doi:10.6043/j.issn.0438-0479.201709025

多跳水声协作网络中的隐蔽通信与能量消耗优化

陈友淦,刘均慧,许肖梅*

(厦门大学海洋与地球学院,水声通信与海洋信息技术教育部重点实验室,福建厦门 361102)

摘要:多跳水声协作网络可提高数据传输速率、降低系统整体能量消耗,但隐蔽性却大大降低.以在多跳水声协作网络 中进行隐蔽通信为目标,研究了相同检测概率情况下如何选择最优跳数使系统功耗最小的方法.根据多跳水声协作网络 隐蔽通信系统的检测概率计算模型和能量消耗计算模型,在兼顾检测概率与能量消耗的条件下,推导了系统最佳跳数 的取值范围,并仿真分析了不同目标信噪比、通信距离等因素对系统跳数优化选择的影响.仿真结果表明,在给定的仿真 条件下,多跳水声协作网络隐蔽通信系统的跳数取值在 2~6 之间,可满足检测概率小于 0.5 的隐蔽通信要求,同时系统 能量消耗相对较低.

关键词:水声通信;协作通信;隐蔽通信;能量优化;检测概率

中图分类号:TN 929.3 文献标志码:A

近年来,因具有可实现大面积覆盖、提高数据传 输速率等优势,水声协作通信技术发展迅猛[1-3].与无 线电磁波信道相比,水声信道具有载波频率低、带宽 窄、波速低、多途延时长及多普勒频移相对较大等特 点^[1].Stojanovic^[2]研究表明:通过短距离多跳实现中 远程水声数据传输的水声协作通信系统,比直接进行 远程水声通信更节约系统整体能量消耗;此外,由于 传输距离的缩短,可适当提高工作频率、拓宽水声通 信系统可用工作带宽,有利于提高水声通信速率.对于 多跳水声协作通信网络,Kam 等^[3]从系统能量消耗优 化角度研究了如何选择最优工作频率和布放节点位 置的问题,同时指出:在由信源节点、中继节点、目的 节点分布成一条直线的串行水声多跳系统中,当三者 等距时,系统的整体能耗最小、性能最佳.然而,由于军 事指挥、控制及通信、沿海监测和海底作战等特殊应 用场景的需求发展,对多跳水声协作通信系统的隐蔽 性要求越来越高[4].

目前,关于隐蔽水声通信的研究,主要集中在直 序扩频水声通信的隐蔽性分析方面^[5-6],较少涉及水 声协作网络的隐蔽通信研究^[4].相比之下,隐蔽射频通 **文章编号:**0438-0479(2018)01-0112-06

信和隐蔽雷达系统的研究则相对成熟,包括常规扩频、混沌电路和混沌调制,以及敏捷波形设计等^[7-8]. Weeks等^[7-8]提出将低概率检测(low probability of detection,LPD)等作为点对点无线电磁波通信系统隐蔽性和隐身性的量化指标.LPD定义为在给定的恒虚警率条件下,"通用"能量检测器/截获接收机无法检测到检测概率高于0.5的通信信号,然而由于受到发射机特性、检测器参数、接收机行为和信道等多种因素的影响,LPD的测量值变化很大.Zheng等^[4]研究表明,由于在水声协作网络中,通信接收机的高接收性能是通过中继节点形成空间分集增益获得的,而从隐蔽性角度看,截获接收机也将同样获得空间分集增益,故其LPD性能指标比点对点水声通信系统差.

因此,如何在维持水声协作通信系统高数据率、 大覆盖范围、低系统能量消耗等优势的同时,兼顾满 足隐蔽通信 LPD 指标,具有重要研究意义.本研究拟 对多跳水声协作网络隐蔽通信的检测概率及系统能 量消耗进行联合优化研究,通过分析不同目标信噪 比、通信距离等因素对系统检测概率和能量消耗的影 响,进行多跳水声协作网络的最优跳数选择分析.

收稿日期:2017-09-24 录用日期:2017-11-17

基金项目:国家重点基础研究发展计划(2016YFC1400200);国家自然科学基金(41476026,41676024,41376040);厦门大学大学生创新创业训练 计划项目(2016Y1114);中央高校基本科研业务费专项资金(20720180078)

* 通信作者:xmxu@xmu.edu.cn

引文格式:陈友淦,刘均慧,许肖梅.多跳水声协作网络中的隐蔽通信与能量消耗优化[J].厦门大学学报(自然科学版),2018,57 (1):112-117.

Citation: CHEN Y G,LIU J H,XU X M.Optimization of energy consumption and covert communication for multi-hop underwater acoustic cooperative networks[J].J Xiamen Univ Nat Sci,2018,57(1):112-117.(in Chinese)

1 系统模型与检测概率计算

1.1 多跳水声协作网络隐蔽通信系统模型

如图 1 所示,在所考虑的多跳水声协作网络隐蔽通 信系统中,信源节点(Tx)、中继节点(R_k ,k=0,1,2,...,K,当k=0时中继节点即为信源节点)和目的节点(Ds) 分布在一条直线上,且 $K \land R_k$ 均匀分布在 Tx 和 Ds 之 间,截获接收机(Ix)分布在 Tx 和 Ds 连线的中垂线上, 其与该连线的距离为 r_{min} .假设通过发送功率控制等措 施,可让每个 R_k 只接收来自前一个 R_{k-1} 的信号并且向 下一个 R_{k+1} 发送信号.

图 1 多跳水声协作网络隐蔽通信系统模型(K 取偶数为例) Fig. 1 Multi-hop underwater acoustic cooperative network covert communication system model (K is even as an example)

一般地,如图1所示,在每一跳中,检测距离比定 义为截获接收机与发射机的距离和通信接收机与发 射机的距离之间的比率^[1],即

$$\gamma_k = \frac{r_k}{d_k} , \qquad (1)$$

其中, r_k 为 Ix 到每个 R_k 的距离; d_k 为任意两个相邻 R_k 与 R_{k+1} 之间的距离.一般地,由于截获接收机必须 靠近发射机才能截获到信号,所以检测距离比越小, 通信系统的隐蔽性越好.由于 R_k 等距离分布,所以在 图 1 所示模型中有

$$d_{k} = \frac{d_{c}}{K+1}, k = 0, 1, 2, \cdots, K,$$
 (2)

其中, d_{c} 表示 Tx 与 Ds 之间的距离,即通信距离.

1.2 多跳水声协作网络隐蔽通信系统检测 概率的计算

为计算多跳水声协作通信系统的检测概率,首先 计算点到点系统的检测概率.

假设 Ds 和 Ix 都经历相同带宽高斯噪声的水声信道,其具有等于 N₀/2 的双边功率谱密度.若定义在 Ix

处能检测到的信号能量为 E_i,Ds 能正确接收数据所需 要的信号能量为 E_s,点到点系统的检测距离比为 γ,则 根据发射信号能量与接收信号能量之间的关系,可得到

 $E_i = \eta \varphi E_s \gamma^{-n}$. (3) 其中: η 表示 Ds 的通信接收机和通用宽带能量截获接 收机之间的增益差异; φ 表示接收信号中含检测兴趣 目标的系数,与通信信号设计有关;n表示频带的路径 损耗指数,与声波在水中的传播方式和传播路径有关. 根据不同的传播条件,n取不同的数值.例如:当以球 面波扩展传播时,n=2;而以柱面波扩展传播时,n=1;实际水声通信中,通常取n=1.5.

利用假设检验的方法^[4-5],当时间带宽乘积很大时,虚警概率 P_{FA}和检测概率 P_D 近似服从高斯分布,将式(3)代入相关计算公式^[4-5],可求出点对点系统的 检测概率为

$$P_{\rm D} = \frac{1}{2} \operatorname{erfc} \left[\operatorname{erf}^{-1} (1 - 2P_{\rm FA}) - \frac{E_{\rm s}}{N_{\rm o}} \frac{\eta \varphi}{\sqrt{2T_{\rm i}W}} \gamma^{-n} \right],$$

$$T_{\rm i}W \gg 1. \tag{4}$$

其中: T_i 表示 Ix 的积分时间;W 表示 Ix 的工作带宽, 为 3 dB 带宽; erf 和 erfc 分别表示误差函数和互补误 差函数; E_s/N_0 表示 Ds 能够正确接收信号时的信号 能量噪声密度比.

对于 $K \uparrow R_k$ 的通信系统,每一跳水声数据传输 检测计算中 r_k 均不等,Zheng 等^[4]提出了两种方法计 算多跳系统整体的 r:1) 取最小值,即 $r = \min(r_k)$; 2) 取平均值,即 $r = E[r_k]$,其中 E[]表示对所有的 r_k 取统计期望.本研究采用第 2 种方法计算 r,即 $r = E[r_k]$.因此,具有 K 个中继节点的系统检测距离比可 表示为

$$\gamma(K) = \frac{E[r_k]}{d_c}.$$
(5)

将式(5)带入式(4),可得到具有 $K \uparrow R_k$ 的多跳水声 协作通信系统的检测概率为

$$P_{\rm D}(K) = \frac{1}{2} \operatorname{erfc} \left\{ \operatorname{erf}^{-1} (1 - 2P_{\rm FA}) - \frac{E_s}{N_0} - \frac{\eta \varphi}{\sqrt{2T_i W}} \frac{1}{d_c^{-n}} \left[E[r_k] \right]^{-n} \right\}.$$
(6)

下面根据 K 的取值不同,通过图 1 的几何关系, 具体计算 $E[r_k]$.

假设 Ix 到 T_x 与 Ds 的最短距离为 r_{min},且任意 r_k 等概率出现,当 K 为奇数时,有

$$E[r_{k}] = \frac{r_{\min}}{K+1} \sum_{k=0}^{K} \sqrt{\left(\frac{K+1}{2}-k\right)^{2} \tan^{2}\theta + 1},$$
(7)

http://jxmu.xmu.edu.cn

当 K 为偶数时,有

$$E[r_k] = \frac{r_{\min}}{K+1}$$

 $\sum_{k=0}^{K} \sqrt{\left[\left(\frac{K}{2} - k + \frac{1}{2}\right)^2 - \frac{1}{4}\right]} \tan^2 \theta + 1},$ (8)

其中, $\tan \theta = \frac{d_k}{r_{\min}}$,角度 θ 为 Ix 的位置参数,其取值的 大小反映出 Ix 距离 Tx、R_k、Ds 连线的远近关系.将式 (7)和式(8)带入式(6)即可计算出具有 K 个 R_k 的多 跳水声协作网络的等效检测概率 $P_D(K)$.

2 系统能量消耗的计算与跳数选择

2.1 多跳水声协作网络隐蔽通信系统能量 消耗的计算

现考虑系统能量消耗问题,对于如图1所示的多 跳水声协作网络隐蔽通信系统,其能量的衰减与通信 距离和工作频率 f 有关,第 k 跳的传播损失为^[9]

$$A(d_k, f) = (d_k)^n [\alpha(f)]^{d_k}$$
, (9)
其中, $\alpha(f)$ 为吸收损失系数,其计算可由 Thorp's 公
式得到. 将式(9)结合接收端的噪声功率密度谱
 $N_0(f)$,定义通信接收机接收端的平均信噪比为

$$R_{\rm SN} = \frac{P_{\rm t}(d_k, f)}{A(d_k, f)N_{\rm o}(f)W}.$$
 (10)

其中: P_t 表示 Tx 的发射声源级所对应的数值; $N_0(f)$ 的计算可参考 Wenz 噪声; W 表示通信接收机 的工作带宽,由于本研究假设其与 Ix 的工作带宽相 等,故用同一符号表示.在给定距离的情况下,选择最 优工作频率,可使 $A(d_k, f)N_0(f)$ 乘积最小,进而实 现在相同平均信噪比情况下系统能量消耗最少的目 标^[3].在每一跳中,最优工作频率 $f_{opt}(d_k)$ 与工作距离 d_k 有关,此时所对应的工作带宽为 3 dB 带宽,具体计 算可参考文献[3]给出的拟合公式.

若只考虑 Tx、R_k、Ds 解码和编码的能量,以及发 射和接收信号所需要的能量,暂时忽略重传和误码率 的影响,即假设每一跳只需传输一次则通信接收机即 可正确接收信号,同时假设每个 R_k 或者 Ds 接收信号 所需要的能量相同,则对于每一跳而言,发射机的能 量消耗为

$$E_{\text{tr}} = E_{\text{enc}} + P_{\text{T}}^{\text{el}} T_{\text{L}},$$
 (11)
其中, E_{enc} 表示编码所需能量, P_{T}^{el} 表示发射电功率, T_{L}
表示数据传输所需的时长.

假设每一跳中通信接收机能正确接收时所需的 目标信噪比为 R_{SN0} ,对于给定的 R_{SN0} ,则W、 P_{+} 、 P_{+}^{+} 与

$$W(d_k, f) = \omega d_k^{*}, \qquad (12)$$

$$P_{t}(d_{k},f) = \delta d_{k}^{\lambda}, \qquad (13)$$

$$P_{\rm T}^{\rm el}(d_k,f) = P_{\rm t}(d_k,f) \frac{10^{-17.2}}{\phi} = \psi d_k^{\chi}.$$
(14)

其中: $10^{-17.2}$ 是转化因子^[9]数值,其单位为W,可将发 射声源级所对应的数值转换为单位为W 的电功率; ϕ 是整体功率放大器和换能器的效率; ω 、 δ 和 ϕ 表示相 应的扩展系数, ϕ 的取值与目标信噪比 R_{SNO} 有关, λ 和 χ 表示相应的指数,其取值均为正值,可在对数尺度上 通过一阶最小二乘多项式逼近计算得到.

同样,对于每一跳而言,接收机的能量消耗为

 $E_{\rm rr} = E_{\rm dec} + P_{\rm R}T_{\rm L}.$ (15) 其中: $E_{\rm dec}$ 表示解码所消耗的能量; $P_{\rm R}$ 为 Ds 接收信号 所消耗的功率,其取值可设为 $P_{\rm R} = 0.1P_{\rm T}^{\rm el}.$

因此,对于一个有 K 个 R_k 的水声多跳协作通信 网络传输信号消耗的系统总能量为

 $E_{\rm sys}(K) = (K+1)E_{\rm tr} + (K+1)E_{\rm rr} \,. \tag{16}$

2.2 跳数优化选择

在上述基础上,在兼顾检测概率满足 LPD 要求的 多跳水声协作网络隐蔽通信系统中,以最小化系统总 能量消耗为目标函数的跳数 K 优化选择,可表达为

 $K^* = \arg\min_{K} E_{sys}(K)$, s.t. $P_D(K) < 0.5$, (17) 式中, K^* 表示待求的最优跳数.

下面对跳数 K 的优化选择进行理论推导.

1) 从能量优化角度看

将式(11)和(15)代人式(16),取 $E_{enc} = E_{dec} = \rho \cdot P_{T}^{el}T_{L}, P_{R} = \sigma P_{T}^{el}, 有$

 $E_{\rm sys}(K) = (K+1)(E_{\rm enc} + P_{\rm T}^{\rm el}T_{\rm L}) + (K+1)(E_{\rm dec} + P_{\rm R}T_{\rm L}) = (K+1)$

$$(\sigma + 2\rho + 1)P_{\rm T}^{\rm el}T_{\rm L}$$
, (18)

其中,ρ表示编解码消耗功率与发射信号消耗功率之间的差别系数,σ表示接收机消耗功率与发射机消耗 功率之间的差别系数,将式(2)和(14)代入式(18)有

$$E_{\rm sys}(K) = (K+1)(\sigma+2\rho+1)\psi d_k^{\chi}$$
$$T_{\rm L} = \underbrace{(\sigma+2\rho+1)d_c^{\chi}\psi T_{\rm L}}_{:=\Omega}$$
$$(K+1)^{1-\chi} = \Omega (K+1)^{1-\chi}, \qquad (19)$$

对 K 求导,有

$$\frac{\partial E_{\rm sys}(K)}{\partial K} = (1 - \chi) \Omega (K + 1)^{-\chi}.$$
 (20)

由于 $\chi > 1$,故 $\frac{\partial E_{sys}(K)}{\partial K} < 0$,即表示系统能量消耗 $E_{sys}(K)$ 随着跳数 K 递增呈递减关系. 若给定系统的目标能量消耗 $E_{sys}(K) < \epsilon_0$,代人 式(19)可得

$$\Omega(K+1)^{1-\chi} < \varepsilon_0, \qquad (21)$$

求得 $K > \sqrt{\frac{\epsilon_0}{\Omega}} - 1$ 时,可满足实际能量消耗低于目标能量消耗值.

取 $K_0 = \left[\sqrt[1-x]{\frac{\varepsilon_0}{\Omega}} - 1 \right]$ 作为上限值,则 $K \ge K_0$ 为满

足能量消耗低于上述目标的跳数选择.

2) 从满足检测概率角度看

由式(6)可知

$$P_{\rm D}(K) = \frac{1}{2} \operatorname{erfc} \left[\underbrace{\operatorname{erf}^{-1}(1 - 2P_{\rm FA})}_{:=\beta} - \underbrace{\frac{E_{\rm s}}{N_{\rm o}} \frac{\eta\varphi}{\sqrt{2T_{\rm i}W}}}_{:=\xi} \gamma^{-n}(K) \right] = \underbrace{\frac{1}{2} \operatorname{erfc} [\beta - \xi \gamma^{-n}(K)], \qquad (22)$$

其中,β与P_{FA}有关,ξ与信噪比、通信接收机和截获接 收机之间的增益差异、通信信号设计等有关.

给定检测概率门限 P_{D0} (若按照 LPD 要求,则 P_{D0} =0.5),则有

$$P_{\rm D}(K) = \frac{1}{2} \operatorname{erfc}[\beta - \xi \gamma^{-n}(K)] < P_{\rm D0}.$$
 (23)

通过式(23)直接求解 K 难度较大,可通过计算机 仿真求数值解.通过后续计算机仿真可知,在给定条件 下, $P_{\rm D}(K)$ 随着 K 递增呈递增关系,则可假设式(23) 解为 K < K_{P_D} ,取 $K_1 = \left[K_{P_D} \right]$ 作为下限值,则 $K \leq K_1$ 为满足 $P_{\rm D}$ 低于上述目标的跳数选择.

3) 综合讨论分析

综上,跳数 K 的取值范围为 $K_0 \leq K \leq K_1$,其中 K₀和 K_1 的取值与系统参数设置、目标检测概率、目 标能量消耗率等有关.由上述分析可知, $P_D(K)$ 和 $E_{sys}(K)$ 是两条趋势相反的曲线,一旦系统参数设置、 目标信噪比给定,则曲线 $P_D(K)$ 和 $E_{sys}(K)$ 也随之固 定,可根据目标检测概率、目标能量消耗率求出满足 条件的 K 的取值范围;在取值范围内,K 的具体取值 范围由功耗和检测概率的侧重需求决定.

3 仿真分析

3.1 仿真条件

设基本仿真条件为: $d_{c} = 50 \text{ km}$,每一跳中 $R_{SN0} =$

10 dB, $\theta = \pi/15$,发射机编码所需能量与接收机解码 所需要的能量相等,且为发射数据所需能量的 1%;传 输的数据长度 $L_{\rm D}$ 为 256 byte,传输信息速率 $R_{\rm b}$ =160 bit/s,则 $T_{\rm L} = L_{\rm D}/R_{\rm b}$,Ix 的积分时间取 $T_{\rm i}$ =1.2 $T_{\rm L}$, Ix 的带宽与通信接收机带宽相同, $P_{\rm FA}$ =0.02;计算最 优工作频率时对应 W、 $P_{\rm t}$ 和 $P_{\rm T}^{\rm e}$ 所需的参数取值为: $\omega = 10^{1.4291}$, $\phi = 10^{0.1R_{\rm SN0}-4.9040}$, $\lambda = 0.5392$, $\chi = 2.2074$, $\phi = 0.25$.

在上述基本仿真条件下,首先给定每一跳传输距离,通过 Kam 等^[3]给出的拟合公式可计算得到每一跳的最优工作频率 f_{opt} ,然后令 $f = f_{opt}$ 带入式(12)可计算得到每一跳传输距离的工作带宽 W,用于式(6)计算检测概率;同时结合 R_{SN0} 代入式(13)和(14)计算 P_t 和 P_T^{el} ,用于计算系统 E_{sys} .在仿真过程中,将调整不同目标信噪比等因素,研究不同跳数 K 对多跳水声协作网络的检测概率和能量消耗的影响,进而得出最优跳数选择.

3.2 仿真结果与讨论

取通信距离为 50 km,图 2 给出了点对点水声通 信系统不同 R_{SN0} 条件下检测概率与检测距离比之间 的关系(图中 P_D <0.5 的区域即为 LPD 区域).可见, 在相同 P_D 条件下, R_{SN0} 越低,所需的检测距离比越 低,意味着截获接收机需要越靠近发射机才能达到同 样的检测概率,说明通信系统隐蔽性更好.在通信距离 为 50 km 时,以 P_D =0.5 为目标,若 R_{SN0} 从 12 dB 降 低到 8 dB,则 P_t 也从166.442 5 dB 降低到162.442 5 dB(可由式(13)和(14)计算得到),γ 可从 0.875 降低 到 0.500.因此,设计良好的通信信号,降低通信接收 机正确解码所需的 R_{SN0} ,是进行低功耗水声隐蔽通信 的关键.

3.2.1 不同 R_{SN0} 的影响

为进一步了解不同 R_{SN0} 在多跳水声协作通信系 统下的情况,图 3 给出了不同 R_{SN0} 条件下 P_D 、 E_{sys} 与 K之间的关系.由图 3 可知,无论 R_{SN0} 取值如何,随着 跳数 K 递增,多跳水声协作通信系统的 E_{sys} 递减,而 P_D 却是递增的,趋势正好相反;为维持相同的 P_D ,随 着 R_{SN0} 递增,跳数 K 必须减少,因为 R_{SN0} 递增增大了 瞬时功率,更容易被截获.例如,为维持 $P_D = 0.42$ 不 变,当 R_{SN0} 从 8 dB 递增到 12 dB 时,跳数 K 必须从 6 减少到 3,否则容易被截获.

综合判断,在给定的基本仿真条件下,在图 3 的 矩形方框内(即 LPD 区域内), R_{SN0} 取 8 dB 时,K 取 2 ~6,可满足 P_D <0.5 的 LPD 要求,同时 E_{SN5} 也相对

of hops with different $R_{\rm SN0}$

较低;若 R_{SN0} 取12 dB,则跳数K只能取2~3,方可兼顾LPD性能指标和系统低功耗要求.

3.2.2 不同 d。的影响

图 4 给出了不同 d_c 对 P_D 和系统 E_{sys} 的影响.由 图 4 可见,随着 d_c 的递增,系统的 E_{sys} 是递增的;与此 同时,当 d_c 为 20 km 时,跳数 K 取 3, $P_D = 0.315$ 3, E_{sys} 为 0. 249 7 J; 而当 d_c 为 80 km 时, K 也取 3,则 P_D 可降低到 0. 195 0, E_{sys} 为 5. 325 8 J.可见,在 K 相 同且其他条件均不变的情况下,随着 d_c 的递增, d_k 也 在递增,相当于降低了多跳带来的容易被截获的风 险,进而降低了总体的 P_D .另一方面,当 d_c 为 80 km 时, K 增 加 到 4, P_D 仅 为 0. 318 0, E_{sys} 降 低 到 4. 067 9 J,即使跳数 K 增加到 5, P_D 也仅为 0. 474 0, 仍未超过 $P_D < 0.5$ 的 LPD 要求,同时 E_{sys} 降低到 3. 264 1 J; 而当 d_c 为 80 km 时, 跳数 K 从 3 增加到

hops with different transmission distance

5, E_{sys} 可 从 5. 324 8 J 降 低 到 3. 264 1 J, 降 幅 高 达 38. 7%, 同时满足 LPD 要求.可见, 在相同 $P_{\rm D}$ 的情况 下, 随着 $d_{\rm e}$ 递增, K 可适当增加, 这有利于降低系统 整体的能量消耗.

综合判断,在给定的基本仿真条件下,多跳水声 协作通信系统的 d_c 为 80 km 时,K 取 2~5,可满足 P_D <0.5 的 LPD 要求,且 E_{sys} 也相对较低;若 d_c 取 20 km,则 K 只能取 2~3,方可兼顾 LPD 性能指标和 系统低功耗要求.

4 结 论

为维持多跳水声协作网络宽带宽、高数据率和 低功耗的优势,同时满足隐蔽通信的性能指标,研 究了多跳水声协作通信系统中的跳数优化选择问 题.通过建立多跳水声协作网络隐蔽通信系统模 型,建立了其检测概率和能量消耗计算模型,推导 了联合检测概率、能量消耗优化与最佳跳数选择的 取值范围,最后通过仿真研究分析了不同目标信噪 比、通信距离等因素对系统检测概率、能量消耗和 最佳跳数选择的影响. 仿真结果表明, 为维持相同 检测概率,随着目标信噪比递增,跳数必须减少,以 防止由于瞬时功率过大而被截获;在相同检测概率 情况下,随着通信距离递增,跳数可适当增加,有利 于降低系统整体的能量消耗;在总通信距离 50 km,数据长度 256 byte, R_{SN0} 为 10 dB, 截获接收机 的位置参数角度为 $\pi/15$ 时,跳数取值在 2~6 之 间,可满足检测概率小于 0.5 的隐蔽通信要求,同 时能量消耗相对较低.

参考文献:

- [1] VAJAPEYAM M, VEDANTAM S, MITRA U, et al. Distributed space-time cooperative schemes for underwater acoustic communications[J].IEEE J Ocean Eng, 2008, 33 (4):489-501.
- [2] STOJANOVIC M.Capacity of a relay acoustic link[C] // IEEE Proc of MTS/IEEE OCEANS 2007.Canada:IEEE, 2007:1-7.
- [3] KAM C, KOMPELLA S, NGUYEN G D, et al. Frequency selection and relay placement for energy efficiency in underwater acoustic networks[J].IEEE J Ocean Eng, 2014, 39(2):331-342.
- [4] ZHENG Y R, FAN L L. Performance metrics for mow probability of detection in cooperative communication networks [C] // IEEE Proc of IEEE/MTS OCEANS 2016. Shanghai: IEEE, 2016:1-5.
- [5] YANG T C, YANG W B.Low probability of detection underwater acoustic communications using direct-sequence spread spectrum [J]. J Acoust Soc Am, 2008, 124(6): 3632-3646.

- [6] 柳文明,韩树平,李厚全,等.基于截获因子的直序扩频水 声通信隐蔽性能分析[J].南京大学学报(自然科学版), 2017,53(4):654-660.
- [7] WEEKS G, TOWNSEND J, FREEBERSYER J. A method and metric for quantitatively defining low probability of detection [C] // IEEE Proc of IEEE Military Communications Conference. Piscataway: IEEE, 1998: 821-826.
- [8] DILLARD G M, DILLARD R. A metric for defining low probability of detection based on gain differences [C] // IEEE Proc of IEEE Military Communi Cations Conference.Piscataway:IEEE,2001:1098-1102.
- [9] SOUZA F A D, CHANG B S, BRANTE G, et al. Optimizing the number of hops and retransmissions for energy efficient multi-hop underwater acoustic communications [J].IEEE Journal of Sensors, 2016, 16(10): 3927-3938.
- [10] STOJANOVIC M.On the relationship between capacity and distance in an underwater acoustic communication channel[J]. ACM SIGMOBILE Mobile Comp Commun Rev, 2007, 11(4):34-43.

Optimization of Energy Consumption and Covert Communication for Multi-hop Underwater Acoustic Cooperative Networks

CHEN Yougan, LIU Junhui, XU Xiaomei*

(Key Laboratory of Underwater Acoustic Communication and Marine Information Technology, Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China)

Abstract: Multi-hop underwater acoustic (UWA) cooperative network can not only improve the data transmission rate but also reduce the energy consumption of the system. Yet its covertness of communication is greatly reduced. The aim of this paper is to study how to select the optimal number of hops in the same probability of detection (P_D) to minimize the energy consumption of the system for the multi-hop UWA cooperative network. First, the paper presents the P_D model of the UWA cooperative network under certain distance to obtain the relationship between P_D and the number of hops. Then, the energy consumption calculation model of the system is established to analyze the energy consumption and the number of hops for the system. Finally, considering both P_D and energy consumption, we simulate and analyze the influences of some factors, such as signal-to-noise ratio and communication distance. Simulation results show that the number of hops can be set between 2 and 6, which can meet the covert communication requirement with the P_D less than 0.5, and the system energy consumption is relatively low.

Key words: underwater acoustic communication; cooperative communication; covert communication; energy optimization; detection probability