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Taylor dispersion in two-dimensional bacterial turbulence
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In this work, single particle dispersion was analyzed for a bacterial turbulence by retrieving the virtual
Lagrangian trajectory via numerical integration of the Lagrangian equation. High-order displacement
functions were calculated for cases with and without mean velocity effect. The two-regime power-law
behavior for short and long time evolutions was identified experimentally, which was separated by the
Lagrangian integral time. For the case with the mean velocity effect, the experimental Hurst numbers
were determined to be 0.94 and 0.97 for short and long time evolutions, respectively. For the case
without the mean velocity effect, the values were 0.88 and 0.58. Moreover, very weak intermittency
correction was detected. All measured Hurst numbers were above 1/2, the value of the normal diffusion,
which verifies the super-diffusion behavior of living fluid. This behavior increases the efficiency of
bacteria to obtain food. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4982898]

I. INTRODUCTION

A bacterial suspension in a thin fluid can be approxi-
mated as a 2D fluid system when the considered spatial scale
is larger than the fluid depth. In this active system, the energy
injection and dissipation patterns are quite peculiar. Consid-
ering classical three-dimensional homogeneous and isotropic
turbulence, the energy is transferred from large-scale to small-
scale structures until the viscosity scale, where the kinetic
energy dissipates as heat.1 In the bacterial turbulence, the
kinetic energy is injected into the system via a scale of the
bacterial body length R, which is typically around a few µm,
and then transfers from small-scale to large-scale ones via an
inverse cascade process.2 The velocity of the bacterial tur-
bulence is also on the order of a few µm per second, and the
Reynolds number is nearly zero. Due to hydrodynamic interac-
tions, the bacterial flow exhibits turbulent-like features, such as
long range correlation and power-law of the spectrum.2–9 For
instance, Wensink et al.2 observed a dual-power-law behav-
ior in a quasi-2D active fluid, which was separated by the
viscosity-like scale at ` = 10R. Qiu et al.9 confirmed the inter-
mittency correction, one of the most important features of the
turbulence, directly via a Hilbert-based methodology. They
found a dual-power-law behavior, which is separated by a
viscosity-like scale `⌫ ' 10R. The scaling behavior below the
viscosity scale `⌫ is more intermittent than the behavior above
the scale `⌫ . This bacterial or active turbulence is now named
as “mesoscale turbulence.”2,8

Note that there is no commonly accepted unique defi-
nition of turbulent flow: it is usually identified by its main
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features that a broad range of spatial and temporal scales or
many degrees of freedom are excited in the system.10 Another
“narrow definition” of turbulence has been proposed by
Gibson11 that “turbulence is defined as an eddy-like state of
fluid motion where the inertial vortex forces of the eddies are
larger than any other forces that tend to dampen the eddies
out.” Rotational turbulent eddies form at the viscosity scale
(respectively, Kolmogorov scale), and then they pair with
neighboring ones, and these new pairs pair with neighboring
pairs, and so on to generate large-scale structures.11 This is
indeed the idea of the inverse energy cascade. It seems that
this definition of turbulence is applicable to the bacterial tur-
bulence aforementioned. More discussions and examples of
this “narrow definition of turbulence” can be found in Refs. 11
and 12.

Single particle dispersion in disordered or turbulent flow
in classical turbulence and living fluid is still fundamentally
unclear.13,14 In single particle dispersion, also known as Taylor
dispersion, the mean square displacement, D2(⌧), is defined as

D2(⌧) = hri(t, ⌧)2ii,t , (1)

where ri(t, ⌧) = |xi(t, +⌧) � xi(t)| is the displacement func-
tion; xi(t) is a Lagrangian trajectory; and ⌧ is the separation
time scale. According to the Taylor dispersion theory, the
following two regimes are expected:

D2(⌧) =
(
ṽ2⌧2, when ⌧ ⌧ TL

2ṽ2TL⌧, when ⌧ � TL
, (2)

where TL is the Lagrangian integral time scale, and ṽ2 is the
variance of Lagrangian velocity.15,16 The latter scaling regime
is also known as normal diffusion.17,18 Experimentally, the
measured scaling exponent of Eq. (2), D2(⌧)/ ⌧�2 , might be
different with the above mentioned values. For example, Wu
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and Libchaber3 studied the collective dynamics of bacteria in a
freely suspended soap film via the Lagrangian particle tracking
technique. They found that the measured mean displacement
function of beads demonstrates a super-diffusion (respectively,
�2 > 1) in short-time period and normal diffusion (respectively,
�2 ' 1) in long-time period. Xia et al.19 performed an experi-
mental particle tracking study in a traditional two-dimensional
turbulence system. Based on the measured scaling exponent,
�2, a transition phenomenon of �2 from 2 (super-diffusion)
to 1 (normal diffusion) was observed as the Reynolds num-
ber increased. Based on this observation, a so-called fully
developed two-dimensional turbulence was defined. Ariel
et al.20 tracked the trajectory of individually fluorescently
labeled bacteria within such dense swarms. The authors
reported a super-diffusion behavior with a measured scaling
exponent �2 ' 1.6, which can be further described and mod-
eled by the Lévy walk. Note that for the bacterial case, the
diffusion or dispersion behavior is highly dependent on many
factors, such as the concentration of the bacteria, temperature,
and chemical gradients.

In this work, virtual particles were tracked using a numer-
ical integration of the Lagrangian equation based on measure-
ments of the Eulerian velocity field of bacterial turbulence
via particle image velocimetry.21 The dispersion of the parti-
cles was calculated, and the results show a clear two-regime
behavior, which is separated by the Lagrangian integral time.
Despite the numerical value of the scaling exponent, �2, the
Taylor dispersion theory is evident from the obtained results.
The possible intermittent correction was also checked exper-
imentally by generalization of the mean square displacement
function to the qth order, e.g., Dq(⌧) = hri(t, ⌧)qii,t .

II. EXPERIMENTAL DATA

A. Experimental setup

The experimental data analyzed here were provided by
Professor Raymond E. Goldstein at the Cambridge University,
UK. We briefly recall the main parameters of this quasi-2D
experiment in a microfluidic chamber. The bacteria used in
this experiment were B. subtilis with individual body lengths
of approximately 5 µm, in which the energy is injected into
the system. The volume filling fraction was �= 84% with
particle number N = 9968 and aspect ratio a = 5 (the ratio
between the bacterial body length R and the body diameter).
The quasi-2D microfluidic chamber had a vertical height, Hc,
less than or equal to the individual body length of B. sub-
tilis (approximately 5 µm). With these parameters, the flow
entered a turbulent phase.2 The particle image velocimetry
(PIV) had a measurement area of 217 µm⇥ 217 µm. The image
resolution was 700 pix⇥ 700 pix with a conversion rate of
0.31 µm/pix and a frame rate of 40 Hz. The commercial PIV
software Dantec Flow Manager was used to extract the flow
field component with a moving window size of 32 pix⇥ 32 pix
and 75% overlap. This resulted in an 84 ⇥ 84 velocity vec-
tor and a total of 1441 snapshots, corresponding to a period
of ⇠ 36 s. Therefore, a spatial structure size ` larger than
Hc can be treated as a two-dimensional system. The mean
and root-mean-square (rms.) velocities were determined to be
u = (0.36, 0) µms�1 and u

0
= (0.30, 0.29) µms�1, respectively,

and the corresponding turbulent intensity was around u

0/ux
' 82%. The PIV uncertainty was less than 1% for the second-
order statistics. More details of this database can be found in
Ref. 2.

FIG. 1. Illustration of nine successive
snapshots of instantaneous velocity vec-
tor, where the velocity amplitude is
coded in color. A typical vortex struc-
ture with the spatial size of ⇠ 50 µm is
observed.
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FIG. 2. (a) Illustration of Lagrangian
trajectories. (b) The Lagrangian velocity
vx along the trajectory. The horizontal
solid line indicates a time span 2 s. (c)
Experimental autocorrelation function
⇢(⌧) for Lagrangian velocities vx and vy.
The corresponding zero-crossing based
Lagrangian time is ⇠ 0.75 s.

Figure 1 shows nine successive snapshots of the instan-
taneous velocity vector, where the velocity amplitude is
coded in color. A typical flow structure with a spatial size
around ⇠50 µm is visually evident and has been recognized
as a fluid-viscosity-like scale.9 The flow is smooth in space
due to fluctuations in the high wave number (for structures
smaller than 50 µm) that will be quickly damped by the
viscosity.

B. Numerical tracking algorithm

Using the measured Eulerian velocity field, u(x, t), we
numerically integrated the Lagrangian equation as follows:

dx

dt
= v(x, t), (3)

where v(x, t) is the Lagrangian velocity; and v(x, t) is equal to
the Eulerian velocity at the same position, e.g., v(x, t) = u(x,
t). A second-order Adams-Bashforth method was employed
in the time scheme, while a two-dimensional spline interpo-
lation scheme was used to retrieve the Lagrangian velocity
not on the grid point. The virtual particles were assumed
to be free with the bacteria body, or in other words, they
could freely penetrate the bacteria body. Initially, 2500 vir-
tual fluid particles were seeded with a uniform distribu-
tion in the range (x, y) 2 [0, 217] µm. If a particle moved
beyond the experimental area, time integration stopped. For
one realization, about ⇠100 virtual particles exceeded the
boundary, and ten realizations were performed. In total, we
obtained 2400⇥ 1441⇥ 10' 34, 584, 000 (number of virtual
particles per realization ⇥ number of snapshots ⇥ number of
realizations) velocity vectors to ensure a good statistics.

Figure 2(a) illustrates several trajectories that show a com-
plex behavior. Figure 2(b) shows the Lagrangian velocity vx(t)
along the Lagrangian trajectory, where a large structure fluc-
tuation is visible around ⇠2 s. From there, we estimated the
Lagrangian velocity correlation function as

⇢(⌧) =
hṽ(t + ⌧)ṽ(t)it

�2
, (4)

where ṽ(t)= v(t)� hv(t)it is a centered Lagrangian velocity;
h it is the time average; and � is the root-mean-square
Lagrangian velocity. Figure 2(c) displays the experimental
⇢(⌧) for vx(t) and vy(t), which show long range correlation
in time. The Lagrangian time scale, TL, is defined as

TL =

⌅ 1

0
⇢(⌧) d⌧. (5)

Due to the finite time measurement, it is difficult to apply the
above definition directly. Therefore, we used the first zero-
crossing time as the Lagrangian integral time, i.e., TL = ⌧0,
where ⇢(⌧0)= 0. The experimental value of TL is found to be
⇠ 0.75 s; thus we expect two dispersion regimes to be separated
by the Lagrangian time scale, TL.

Figure 3 shows the measured Fourier power spectrum for
the Lagrangian velocities vx and vy. The power-law behav-
ior, E(f )⇠ f �� , was observed in the range 0.6  f  2 Hz,
corresponding to the time scale range 0.5  t  1.7 s. A com-
pensated curve using the measured scaling exponent is also
shown in the inset in Fig. 3 to emphasize the power-law
behavior, where a clear plateau confirms the existence of
the power-law behavior. The measured scaling exponent is
� = 2.0± 0.06, where the error is provided by the 95% fit-
ting confidence level of the least squares fit algorithm. This
scaling value is coincidently in a good agreement with
the value predicted by the Kolmogorov-Landau theory for
hydrodynamical Lagrangian turbulence.22,23 Note that, due
to the existence of vortex trapping events in the conven-
tional three-dimensional Lagrangian turbulence, this value is
difficult to obtain even turbulent flows with high Reynolds
numbers.22

FIG. 3. Fourier power spectrum of Lagrangian velocities of vx and vy. The
power-law behavior is observed in the frequency range 0.6  f  2 Hz with a
scaling exponent 2.0±0.06, which is in agreement with the value predicted by
the Kolmogorov-Landau theory for the conventional Lagrangian turbulence.
The inset shows a compensated curve to emphasize the observed scaling range.
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FIG. 4. The probability density function of Eulerian (u) and Lagrangian
velocity (v), where normal distribution is illustrated by the solid line.

Figure 4 shows the measured probability density function
(pdf) of Eulerian velocity, u, and Lagrangian velocity, v, where
the normal distribution is represented by a solid line. As seen
in the figure, the measured pdf’s of Eulerian and Lagrangian
velocities agree well with the normal distribution.2

III. RESULTS

A. Convergence test

To analyze the convergence of statistics in this work, we
first considered the qth-order displacement function, which is
defined as

Dq(⌧) = hri(t + ⌧)qii,t , (6)

which can be re-written as

Dq(⌧) =
⌅ 1

0
p(r⌧)rq

⌧ dr⌧ , (7)

where p(r⌧) is the experimental pdf for the separation time
scale, ⌧, and p(r⌧)rq

⌧ is the so-called qth-order integral-kernel.
Figure 5 shows the measured integral-kernels for (a) with and
(b) without the mean velocity effect by removing the persis-
tent velocity effect from the displacement function, i.e., r̃i(⌧)
= |xi(t + ⌧)� xi(t)�V⌧ |, where V = hv(t)it is the mean
Lagrangian velocity. Visually, the measured curve initially
increased and then curved downward, which indicates a good
convergence of the statistics at least up to the statistical order
q = 8. We then considered the statistics in the range �1  q  8
and time scale in the range 0.05  ⌧  31 s.

B. Taylor dispersion with mean velocity e�ect

Figure 6(a) shows the experimental qth-order displace-
ment function for q = 1 (�) and q = 2 (⇤). The power-law
behavior is evident, as expected, and can be further identified
by two regimes, e.g., 0.05  ⌧  0.5 s and 2  ⌧  31 s,
which are separated by the above estimated Lagrangian time
scale, TL = 0.75 s. Figure 6(b) displays the corresponding
compensated curve using the fitted scaling exponent, �2, to
emphasize the observed power-law behavior, in which a clear
plateau confirms the existence of the power-law behavior. The
measured scaling exponents for the case q = 2 were determined
to be �S

2 = 1.87 ± 0.01 and �L
2 = 1.93 ± 0.01, where the error

is provided by the 95% fitting confidence level. The former
value is close to the value �2 = 2, which was predicted by
the Taylor dispersion theory for a short time evolution. Due
to the existence of the mean velocity effect, the latter scaling
exponent is also close to 2.

FIG. 5. Convergence test of 8th-
order displacement function D8(⌧)
= s p(r⌧ )r8

⌧ dr⌧ , where p(r⌧ ) is the
experimental pdf of the displacement
function with the separation time scale
⌧. The corresponding integral kernel
(a) with mean velocity effect and
(b) without mean velocity effect. It
confirms the statistical convergence for
all separation scales at least up to the
statistical order q = 8.

FIG. 6. (a) Measured qth-order dis-
placement function Dq(⌧) for statisti-
cal order q = 1 (�) and 2 (⇤). (b)
The compensated curve to emphasize
the power-law behavior in the range
0.05  ⌧  0.5 s and 2  ⌧  31 s using
measured scaling exponents �S

2 = 1.87
± 0.01 and �L

2 = 1.93 ± 0.01, respec-
tively, and the corresponding fitting con-
stant, Cq.
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FIG. 7. Experimental pdf of the cen-
tered x, where x = (x⌧ � hx⌧ i)/� and
x⌧= log10(r(⌧)) for (a)⌧  0.5 s and (b)
⌧ � 2 s. For comparison, the Bramwell-
Holdsworth-Pinton formula (thick solid
line) and the normal distribution (dashed
line) are also shown.

Experimental pdf’s for the normalized displacement func-
tions, x = (x⌧ � hx⌧i)/� and x⌧ = log10(r(⌧)), were calculated
with a bin width of 0.1. Figure 7 shows the measured pdf’s
for (a) ⌧  0.5 s and (b) ⌧ � 2 s. Except for slight scattering at
the right (x � 1) and left (x  � 4) tails, they collapsed with
each other on their own regimes, indicating the scale invari-
ance property. For comparison, the normal distribution and the
Bramwell-Holdsworth-Pinton (BHP) formula24 are displayed
as dashed and solid lines, respectively. The BHP formula is
written as

⇧(y) = K
⇣
ey�ey ⌘a

, y = b(x � s), a = ⇡/2, (8)

where the parameters b = 0.938 and K = 2.14 were obtained
numerically from a previous study.25 This formula was
first introduced to characterize rare fluctuations in tur-
bulence and critical phenomena. The measured pdf’s for
small-scale separation time (⌧  0.5 s) agree with the BHP
formula on the range �4  x  0.6. For large-scale separa-
tion time (⌧  2 s), the pdf’s agree well with the BHP when
x � � 4.

We then estimated the scaling exponents on these two
scaling regimes for �1  q  8. Figure 8(a) shows the mea-
sured scaling exponents, �q, for both short (�) and long time
(⇤) evolutions, where �q = q predicted by the Taylor dispersion
theory for short time evolutions is shown as a dashed line. The
error bar indicates a 95% fitting confidence interval. Experi-
mentally, the measured scaling exponents, �S

q and �L
q , are close

to each other since the mean Lagrangian velocity effect is pre-
served in the numerical integral algorithm but deviate from the
prediction of the Taylor dispersion theory (inset of Fig. 8(a)).
A nonlinear q-dependence of these curves implies a poten-
tial intermittency correction. To characterize the potential

intermittency effect, we introduce here a lognormal formula
to fit the measured scaling exponents, which is written as

�(q) = qH � µ
2

⇣
q2H2 � qH

⌘
, (9)

where H is the Hurst number and µ is the intermittency
parameter.26 This lognormal formula is a generalization of the
classical one proposed by Kolmogorov in 1960s for the hydro-
dynamic turbulence with H = 1/3. For a given H, a larger value
of µ is a more intermittent process. The measured parameters
HS = 0.94 ± 0.01 and µS = 0.01± 0.001, and HL = 0.97 ± 0.01
and µL = 0.02± 0.001 show a very weak intermittent correc-
tion, where the error is provided by the 95% fitting confidence
level.

Note that for the lognormal formula, both H and µ are
taken as free parameters. The measured intermittency param-
eter, µ, depends on H. To overcome this difficulty, we introduce
here a singularity spectrum, which is defined via a Legendre
transform

f (↵) = min
q
{q↵ � �q + 1}, ↵(q) =

d�q

dq
, (10)

where ↵ is the multifractal intensity, and f (↵) is the singularity
spectrum. Experimentally, a wider ↵ and f (↵) refer to a more
intermittent field. Figure 8(b) shows the measured f (↵) versus
↵, where a weak intermittent correction exists for both small
and large time scales. Moreover, the singularity spectrum for
large-scale time separations seems to be more intermittent than
that for small-scale one.

C. Taylor dispersion without mean velocity e�ect

To exclude the mean velocity effect, a displacement
function that omits this effect is defined as

FIG. 8. (a) Measured scaling expo-
nents, �q, for short and long time evo-
lutions. For comparison, the scaling �q
= q is represented by a dashed line. The
inset shows the deviation from the linear
relation �q = q. (b) The correspond-
ing singularity spectrum, f (↵), versus
↵. The error is provided by the 95%
fitting confidence level.
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FIG. 9. (a) Measured qth-order mean
displacement function, D̃q(⌧), for statis-
tical order q = 1 (�) and 2 (⇤) without
mean velocity effect. (b) The compen-
sated curve to emphasize the power-law
behavior in the ranges 0.05  ⌧  0.5 s
and 2  ⌧  31 s.

D̃q(⌧) =
⌦
r̃i(t + ⌧)q↵

i,t , (11)

where r̃i(t + ⌧)= |xi(t + ⌧)� xi(t)�V⌧ |, and V = hv(t)it is the
mean Lagrangian velocity. This formula represents a disper-
sion observed on a moving frame with a constant velocity,
V. Figure 9(a) shows the measured D̃q(⌧) for statistical order
q = 1 (�) and q = 2 (⇤). The power-law behavior is observed
with two different regimes in the time ranges 0.05  ⌧  0.5 s
and 2  ⌧  31 s with scaling exponents �̃S

2 = 1.74± 0.02 and
�̃L

2 = 1.16± 0.01, where the error is provided by the 95% fitting
confidence level. The former scaling exponent is smaller than
the one predicted by the Taylor dispersion theory for short
time evolutions and is similar to the one reported by Ariel
et al.20. The latter scaling exponent for long time evolutions is
slight larger than the value of 1, indicating a super-diffusion.
This result reveals the effects of bacterial turbulence. The
compensated curve is shown in Fig. 9(b) to emphasize the
power-law behavior. A clear plateau confirms the existence of
the power-law.

Figure 10 shows the experimental pdf’s p(x̃) of
x̃ = (x̃⌧ � hx̃⌧i)/� and x̃⌧ = log10(r̃(⌧)) for (a) 0.05  ⌧  0.5 s

and (b) 2  ⌧  31 s. Visually, these differ greatly from the
pdf’s obtained with the BHP formula or normal distribution.
Moreover, we discovered that the pdf’s for small (respec-
tively, 0.05  ⌧  0.5 s) and large (respectively, 2  ⌧  31 s)
times collapse with each other when �4  x. The col-
lapse implies that, if the intermittency correction exists,
their strengths could be the same for these two different
regimes.

Figure 11(a) shows the measured scaling exponents, �̃q,
for both small (�) and large (⇤) time evolutions. For com-
parison, values predicted by Taylor dispersion theory are
also shown. Visually, the scaling exponent �̃S

q in short time
evolutions is below the theoretical one when q � 0, while
the exponent in long time evolution is above the theoretical
one when q � 0, indicating super-diffusion. The correspond-
ing deviation from the theoretical values is shown in the
inset in Fig. 11(a). Note that these curves are almost linear
against q, indicating that the possible intermittency correction
is possibly negligible. The lognormal formula fitting provides
H̃S = 0.88± 0.01 and µ̃S = 0.01± 0.001, and H̃L = 0.58± 0.01
and µ̃L = � 0.01± 0.005, where the error is provided by

FIG. 10. Experimental normalized
pdf’s of the centered displacement
x̃, where x̃ = (x̃⌧ � hx̃⌧ i)/� and x̃⌧
= log10(r̃(⌧)) for (a) ⌧  0.5 s and
(b) ⌧ � 2 s. For comparison, the BHP
formula and the normal distribution are
also shown.

FIG. 11. (a) Measured scaling expo-
nents �̃q for short and long time evolu-
tions without the mean velocity effect.
For comparison, the scaling �̃q = q
and �̃q = q/2 are illustrated as dashed
and solid lines. (b) The corresponding
singularity spectrum, f (↵), versus ↵.
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the 95% fitting confidence level. These values suggest a
very weak intermittency correction, confirming the obser-
vations from Fig. 11(a). Figure 11(b) shows the measured
singularity spectrum, f (↵), versus ↵ where the intermittency
correction could be ignored for both short and long time
evolutions.

IV. DISCUSSION

The measured scaling exponents, �q, may vary for dif-
ferent fitting ranges. This is because that a pure power-law
behavior is difficult to retrieve, and this can be seen from a
local scaling exponent, �2(⌧), which is defined as

�2(⌧) =
d log10D2(⌧)

d log10⌧
. (12)

This exponent can be generalized for a qth-order displacement
function Dq(⌧). Figure 12 shows the measured �2(⌧) (respec-
tively, �̃2(⌧)), where the lack of a clear plateau implies the
absence of the pure power-law behavior. In other words, the
experimental scaling exponent, �2, might depend on the choice
of the fitting range. To avoid this vagueness, we introduce here
a local singularity spectrum

f (⌧, ↵) = min
q

(
q↵(⌧, q) � �q(⌧) + 1

)
, ↵(⌧, q) =

d�q(⌧)
dq

,

(13)

where ↵(⌧, q) is the local multifractal intensity, and f (⌧, ↵)
is the local singularity spectrum. Figure 13 shows a contour
plot of the measured local singularity spectrum f (⌧, ↵), respec-
tively, for (a) with and (b) without the mean velocity effect.
For visual convenience, the plots are coded in the same color
map. Visually, two different regimes are visible with either a
small variation of ↵(⌧, q) or f (⌧, ↵), indicating that the inter-
mittency correction is very weak if it exists. This is consistent
with the direct measurement of the intermittency parameter,
µ ' 0.01.

The measured Hurst number, H, either with or with-
out mean velocity effect is different than the ones predicted
by the Taylor dispersion theory. This difference may be
an effect of the active movement of bacteria, which are

FIG. 12. Experimental local scaling exponent �2(⌧) (respectively, �̃2(⌧)) for
the mean square displacement for D2(⌧) (respectively, D̃2(⌧)). The lack of a
plateau implies the absence of a pure power-law behavior.

aided by super-diffusion to capture food.20 Although the two
regimes are experimentally evident, this result is a conse-
quence of the turbulent motion of such bacterial turbulent
flow.

Finally, we would like to provide some comments on the
statistical uncertainty of this study. As mentioned above, the
statistical uncertainty of the PIV measurement is less than 1%
for the second-order moment.2 We have tested for different
algorithms for both time advance and spatial interpolation
and found that the individual trajectories starting from the
same initial positions vary slightly. However, the statistical
moments of displacement functions are the same, which is
partially due to a rather smooth fluid field. Further, the dis-
placement function, Dq(⌧), is indeed a structure-function of
the Lagrangian trajectory. Therefore, V⌧ =D1(⌧)/⌧ can be
treated as a coarse-grained mean velocity, which is less influ-
enced by the intermittency effect that has been found for the
Eulerian velocity field.9 We also note that some velocity vec-
tors from 10 realizations are not statistically independent.
But it does not change the conclusion of this work. How-
ever, a true particle tracking experiment should be done with
a careful design as a means to directly check the dispersion
relations.

FIG. 13. Experimental local singular-
ity spectrum, f (⌧,↵), (a) with and (b)
without mean velocity effect. For com-
parison convenience, measured f (⌧,↵)
is coded by the same color map.



051901-8 Huang et al. Phys. Fluids 29, 051901 (2017)

V. CONCLUSION

In summary, single particle dispersion was analyzed for
a bacterial turbulence by numerical integration of the
Lagrangian equation. A second-order Adams-Bashforth
scheme in time and a two-dimensional spline interpolation
scheme in space were used, and qth-order displacement func-
tions with and without the mean velocity effect were calcu-
lated. The results show a two-regime behavior, respectively, in
short and long time evolutions with corresponding regimes in
the range 0.05  ⌧  0.5 s and 2  ⌧  31 s, respectively. With
the mean velocity effect, the experimental pdf’s of the dis-
placement function were fitted via the BHP formula, and the
measured scaling exponents, �q, were found to deviate from
the one predicted by the Taylor dispersion theory, which can
be understood as an effect of the active dynamic system. More-
over, the corresponding Hurst numbers were determined to be
HS = 0.94 and HL = 0.97. When excluding the mean velocity
effect, the measured pdf’s of displacement function collapse
with each other and were different from the BHP formula,
while the measured scaling exponents, �q, deviated from the
theoretical prediction. More precisely, in short time evolutions
(0.05  ⌧  0.5 s), the measured Hurst number was H̃S = 0.88,
smaller than the value of the theoretical prediction. In long
time evolutions (2  ⌧  31 s), the measured Hurst number was
H̃L = 0.58 and is larger than the value predicted by the Taylor
dispersion theory. All these measured Hurst numbers indi-
cate a super-diffusion behavior, which is relevant for bacteria
to gain food more efficiently. Furthermore, the experimental
results show a weak intermittency effect. Excluding the results
obtained for the Hurst numbers, the two-regime behavior pre-
dicted by the Taylor dispersion theory is verified for this active
turbulence system.
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