproteomics �
Mudflat aquaculture � Bacterial community

Introduction

Mudflat accounts for a certain proportion of marine sedi-

ment and is considered ideal for the development

of aquaculture (Karthik et al. 2005). It is well known that
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mudflat aquaculture is developing rapidly and becoming a

major mainstay in many coastal cities. However, owing to

the extreme physical and chemical characteristics of mar-

ine sediment, the biota of this vast habitat is largely

unknown, especially for microbes which play crucial roles

in the benthic–pelagic interface coupling process and fuel

material cycling (Findlay and Watling 1998). To date, the

extensive aquaculture has resulted in decreased produc-

tivity of food and environmental deterioration of natural

resource, which contribute to economic loss and marine

pollution (Gray 2002; Wang and Wall 2010; Wang et al.

2010). The stability of the mudflat sediment microbial

community likely has a large effect on the balance between

the marine ecosystem and aquaculture benefits. Therefore,

a thorough understanding of the microbial community in

marine mudflat aquaculture is necessary (Lomstein et al.

2012).

Recently, metaproteomic approaches have been rec-

ognized as a promising strategy to investigate the com-

position and function of the environmental microbial

community in situ, such as in soil, freshwater, acid mine

drainage, marine water, wastewater and marine cold seep

sediment (Siggins et al. 2012; Stokke et al. 2012;

VerBerkmoes et al. 2009). Among these researches,

sample preparation is a key procedure for further

microbial community analysis. Thus, many proteins

extraction methods were developed such as SDS alone,

SDS–TCA, SDS–phenol, NaOH–phenol and citrate–

phenol extraction (Abram et al. 2009; Chen et al. 2009;

Chourey et al. 2010; Erickson et al. 2010; Pierre-Alain

et al. 2007; Wang et al. 2011a). All these researches

largely improved our understanding of the microbial

community in marine sediment. However, due to the

complexity of the marine environment and the abundance

of interfering materials, the structure and function of

environmental microbial communities in marine sedi-

ment, especially in mudflat aquaculture sediment, is

poorly understood.

In this study, we introduced a protein extraction method

for mudflat sediment proteomics analysis, which was

modified from our previous crop soil metaproteomic study

(Wang et al. 2011a). Our results showed that this method

was suitable for obtaining the extra- and intracellular pro-

teins from marine sediment too. Then, altered proteins

between natural mudflat and long-term mudflat aquaculture

marine sediments were identified and compared by two-

dimensional gel electrophoresis (2-DE) combined with

MALDI TOF–TOF. Furthermore, the composition and

structure of the whole microbial community in mudflat

aquaculture marine sediments was analyzed by using the

terminal restriction fragment length polymorphism

(T-RFLP).

Materials and methods

Marine mudflat sediment samples collection

Marine sediment samples were collected from long-term

mudflat aquaculture areas which cultivated clam (Meretrix

meretrix) from January to August 2012 using a five-point

sampling strategy that includes the four corners and the

center of an aquatic farm. The site was located in Putian, a

city located in the southeastern Chinese province of Fujian

(25.18N, 119.08E). The samples were collected from the

top sediment (0–10 cm) and mixed thoroughly. The sam-

ples were sealed and immediately stored at 4 �C. The

natural marine sediment (25.19N, 119.09E) was collected

using the same method at a nearby mudflat aquaculture

area that was never used for mudflat aquaculture.

Sample preparation

A extraction method was used to extract proteins from

fresh marine sediment sample as previously described,

which was modified by adding a second phenol extraction

and two water-wash steps (Wang et al. 2011a). Briefly,

about 2 g of marine sediment sample was homogenized

and extracted by shaking for 1 h with 5 mL SDS extracting

buffer (1.25 % w/v SDS, 0.1 M Tris–HCl, pH 6.8, 20 mM

DTT) at room temperature (RT) before being centrifuged at

12,000 rpm for 30 min at 4 �C. The supernatants were

filtered through nylon mesh (0.45 mm) and shaken for

15 min with 3 mL buffered phenol (pH 8.0) at RT. After

centrifugation (12,000 rpm, 4 �C) for 30 min, the super-

natants were collected and shaken with 3 mL buffered

phenol (pH 8.0) again. The phenol phases were combined

and washed (by shaking) for 15 min with 3 mL Milli-Q

water. This treatment was repeated twice. Afterwards,

these phases were separated by centrifugation (12,000 rpm,

4 �C) for 30 min. The proteins in the lower phenol phase

were precipitated with a fivefold volume of 0.1 M

ammonium acetate dissolved in methanol at -20 �C
overnight. Proteins were recovered by centrifugation

(12,000 rpm, 4 �C) for 30 min. The pellet was washed

once with cold methanol and twice with cold acetone. The

washed pellet was air-dried and then stored at -80 �C or

solubilized in sample buffer for further use.

2-DE separation of sediment proteins

2-DE PAGE was performed as described previously (Wu

et al. 2011). Briefly, 150 lg sediment proteins were dis-

solved in 7 M urea, 2 M thiourea, 65 mM DTT and 4 %

CHAPS and rehydrated in 24 cm IPG strips (pH 4–7). The

samples were separated by IEF in the first dimension, and
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then 12 % SDS-PAGE in the second dimension. The

preparative gels were stained with CBB R-250 and scanned

with ImagescanIII (Amersham Bioscience, Uppsala, Swe-

den). All data were collected from three independent

replicates and analyzed with the ImageMasterTM 2D Plat-

inum software 5.0 (Amersham Bioscience, Uppsala, Swe-

den). Significantly changed spots were selected by rate

increased/decreased 1.5 fold or complete appearance and

disappearance.

Protein identification by mass spectrometry

Protein spots of interest were excised manually from gels

for mass spectrometric analysis as described previously

(Lin et al. 2012a). Briefly, each selected spot was digested

by 12.5 lg/mL trypsin (Promega, Madison, WI, USA) and

incubated at 37 �C overnight. A volume of 1 lL of the

solution was spotted onto stainless steel sample target

plates and analyzed by a Bruker UltraFlex III MALDI

TOF/TOF mass spectrometer (Bruker Daltonics, Bremen,

Germany) (Lin et al. 2012b). Mass spectra were obtained

for each sampled spot by accumulation of 600–800 laser

shots in the 800–5000 Da mass range. Both MS and MS/

MS data were interpreted and processed using Flexanalysis

3.0 (Bruker Daltonics, Bremen, Germany) and searched by

MASCOT search engine (v2.3, Matrix Science, London,

UK). Parameters selected included: the NCBInr database in

SwissProt, taxonomy of all entries, trypsin as the digestion

enzyme, at less two missed cleavage site, mass tolerance of

100 ppm, MS/MS mass tolerance of 0.6 Da, car-

bamidomethylation of cysteine for fixed modification, and

methionine oxidation for variable modification. The

MASCOT score (confidence C 95 %) higher 80 was used

as a highly conservative threshold for correct identification.

Proteins that matched at least two MS/MS peptides or three

peptide mass finger printings (PMFs) were subjected to

further identification. The biological functions of identified

proteins were classified according to the published reports.

Complex microbial community analysis by terminal

restriction fragment length polymorphism (T-

RFLP)

Total DNA from collected sediment samples was extracted

by using the high salt/SDS method with the following

modifications (Fang et al. 2013). Bacterial 16S rRNA gene

sequences were amplified with a 6-carboxyfluorescein-la-

beled primer 8F-FAM (50-AGAGTTTGATCCTGGCT-

CAG-30) and 926R (50-CCGTCAATTCCTTTRAGTTT-

30). The reaction mixture consisted of 12.5 lL Taq PCR

Master Mix (2X) (Sangon, Shanghai, China), 0.8 lL of

each primer (10 lM) and 20 ng template DNA in a final

volume of 25 lL. Cycling conditions were: initial

denaturation and enzyme activation at 94 �C for 5 min,

followed by 35 cycles of denaturation at 94 �C for 1 min,

annealing at 49.5 �C for 45 s, extension at 72 �C for 1 min,

followed by a final 5 min extension at 72 �C. Then, the

purified PCR products were digested with restriction

endonucleases MspI and HaeIII at 37 �C for 5 h, respec-

tively. The length of terminal restriction fragments (T-RFs)

were determined by the ABI 3730xl DNA sequencer

(Applied Biosystems, Foster City, CA, USA) in the

GeneScan mode.

Results

2DE profile of marine sediment

Acquiring high quality protein is the first important step for

metaproteomics analysis. We firstly tested the C–S–P–M

method (citrate buffer, SDS, and phenol extraction) in

marine sediment as our previously article used in crop soil,

while only showed about 300 spots with many horizontal

streaking in gel (data not show). Thus, a modified protein

extraction method was established with an additional

phenol extraction procedure for further protein extraction

in this study (Fig. 1). Approximately 1000 separated pro-

tein spots from marine long-term mudflat aquaculture

sediment were visualized (Fig. 2a). Proteins of both high

and low molecular weights were obtained, which con-

firmed that our method showed no discrimination in protein

extraction. Mass spectrometric analysis was conducted for

further protein identification. It should be mentioned that

one of the purpose of this study is to validate an extraction

method for mudflat sediment research, we did not identify

all of the visualized 2DE spots by MALDI TOF–TOF MS/

MS. A total of 98 spots were identified by MALDI PMF

combined with MS/MS, 32 spots by MS/MS alone, and 21

spots by MALDI PMF alone (Tables S1, S2, S3). Thus, a

total 151 of 194 randomly selected protein spots were

successfully identified with high resolution and repeata-

bility in Coomassie blue stained 2-DE gels.

Further functional analysis revealed that these proteins

could be sorted into eight categories based on their bio-

logical functions (Fig. 2b). The categories are stress and

defense responses (20 %), TCA pathway (12 %), protein

synthesis (11 %), amino acid metabolism (9 %), signal

transduction (4 %), ATP regeneration (4 %), unknown

functions (18 %) and others (22 %). Identified proteins also

showed various origins. They could be classified into nine

groups according to the best matching microbial sources

(Fig. 2c), that is, Vibrio (35 %), Acinetobacter (16 %),

Shewanella (10 %), Photobacterium (10 %), Pseudomonas

(5 %), Lysinibacillus (3 %), Bacillus (2 %), Nitrosomonas

(2 %) and others (1.3 %). The various biological functions
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Fig. 1 Schematic

representation of the protein

extraction procedure from

marine sediment

Fig. 2 2-DE profile of proteins

extracted from marine long-

term mudflat aquaculture

sediment and analysis. a 150 lg

of protein was loaded on a

24 cm IPG strip with a linear

gradient of in the range pH 4–7

and separated by SDS PAGE in

the second dimension;

b biological functional

categories of marine long-term

mudflat aquaculture sediment

according to mass spectrometry

identification result; c they

could be classified into nine

groups according to the best

matching microbial species
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and species of identified proteins further confirmed that this

protein extraction method is suitable for metaproteomic

research from complex marine sediment.

Differential expression of proteins between long-

term mudflat aquaculture and natural sediments

Using the modified protein extraction method described

above, we further compared the differential expression of

proteins from the microbial community between long-term

mudflat aquaculture and natural mudflat marine sediment.

A total of 53 altered proteins including 35 increase and 18

decrease abundance were identified between the two

groups (Table 1; Fig. 3a, b). Compared to the natural

mudflat sediment, up to 29.4 % increasing abundance of

best matching proteins were belong to Photobacterium,

including P. damselae (6 %), P. profundum (17 %) and

Photobacterium sp. (16 %), up to 23.5 % belong to Vibrio.,

including V. cholera (6 %), V. coralliilyticus (6 %), V.

furnissii (9 %) and V. vulnificus (2.9 %), about 17.6 %

were Shewanella sp. which included S. amazonensis (6 %),

S. denitrificans (2.9 %), S. oneidensis (2.9 %) and She-

wanella sp. (6 %, Fig. 3c). Most of them are fish pathogen

and indicate the survival environment for M. meretrix

getting worse after 8 months cultivated. Meanwhile, major

decreasing abundance of proteins were belong to Acineto-

bacter (up to 60 %) including A. baumannii (53 %) and

Acinetobacter sp. (7 %), which are human pathogens and

cause serious multidrug resistant problem in hospital while

looks harmless to most of fish (Fig. 3d; Qureshi et al.

2015). Interesting, two protein enzymes (Deoxyribose

phosphate aldolase and Ornithine carbamoyltransferase)

were decreased while GroEL, OmpU and ABC transporter

PotD were increased in Vibrio. That suggests the stress

response or nutrition transport proteins are more suscepti-

ble to over-express and intrinsic metabolic level of Vibrio

may prefer to decrease in long-term aquaculture mudflat.

The former concept was proofed by the biological func-

tions analysis of altered proteins (Fig. 3e). Total 10 unique

proteins (OmpU, OmpA, thiol specific antioxidant, putative

superoxide dismutase, DnaK, Hsp90, Hsp60, GroEL, porin,

putative immunogenic protein) related with stress/defense

response process increased in long-term mudflat while only

2 decreased (OmpA and superoxide dismutase), which

account for 30.3 and 13.3 % in total altered proteins,

respectively. Besides this, we also found ATP regeneration

(ATP synthase F1, ATP synthase subunit B, F0F1 ATP

synthase subunit beta and ATP synthase beta chain) and

protein folding related proteins more inclined to increase

and arginine biosynthesis related proteins preferred to

decrease. In general, activate the stress/defense response

system, make sure the correct protein folding, supply

plentiful ATP source and maintain the intrinsic metabolic

homeostasis, are essential characteristics for surviving in

the competitive ecology of microbial community in long-

term mudflat aquaculture.

The composition and structure of microbial

community in marine mudflat sediments

The T-RFLP phylogenetic assignment tool (PAT) was used

to analyze the bacterial community between long-term

mudflat aquaculture and natural sediments (Fig. 4). In

addition to unclassified bacterial phyla, 15 and 30 gen-

era of bacteria were identified in natural and long-term

mudflat aquaculture sediments, respectively. Several novel

genera of bacteria, such as Enterococcus, Sorangium,

Frankia, Thauera, Nitrosomonas and others appeared in

long-term mudflat aquaculture sediment but were absent

from the natural sediment. The largest genera proportion in

natural sediment was the bacteria belonging to Cytophaga

(26.9 %), followed by Butyrivibrio (7.69 %) and Spir-

ochaeta (7.69 %), while those belonging to Cytophaga

(12.5 %), followed by Spirochaeta (7.14 %), Azoarcus

(5.36 %) and Alicyclobacillus (5.36 %) were found in

highest proportions in long-term mudflat aquaculture sed-

iment. Several bacterial groups which determined by pro-

teomic analysis, such as Acinetobacter and Shewanella,

were not found in the genomic counterpart T-RFLP anal-

ysis, which might be attributed to complete genomic

information available to date on environmental microbes.

Therefore, it is necessary to combine results from different

approaches in order to get as much information as possible.

Discussion

To date, there is an increasing interest to understand the

function of the ecosystem and the structure of microbial

communities directly within their respective environments

(Georges et al. 2014; Narayanasamy et al. 2015). A variety

of powerful molecular analysis tools of environmental

samples, mostly based on the analysis of 16S rRNA genes,

have greatly improved our knowledge of the vast array of

microbial compositions and functions (Bowen et al. 2011;

Du et al. 2011; Vandieken and Thamdrup 2013). Recent

studies have shown that the protein expression level of

microorganisms even with similar genomes could cause

significant ecological differences (Kleiner et al. 2012).

Thus, extended marine mudflat aquaculture sediment pro-

tein identification is essential to understand sediment eco-

logical processes and the environmental factors that affect

the function of the marine aquaculture mudflat ecosystem.

Therefore, metaproteomics has become a powerful com-

plement of functional genomics for high throughput
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analysis on the functional diversity of microbial commu-

nities (Maron et al. 2007).

However, due to the physical and chemical complexity

of marine sediment and the abundant existence of inter-

fering materials, the development of a direct, efficient, and

representative protein extraction from sediment samples

has become one of the most daunting tasks for metapro-

teomic applications (Findlay et al. 1990). In our previous

research, using SDS with phenol phase sequential extrac-

tion method, we successfully visualized about 1000 sepa-

rate spots in stained 2-DE gels and identified 189 spots

representing 122 proteins in crop soil (Wang et al. 2011a).

Since soil in land and sediment in mudflat have partly

similar properties due to the fact that they have both

complex microbial community habitat and contain similar

interfering materials such as humus, we’re looking forward

to the development of this extraction protocol from soil for

application in aquatic sediment protein research. After

several optimized steps, a modified protein extraction for

marine sediment was established and successfully identi-

fied total 151 proteins by mass spectrometry after 2-DE

separation.

According to bioinformatics analysis, these identified

proteins participated in several important biological pro-

cess, such as signal transduction, TCA pathway, protein

synthesis and stress/defense response. It indicates a com-

plex interrelationship among diverse metabolic pathways

in the marine sediment ecosystem. Additionally, there are

still substantial protein spots failed to be identified by MS

(about 20 %) or have unknown functions (18 %), possibly

due to the incomplete environmental metaproteome data-

bases. An improved availability of protein databases

derived from environmental samples and de novo

sequencing strategies will undoubtedly facilitate protein

identification, environmental metaproteomic analysis and

functional interpretation.

Fig. 3 Proteomics comparison

and analysis between

aquaculture and natural marine

mudflat sediment. a, b 2-DE

map of natural and long-term

mudflat aquaculture sediment;

c, d microbial best matching

species categories analysis the

differentially increasing and

decreasing proteins between

two comparative groups,

respectively. e Biological

functional categories analysis

the percentage of differentially

increasing and decreasing

proteins between two

comparative groups. Each

related unique proteins numbers

are showed on the right of bars
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Furthermore, protein samples from marine long-term

mudflat aquaculture sediment and natural mudflat sedi-

ment were collected and compared by 2-DE combined

with mass spectrometry. A total 53 altered proteins was

identified which are involved in various metabolic

pathways, including TCA pathway, arginine biosynthesis

ATP regeneration, and stress/defense response functions.

Of these altered proteins, some heat shock or chaperone

proteins which relate to stress conditions (such as Hsp90,

GroeL, DnaK) from various microorganisms were found

to be abundant in mudflat aquaculture sediment, indi-

cating environmental ecology deterioration after long-

term mudflat aquaculture (Jarosz and Lindquist 2010;

Selby et al. 2011; Zingaro and Papoutsakis 2012). The

detection of these proteins suggests that protein refolding

may be integral to pathogens survival in sediment as a

response to exposure to environmental stresses (Sowell

et al. 2009).

Meanwhile, outer membrane proteins of gram-negative

bacteria play important roles on the stress/defense process.

OmpU in Vibrio, whose homologue mediates the adhesion

of V. mimicus to host cells and was investigated as a vac-

cine candidate against V. harveyi infection in turbot, was

increased abundance in mudflat aquaculture sediment (Liu

et al. 2015; Wang et al. 2011b). Furthermore, we found an

outer membrane protein, OprD family protein in Photo-

bacterium which best matching P. mendocina (gi:

146306292) increased after aquaculture cultured. It is

interesting that P. mendocina is not a common pathogen in

fisheries and has been implicated as a candidate for the

bioremediation of ecosystems damaged by man-made

pollutants (Ramos-Gonzalez et al. 2003). Based on the fact

that OprD is a specific porin which facilitates the uptake of

basic amino acids and nutrient, this bacteria may play a

role as a cleaner on the degradation of organic or toxic

compounds in mudflat aquaculture sediment (Tamber and

Hancock 2006; Tamber et al. 2006).

Additionally we found several outer membrane proteins

which construct the base frame of gram-negative bac-

terium, fluctuated in different species as well (Kavaliauskas

et al. 2012). For example, OmpA was found to be abundant

in best matching pathogen S. amazonensis but down-reg-

ulated in A. baumannii. Compared to bacterial community

of nature sediment, most of increasing abundant proteins

was belong to common pathogens of bivalves, such as V.

furnissii, V. cholerae, P. profundum and S. amazonensis in

clam cultured sediment while down-regulated proteins

were found in A. baumannii, which presents harmless to

most of aquatic livestock (Yue et al. 2010). Thus, the

variation tendency of Vibrio sp., Photobacterium sp. and

Acinetobacter may be potential indicators for farmed clam

ecosystem evaluation. Our findings suggest a complex

ecological sediment environment where in various

microorganisms compete with one another for nutrition and

survival after long-term aquaculture.
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