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Intrinsic flow structure and multifractality in two-dimensional bacterial turbulence
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The active interaction between the bacteria and fluid generates turbulent structures even at zero Reynolds
number. The velocity of such a flow obtained experimentally has been quantitatively investigated based on
streamline segment analysis. There is a clear transition at about 16 times the organism body length separating two
different scale regimes, which may be attributed to the different influence of the viscous effect. Surprisingly the
scaling extracted from the streamline segment indicates the existence of scale similarity even at the zero Reynolds
number limit. Moreover, the multifractal feature can be quantitatively described via a lognormal formula with the
Hurst number H = 0.76 and the intermittency parameter μ = 0.20, which is coincidentally in agreement with
the three-dimensional hydrodynamic turbulence result. The direction of cascade is measured via the filter-space
technique. An inverse energy cascade is confirmed. For the enstrophy, a forward cascade is observed when
r/R � 3, and an inverse one is observed when r/R > 3, where r and R are the separation distance and the
bacteria body size, respectively. Additionally, the lognormal statistics is verified for the coarse-grained energy
dissipation and enstrophy, which supports the lognormal formula to fit the measured scaling exponent.
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I. INTRODUCTION

In three-dimensional (3D) hydrodynamic turbulence, scale-
invariant properties are inherited at different scales via the
cascade process, i.e., the Richardson-Kolmogorov energy
cascade, where energy is transferred from larger to smaller
scales until dissipated to heat at viscosity scale [1]. It is
generally believed that the energy injection is through the
mean flow or the large-scale movement. To characterize such
complex dynamics at different scales, the structure function
based on velocity increment has been widely applied in
different turbulent systems, including bacterial turbulence [2].
Conventionally the structure function is defined as

Sq(r) = 〈�ur (x)q〉x ∼ rζ (q), �ur (x) = u(x + r) − u(x).

(1)

Here x represents the spatial coordinate and r = |r| is the
separation scale lying in the inertial range �ν � r � L, where
�ν is the Kolmogorov scale and L is the integral scale. The
existing results [3–5] show that the aforementioned definition
in Eq. (1) could mix information from different flow structures;
thus, it is difficult to detect the scaling index ζ (q).

In general, the scale r is determined by the dynamic process
itself, for instance the topology of the fluid structure. In
recent years several new approaches have been proposed to
overcome this difficulty, e.g., detrended fluctuation analysis
[6], the Hilbert-Huang transform [7,8], and multilevel segment
analysis [9]. For the hydrodynamic turbulent system, the
measured ζ (q) is nonlinear with respect to q, which is termed
multifractality. Physically, multifractality originates from the
nonlinearity of the Navier-Stokes equation.

In active flows, living matter such as bacteria interacts with
the fluid. Thus, the patterns of energy injection and dissipation
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are different from the classic Navier-Stokes governed flows,
raising more complexities to be investigated [10–12]. For
example, in bacterial turbulence the energy injection scale is
comparable to R, the body length scale of the microorganisms.
R is often a few or dozens of micrometers, which is much
smaller than the fluid dissipative scale �ν . This interesting flow
status has been redefined as “mesoscale turbulence” in living
fluid [2,13]. Although the background flow has much smaller
Reynolds numbers than that required for conventional fluid
turbulence, under the self-propulsion action by the microor-
ganisms, the flow still exhibits a turbulentlike movement even
at zero Reynolds number [2,14–24]. Meanwhile the effects
from the flow can be important not only for nutrient mixing,
information passage, and thus the biological behavior but also
for driving micromachines [25].

Experimentally the velocity field in bacterial turbulence
can be measured in the Eulerian frame via the confocal
particle image velocimetry (PIV) technique [18,19]. Flow
visualization shows clearly that the collective motion of
bacteria in the suspension exhibits coherent structures on
a scale much larger than the individual body length, e.g.,
10R [2]. This important property can be understood from a
simplified picture of interaction between individual swimmers
[15,16,21,23]. Theoretically there are different models to
predict the active fluids by constructing the possible field
governing equations, inevitably with some control parameters
[2,12,20,22]. Numerical tests show that by adjusting these
control parameters some of the measurement results can satis-
factorily be reproduced, for instance, the large-scale coherent
structure [13,20]. Wensink et al. [2] observed a dual-power-
law behavior from the solution of a two-dimensional (2D)
bacterial turbulence model equation. Recently, Qiu et al. [24]
confirmed the intermittency correction in bacterial turbulence
via a Hilbert-based methodology. From the observed dual-
power-law behavior, it can be estimated that intermittency
in the smaller-scale regime is stronger than that in the
large-scale regime. In spite of these latest progresses, the
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FIG. 1. Two snapshots of the instantaneous streamline colored with the velocity magnitude. Visually the flow field is smooth with a typical
large-scale structure size of ∼50 μm.

complexities of flow and bacteria interaction are still scarcely
understood.

II. DATA PRESENTATION

The data analyzed here are from experimental results by
courtesy of Goldstein [26]. We recall briefly the main control
parameters in a microfluidic chamber, which has a vertical
height Hc less than or equal to the individual body length R.
For bacterial suspension in a thin fluid, the spatial scale of the
flow structure is much larger than the depth and thus the system
can be approximated as 2D. Bacillus subtilis has an individual
body length R � 5 μm and an aspect ratio a = 5, i.e., the
ratio between the body length R and the body diameter d. The
kinetic energy is injected into the system by the living matter
at approximately the scale R. The volume filling fraction is
φ = 84% with a total particle number N = 9968, to ensure the
turbulent phase of the flow [2]. The PIV measurement area is
217 μm × 217 μm, and the image resolution is 700 pixels ×
700 pixels with conversion rate 0.31 μm/pixel and frame rate
40 Hz. The commercial PIV software Dantec Flow Manager is
used to extract the flow field component with a moving window
size 32 pixels × 32 pixels and 75% overlap, which results
in 84 × 84 velocity vectors and a total of 1441 snapshots,
corresponding to a time period ∼36 s. In total, there are
10 167 696 velocity vectors. The mean and root-mean-square
(rms) velocities were determined as u = (0.36,0) μm s−1 and
u

′ = (0.30,0.29) μm s−1, respectively, and the corresponding
turbulent intensity was around u′/ux � 82%. In the following
analysis, the mean velocity is removed from the velocity field.

Figure 1 shows two snapshots of the instantaneous stream-
lines colored with the velocity magnitude. At different instants
the typical field structure can be clearly observed with a spatial
size around 50 μm, corresponding to 10R. Figure 2 shows the
so-called dissipation spectrum E(k)k2 [18,27], where E(k) is
the Fourier power spectrum of velocity adopted from Ref. [2].
Clearly the energy spectrum and dissipation spectrum peak
at kER � 0.1, corresponding to a spatial scale �E/R � 10,
and at kεR � 0.17, corresponding to a spatial scale �ε/R � 6,
respectively. These two peak scales are comparable with
the spatial size of the velocity field. Tentatively the scale

10R can be understood as a kind of influence scale for the
present case, i.e., the energetic structure formed by the hy-
drodynamic interaction and constrained by the effective fluid
viscosity.

III. STREAMLINE-BASED INTRINSIC
FLOW STRUCTURE

As shown in Fig. 3(a) from a specific spatial point denoted
by +, the streamline passing though is uniquely defined.
Compared with other descriptions, the streamline is favorable
to quantify the flow field because of the independence of the
coordinate systems. Along the streamline the local extremal
points, either maximum (in red) or minimum (in blue), can
be identified according to the velocity magnitude u, which is
calculated via the bilinear interpolation of each component.
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FIG. 2. Experimental dissipation spectrum E(k)k2, where a peak
is found to be around kpR = 0.17, corresponding to a spatial scale
�p � 6R. The inset shows the Fourier power spectrum E(k), where a
power-law fitting −8/3 on the range 0.2 � kR � 0.4 is illustrated as
a solid line.
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FIG. 3. (a) Illustration of a streamline with respect to a specified grid point (denoted by +). Along the streamline the local extremal points,
either maximum (in red) or minimum (in blue), can be identified according to the velocity magnitude u. The given streamline is then divided
into streamline segments, which are defined as the part confined by two adjacent local extremal points. According to the sign of �u along the
velocity direction, the streamline segment can be positive (p) if �u > 0 or negative (n) if �u < 0. (b) With respect to selected grid points
(denoted by +), the corresponding streamline segment structure is extracted from a snapshot of experimental data with local maximal points
and local minimal points.

To ensure good resolution, numerically the spatial marching
size along the streamline needs to be a fractal of the grid
size, e.g., 0.02. From the comparison of different algorithms,
an ideal and robust criterion to find extrema is based on the
interpolated velocity gradient ∇�u, i.e., �n · ∇�u · �n = 0, where
�n = �u/u is the unit velocity direction vector.

The streamline segment with respect to the given spatial
point + is defined as the part of its streamline bounded by the
two adjacent extremal points [28]. Obviously within a stream-
line segment the velocity magnitude changes monotonously.
Along the velocity vector direction from one extremal point
with the velocity magnitude us to another extremal point
with the velocity magnitude ue, �u = ue − us , and �, which
is defined here as twice the arc length in between the
adjacent extremal points, are the characteristic parameters of a
streamline segment. Depending on the sign of �u, the segment
can be positive (p) if �u > 0 or negative (n) if �u < 0. As an
illustration, the streamline segments of some selected special
points (denoted by +) are shown in Fig. 3(b). An important
issue to address here is that to make statistical results unbiased,
the sampling special points, for which a streamline segment
passes through each, need to be homogeneously distributed
[28].

The conventional structure function mixes information
from different flow structures because the length scale r is
treated as an independent input [3,5,29]. It would be more
serious if an energetic structure is present, such as the observed
large structure here around ∼10R. It has been shown elsewhere
that the classical structure function analysis is dominated by
this structure [24]. The scaling behavior predicted by the
Fourier analysis is thus absent in physical space [2]. A more
detailed scale-dependent analysis can be found in Refs. [5,24].

The streamline segment concept is inspired by the fact
that the turbulent vector field can naturally be described
by the streamline, which is coordinate system independent.
The length scale of the streamline segment is determined by
the extremal points of the velocity magnitude, but not an

arbitrary input. Therefore, the streamline-based structure is
advantageous in field description and scaling analysis to avoid
scale mixing. Interesting examples of streamline segment
analysis include the turbulent velocity field [28], the turbulent
vorticity field [30], and turbulent flame structure [31,32].
Moreover, it must be mentioned that because the streamline
segment structure is defined based on the instantaneous flow
field, the analysis is Eulerian but not Lagrangian.

IV. RESULTS

A. Probability density function of the characteristic parameters

The above-mentioned streamline-segment-based analysis
is applied to all snapshots. A total of 9 092 689 segments are
detected, which ensures a good statistics below. Figure 4(a)
shows in the velocity field the joint probability density function
(PDF) p(�,�u) between the two characteristic parameters,
i.e., � and �u, for the streamline segments with respect
to all the spatial points. The most noticeable feature is the
asymmetry between the branch with positive �u and the
branch with negative �u; i.e., on average the lengths of
negative segments are larger than that of the positive segments,
whereas �u for positive and negative segments are almost
the same. The existing results for 3D fluid turbulence show
such an asymmetric structure as well [28]. However, due to
the kinematic effect along the velocity direction the positive
segments have increasing u and thus are inclined to be
stretched and on average � is larger, whereas for the negative
segments along the velocity direction, u decreases and thus
the segments tend to be compressed to have smaller �. The
opposite asymmetry we see here in bacterial turbulence, i.e.,
on average the negative streamline segments have larger � than
that of the positive streamline segments, is a consequence of
either the dimensionality reduction from 3 to 2 or the active
nature of this dynamic system. It deserves a more detailed
further study.

052215-3



LIPO WANG AND YONGXIANG HUANG PHYSICAL REVIEW E 95, 052215 (2017)

0 5 10 15

�/R

−1.5

−1

−0.5

0

0.5

1

1.5
Δ

u
(μ

m
s−

1
)

(a)

0 1 2 3 4 5

log10 (p(�, Δu))

0 20 40

�/R

10−6

10−5

10−4

10−3

10−2

10−1

100

p(
�)

=
∫

p(
�,

Δ
u
)d

Δ
u (b)

FIG. 4. (a) Experimental joint PDF p(�,�u). For display convenience, p(�,�u) is measured at the logarithmic scale. For a better display,
the scale is in the range 0 � �/R � 15. (b) The corresponding marginal PDF p(�). For comparison, normal and exponential distributions are
illustrated as dashed and solid lines, respectively.

The length scale PDF, i.e., p(�) = ∫
p(�,�u) d�u, is

shown in Fig. 4(b). Clearly there are two different regimes
separated at �/R � 16. Below this scale the PDF is roughly
Gaussian, while a clear exponential tail appears above this
scale, which is strong evidence of the different dominant mech-
anisms in different regimes. Here �/R � 16 is comparable
with the aforementioned influence scale. The observed two
regimes may be attributed to the different influences from
the viscous effect. As in the previous mechanism analysis
[28,33], under the action of perturbation from the random
motion of turbulent eddies, the extremal points of streamline
segments are newly generated; meanwhile, the molecular
diffusion will smear away the extremal points. In the smaller �

range the diffusion mechanism dominates, whereas for larger
�, perturbation is more important.

B. High-order statistics and multifractality

From the calculated joint PDF, an �-based qth-order
intrinsic structure function is introduced as

Mq(�) =
∫ +∞

−∞
p(�,�u)|�u|q d�u. (2)

In the conventional definition of the structure function, the
length scale is an independent input. Thus the average
operation in the structure function mixes different correlation
regions [33]. Mathematically, the structure function acts as
a filter with a weight function W (k�) = 1 − cos(2πk�), in
which k is the wave number [3–5]. It thus leads to the statistics
at different wave number k mixed, resulting in the so-called
infrared and ultraviolet effects, respectively, for large- and
small-scale contaminations [29]. In contrast, the length scale
� in Eq. (2) is the segment length, which is determined by the
intrinsic flow structure rather than an independent input. Such a
definition is in better agreement with the flow physics that scale
is flow structure related and at the same time helps to annihilate
the strong mixing of different correlation regions. Therefore,
much improved results have been obtained in analyzing the
Lagrangian and 2D turbulence data [9].

We expect a scaling behavior of Mq(�), e.g., Mq(�) ∼ �ζ (q),
particularly at the separation scale �/R � 15 with convergent
statistics. The measured intrinsic structure functions Mq(�) for
q = 1, 2, 3, and 4 are shown in Fig. 5(a). The power-law behav-
ior is observed in the range 2 � �/R � 10, corresponding to a
wave-number range 0.1 � kR � 0.5, which agrees well with
the scaling range detected by the Hilbert-Huang transform
in the wave-number domain [24]. Figure 5(b) shows the
corresponding compensated curve using the fitted parameter in
a semilogarithmic plot. A clear plateau confirms the existence
of the scaling behavior.

Figure 6(a) displays the scaling exponent ζ (q) extracted
from the experimental data, where the error bar indicates a
95% fitting confidence interval. The convex shape implies
that intermittency exists in this active dynamic system [24].
Moreover, the lognormal intermittency model leads to the
following formula:

ζ (q) = qH − μ

2
(q2H 2 − qH ), (3)

where H is the Hurst number and μ is the intermittency index.
Mathematically μ characterizes how much the measured ζ (q)
deviates from a linear relation qH . In other words, the larger
μ is, more intermittent the process is. The fitted results
read H = 0.76 ± 0.01 and μ = 0.20 ± 0.01. Recently, the
same level parameter μ = 0.26 ± 0.01 was reported by Qiu
et al. [24] via a different methodology. To our knowledge,
the intermittency parameter μE � 0.20 has been widely
accepted for three-dimensional hydrodynamic turbulence [1].
It is surprisingly interesting that different turbulent systems
may assume similar intermittent behavior. Even in very low
Reynolds number bacterial flow, intermittency, one of the
most important turbulent features, still exists due to the
strong nonlinear interaction between the background flow
and the self-propulsion of living organisms. The present
result indicates that very different turbulent flows can still
be similarly intermittent.
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FIG. 5. (a) High-order intrinsic structure function Mq (�) for q from 1 to 4. The power-law behavior is observed in the range 2 � �/R � 10,
corresponding to a wave-number range 0.1 � kR � 0.5. The solid line indicates a power-law fitting in this scaling range via the least-squares
fitting algorithm. (b) The corresponding compensated curve using the fitted parameters to emphasize the observed power-law behavior.

V. DISCUSSION

A. Singularity spectrum

To emphasize multifractality, a singularity spectrum is
introduced via the following Legendre transform:

α(q) = dζ (q)

dq
, f (α) = min

q
{qα − ζ (q) + 1}, (4)

where α is a generalized Hurst number, and f (α) is the
singularity spectrum. The broader variation α and f (α) implies
a stronger multifractality of the process. Figure 6(b) shows
the measured f (α) versus α with the 95% confidence interval
error bars. Moreover, the measured singularity spectrum is well
reproduced by the lognormal formula with the experimental
Hurst number and intermittency parameter.

B. Cascade direction

Wensink et al. [2] proposed the following continuum model
of the bacterial turbulence:

∂tu + λ0u · ∇u = −∇p + �0∇2u − �2(∇2)2u + λ1∇u2

− (
 + χ |u|2)u, (5)

where p denotes pressure, λ0 > 1 and λ1 > 0 are used for
the pusher-swimmers as in this study, (
,χ ) corresponds to a
quartic Landau-type velocity potential, and (�0,�2) provides
the description of the self-sustained mesoscale turbulence in
incompressible active flow, e.g., �0 < 0 and �2 > 0, resulting
in a turbulent state [2]. As discussed in Ref. [24], the observed
intermittency correction might be triggered by the last two
nonlinear terms. However, it is difficult to apply the above
equation to the experimental data because of the intractability
in determining the listed parameters. Alternatively a two-
dimensional Ekman-Navier-Stokes equation is considered as
a first-order approximation of the governing equation, which
is written as

∂tu + u · ∇u = −∇p + ν∇2u − ξu + fu, (6)

where ξ stands for the Ekman friction coefficient, and fu is
the external forcing to inject the energy and enstrophy to
the system [34]. The two-dimensional kinetic energy and
enstrophy fluxes can be derived via a filter-space technique
[35–40]. Using the Gaussian filter Gr = √

6/π exp(−6r2), for
instance, where r is a coarse-grained scale, the filtered field is
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FIG. 6. (a) Scaling exponent ζ (q) in the range 2 � �/R � 10 for 0 � q � 4. A lognormal formula with a Hurst number H = 0.76 ± 0.01
and an intermittency parameter μ = 0.20 ± 0.01 is shown as a solid line. (b) The corresponding singularity spectrum f (α). The error bar
indicates a 95% confidence interval.
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FIG. 7. Scale-to-scale flux for (a) energy �E(r) and (b) enstrophy ��(r). A negative value indicates an inverse flux transferring from small
to large scales.

defined as

f r (x) =
∫

|x ′ |�r

Gr (x ′)f (x + x ′)dx ′. (7)

It then yields

�E(r) = −
∑

i,j=1,2

[
(uiuj )r − ur

i u
r
j

]∂ur
i

∂xj

(8)

for the energy flux and

��(r) = −
∑
i=1,2

[
(uiω)r − ur

i ω
r
]∂ωr

∂xi

(9)

for the enstrophy flux. A negative �E(r) indicates an energy
transferred from scale < r to scale > r , and vice versa. This
technique has been proved to be efficient even for analyzing
the poorly resolved velocity field [36].

Figures 7(a) and 7(b) show the measured scale-to-scale
energy flux �E(r) and enstrophy ��(r), respectively. The
former indicates an inverse energy cascade up to at least
scale r/R = 20. The latter shows more complexity, e.g., a
forward enstrophy cascade when r/R � 3, and then an inverse
cascade when 3 < r/R � 10. Note that the contribution from

the additional nonlinear interactions, i.e., the last two terms in
Eq. (5), has been ignored, which, however, could be important
for the enstrophy cascade since the vorticity is the first-order
spatial derivative of the Eulerian velocity. A following cascade
picture can be postulated. The kinetic energy is injected into
the system at the length scale of the bacterial body size
r/R = 1. It is then transferred up to large scales to generate
large-scale motions. The fluid viscosity plays an important role
in this special inverse cascade at scales below �ν , which may
physically act as an energy barrier to block the energy transfer
toward larger scales.

C. Lognormal statistics

The lognormal formula [Eq. (3)] was first introduced by
Kolmogorov in his famous refined similarity hypothesis theory
with H = 1/3, where the intermittency property of the energy
dissipation field [ε = ν/2(∂iuj + ∂jui)2] is considered [41].
He assumed a lognormal distribution of the coarse-grained
energy dissipation, which is defined in a two-dimensional field
as

εr (x) = 1

πr2

∫
|x ′ |�r

ε(x + x ′)dx ′, (10)
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FIG. 8. PDF of (a) the coarse-grained energy dissipation εr and (b) the coarse-grained enstrophy �r . The lognormal formula is also shown
(dashed line) for comparison.
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where r is a coarse-grained scale. The same operation can
be applied to the enstrophy � = ω2. Note the fact that the
velocity field in this active turbulence is smooth. The measured
energy dissipation and enstrophy is thus less influenced by
measurement noise or spatial resolution. Figure 8 shows a
test of the lognormal assumption at various scales for energy
dissipation [Fig. 8(a)] and enstrophy [Fig. 8(b)]. The results
here confirm the validation of the lognormal assumption.

VI. CONCLUSIONS

In summary, we proposed streamline segment analysis to
extract multiscale information based on the intrinsic flow
structure of the two-dimensional bacterial flow. The joint
PDF of measured � and �u displays an asymmetric pattern,
which can be linked with the special features, e.g., the cascade
process, of this two-dimensional active dynamic system. The
marginal distribution of the scale � shows two different
regimes, which are separated at �/R � 16. This two-regime
behavior is related to the change of the viscous influence with
the scale. Compared with the conventional structure function,
the �-based definition captures the flow structure in a more
natural way, showing evidently a nearly one decade power-law
range. The scaling exponent ζ (q) and singularity spectrum can
be described nicely by a lognormal formula with the inter-
mittency parameter μ = 0.20, which agrees closely with the
result for three-dimensional hydrodynamic turbulence. This
observed intermittency universality is important to understand
the turbulence physics.

Moreover, the direction of the energy and enstrophy cascade
is measured via the filter-space technique. The experimental
result confirms an inverse energy cascade as expected for this

active dynamic system. Concerning the enstrophy cascade, it is
more complex than the energy case. The present results suggest
a forward cascade when r/R � 3, but an inverse one when
r/R > 3. Additionally, the lognormal statistics is verified for
both the energy dissipation field and the enstrophy field.

Finally, we provide a comment on the results obtained in this
work. The dynamical property of the bacterial turbulence may
depend on several factors, for instance, the type of bacteria,
concentration, temperature, etc. Therefore, the measured inter-
mittency parameter μ and the Hurst number H may also show
such dependence. A systematical parametric study should be
conducted to check whether the two-dimensional bacterial
turbulence shares the same intermittency parameter as three-
dimensional hydrodynamical turbulence or not. Moreover, a
more detailed study of the inverse energy cascade in this active
dynamical system will enrich our understanding of not only
the bacterial turbulence, but also the high Reynolds number
fluid turbulence, where the inverse energy cascade exists.
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