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bstract

It is well recognized that the impact-acoustic emissions contain information that can indicate the presence of the adhesive defects in the bonding
tructures. In our previous papers, artificial neural network (ANN) was adopted to assess the bonding integrity of the tile–walls with the feature
xtracted from the power spectral density (PSD) of the impact-acoustic signals acting as the input of classifier. However, in addition to the
nconvenience posed by the general drawbacks such as long training time and large number of training samples needed, the performance of the
lassic ANN classifier is deteriorated by the similar spectral characteristics between different bonding status caused by abnormal impacts. In
his paper our previous works was developed by the employment of the least-squares support vector machine (LS-SVM) classifier instead of the

NN to derive a bonding integrity recognition approach with better reliability and enhanced immunity to surface roughness. With the help of the

pecially designed artificial sample slabs, experiments results obtained with the proposed method are provided and compared with that using the
NN classifier, demonstrating the effectiveness of the present strategy.
2008 Elsevier B.V. All rights reserved.
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. Introduction

With the extensive adoption of tiles on external walls of
igh-rise buildings for the purpose of decoration and wall pro-
ection in metropolitans like Hong Kong, there is unfortunately
n increasing number of accidents caused by tiles dropping due
o adhesive failure or bonding defects [1–3]. In response to the
eed for automatic maintenance of external walls of high-rise
uildings, an impact-acoustics method based on a novel high-
afety tile–wall inspection robotic system [4] has been developed
n our previous works [5–7] which is further extended in this

aper.

The well recognized fact that if bonded structures are
mpacted with a small, hard object, the characteristics of sounds
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iamen, China. Tel.: +86 592 2184077; fax: +86 592 2186397.
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assification

manated will vary depending on the bond quality lays the orig-
nal basis for the development of the impact-acoustic method in
onding quality evaluation. Avoiding the need to glue the sensor
n the test object, the manual operation of this method is sim-
le, convenient and cheap, but is unfortunately subjective and
perator-dependent. To remove its dependence on the human ear
nd experience, there have appeared many efforts to automate
he impact test operation to develop a quantitative, convenient,
asy-use and cost-efficient nondestructive method for disbonds
haracterization.

Based on the experimental results and FEM analysis, Ito [8]
ointed out that the degradation of stiffness of concrete struc-
ure can be evaluated with the resonant frequencies of the impact
coustics. Masanori Asano [9] derived from the frequency dis-
ribution impact acoustics parameters for developing a spectral

eature-based defects detection system. In another frequency-
istribution-based investigation [10], Huadong Wu defined the
atio of the power of the lower 1/3 frequency range to that of
he overall frequency range in the impact-sounds spectrum as

mailto:ftong@xmu.edu.cn
dx.doi.org/10.1016/j.sna.2008.01.020
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he power accumulation ratio factor and used it to characterize
he integrity of multi-layered materials. Pearson [11] developed
n impact acoustics-based nondestructive system to detect the
ntegrity of wheat kernels using time-domain and spectral mod-
ling of signal. In a similar investigation reported by Liu [4], a
arameter calculated by the area of different band in the power
pectrum density (PSD) of the impact-acoustic signals is defined
s the sound intensity ratio to quantitatively identify the bonding
efects of the tile–wall. Based on the theoretical analysis of the
mpact dynamics, Tong [5–7] proposed tile–wall bonding state

onitoring methods which employ the artificial neural network
ANN) classifier with features extracted from the PSD or time
omain pattern of the impact-acoustic signals.

As a convenient and traditional approach to fault detec-
ion and diagnosis, threshold (limit) checking method is widely
dopted in the previous research [4,8–11] to discriminate
he impact-acoustic signals. However, the performance of the
hreshold judging method is sensitive to the optimal selec-
ion of the threshold which poses serious difficulties in the
ractical applications. In our previous works, ANN classifier
as also applied to classify the features extracted from the

mpact-acoustic signals into different bonding classes [5–7].
onetheless, as a typically machine learning (ML) classifier,

he ANN methods are based on the empirical risk minimi-
ation (ERM) principle [12], which has been recognized as
annot always minimise the actual risk. Meanwhile, the effec-
iveness of the ANN methods is closely related to the amount of
raining samples. Vapnik [13] found that two correlated factors

ight lead to the classification error: insufficient training sam-
le and unreasonable structure. As to the impact-acoustics based
ile–wall bonding integrity inspection applications herein, both
roblems are rather common.

Moreover, limitations in impact-acoustic signal features also
onsiderably affect the generalization ability of the ANN classi-
er. As our previous research [6,7] revealed, the features directly
btained from the signature spectra are found to be sensitive to
he surface irregularities of the target surface, as the interaction
etween the impactor and the target surface in a nominally single
ap would lead to overlapping patterns between different bond-
ng integrity. As a result, the actual assessment performance of
he ANN classifier based on the frequency-domain feature was
eteriorated. So far, some feature-related attempts employing
ime-domain features [6] or the statistics transform of spectral
eatures [7] have been conducted upon this problem in our pre-
ious work, the work of this paper will focus on the adoption of
lternative classifier.

Founded on powerful statistical learning theory, the support
ector machine (SVM) invented by Vapnik in 1979 is character-
zed as its ability of studying the properties of learning procedure
n a small size sample case, and thus provided a new solution
or solving these problems. Recently, the application of SVM
14–18] is gaining more and more attention in the fields of pat-
ern recognition and classification motivated by its two distinct

eatures [14], i.e., first, it is often associated to the physical mean-
ng of the data and hence easy to interpret (in contrast, ANN does
ot contain any physical meaning). Second, it requires only small
mount of training samples.

i
t

tors A 144 (2008) 97–104

In this paper, based on signal modeling and analysis in our
revious research, SVM is introduced to statistically model
he impact-acoustic signals via the spectral features to derive
robust approach for the tile–wall bonding integrity assessment
t the presence of the abnormal impacts caused by surface irreg-
larities. To validate the effectiveness of the proposed method,
he classification results achieved with impact-acoustic signals
xperimentally obtained on the prepared sample slabs using
resent method are compared with that via the classic ANN
lassifier.

. Basis of SVM

.1. Basis of SVM [14–18]

Because the theory of SVM has been systematically pre-
ented in many literatures, its concept is only briefly introduced
n this section. The basic idea of SVM is to transform the sig-
al to a higher dimensional feature space and find the optimal
yperplane in the space that maximises the margin between the
lasses. Briefly, given a set of N data points {xi, yi}Ni=1, where
i ∈Rn is the i-th input data, and yi ∈ {−1,+1} is the label of the
ata. The SVM approach aims at finding a classifier of form:

(x) = sign

[
N∑

i=1

αiyiK(xi, x) + b

]
(1)

here αi are positive real constants and b is a real constant, in
eneral, K(xi,x) = 〈φ(xi),φ(x)〉, 〈·,·〉 is inner product, and φ(x) is
he nonlinear map from original space to the high dimensional
pace.

In the high dimensional space, we assume the data can be
eparated by a linear hyperplane, this will cause:

i[w
T φ(xi) + b] ≥ 1, i = 1, . . . , N. (2)

In case of such separating hyperplane does not exist, we
ntroduce a so called slack variable ξi such that

yi[wT φ(xi) + b] ≥ 1 − ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N
. (3)

According to the structural risk minimization principle, the
isk bound is minimized by the following minimization problem:

min
,b,ξ

J1(w, b, ξ) = 1

2
wT w + C

N∑
i=1

ξi (4)

here C is a positive constant parameter used to control the
radeoff between the training error and the margin.

.2. LS-SVM
Least squares support vector machines (LS-SVM) [16,17]
s a variant of SVM, which employs least squares error in the
raining error function. Here we introduce an LS-SVM classifier
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The typical signals obtained experimentally are illus-
trated in Figs. 2–4. From the resulting PSD curves (see
Figs. 2(b), 3(b) and 4(b)), a ring peak located around 8–10 kHz
F. Tong et al. / Sensors and

y reformulating the minimization problem (4) as:

min
,b,e

J2(w, b, e) = 1

2
wT w + ζ

2

N∑
i=1

e2
c,i. (6)

Subject to the equality constraints:

i[w
T φ(xi) + b] = 1 − ec,i, i = 1, . . . , N (7)

here ζ is a constant. The least square SVM (LS-SVM) clas-
ifier formulation above implicitly corresponds to a regression
nterpretation with binary targets yi = ±1.

In this study, w and b were calculated using a Matlab toolbox,
S-SVMlab1.5 developed by Suykens and Vandewalle [18].

. Experimental results

.1. Experimental configuration

In this section, experiments are carried out on artificial sample
labs to investigate the practical characteristics of the impact-
coustics signature. To simulate the physical bonding status, 3
ypes of sample slabs are prepared. One is a tiled-concrete slab
f good bonding strength (called Solid1 class); the second type
f tiled-slab contains a Ø140 mm circle-shaped void at concrete
ubstrate layer at the center location (called void class).

When considering the simplified impact mode, the influence
f the target surface roughness on the resulting acoustic signa-
ure is ignored. However, it has been observed that the abnormal

ultiple contacting behaviors caused by the surface irregular-
ty greatly affect the actual acoustic characteristics [6,7]. So
he third type of samples slab is specially prepared to feature
ood bonding integrity and rough surface formed by edges of
iles (called Solid2 class). The dimensions of all the slabs are:
00 mm × 400 mm × 150 mm.

The NDT experimental system is illustrated in Fig. 1. The
pparatus adopted includes: a rigid steel sphere of diameter
2 mm pushed by a coil used as the controlled impactor; a pre-
mplifier module; an A/D converter card with 40 kHz sampling

ate; a highly directional microphone. Such an impacting sys-
em generates a well-defined and simple input which in turn
xcites impact sounds with characteristics that facilitate signal
nterpretation.

Fig. 1. Experimental setup.
F
s

ig. 2. Time history (a) and PSD (b) of typical impact sound from Solid1 class
lab.

.2. Signature obtained and analysis

In time-domain, each time history contains 512 signal points
ampled at 40 kHz, triggered by the pulse used to activate
he impactor. To obtain the frequency-domain information, the
ower spectral density (PSD) of the signature is obtained with
he 512-point fast Fourier transform (FFT) calculation based
n the original time history. To remove the influence of impact
trength, the resulting PSD is then normalized with its maximal
agnitude to get the normalized PSD.
ig. 3. Time history (a) and PSD (b) of typical impact sound from Solid2 class
lab.
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tested with the test set. To illustrate the advantages of LS-SVM
ig. 4. Time history (a) and PSD (b) of typical impact sound from void class
lab.

s observed, which corresponding to the steel sphere’s ringing
s pointed out by [11–12]. Meanwhile the spectral compo-
ents within 0–8 kHz are concluded to be associated with target
tructure’s multiple mode flexural vibration [6]. According to
revious analysis [11,12], the energy distribution of these two
omponents may indicate the presence of bonding defects, which
rovides a theoretical basis for the classic spectral method. As
hown in Figs. 2(b) and 4(b), for Solid1 and void class, the rel-
tive strength of these two components of impact sounds is in
ood agreement with previous theoretical assessment [11,12],
ith the steel sphere’s spectral component reigning in Fig. 2(b)

nd the 0–8 kHz component dominating (see Fig. 4(b)) respec-
ively.

However, for Solid2 class characterized as good bonding
ntegrity but with surface irregularities, tapping on the rough
urface leads to multiple interactions between impactor and
he target surface in a nominally single tap [9,11,12]. Due to
he multiple contacts caused, the resulting time history con-
ained multiple acceleration peaks and relatively weak ringing
omponent (see Fig. 3(a)). As a result, the corresponding PSD
urve exhibits patterns similar to that of the debonded cases (see
ig. 4(b)) in the corresponding frequency ranges.

The experimental analysis above shows that, in view of the
ormal impact, the pattern of PSD curve can clearly indicate the
xistence of bonding defects and may produce a feasible indi-
ator for inspection and classification as reported by previous
orks [5–7]. However, as our previous investigation indicated

5–7], the abnormal taps caused by surface irregularities will
mpose difficulties on the ANN classifier in bonding property
ssessment due to the resulting similar spectral pattern between
ifferent classes.
It has been concluded that the main difference between ANNs
nd SVMs is in their risk minimisation [15]. In the case of
VMs, structural risk minimisation principle is used to min-

mise an upper bound based on an expected risk. Whereas in

m
t
i
l

tors A 144 (2008) 97–104

NNs, traditional empirical risk minimisation is used to min-
mise the error in training of data. Thus the difference in risk

inimisation may lead to a better generalisation performance
or SVMs than ANNs. In the present paper, enlightened by the
uperiority of the SVM in pattern recognition and classification,
he LS-SVM classifier is proposed to facilitate the robust assess-

ent of tile–wall bonding integrity at the presence of the surface
rregularities instead of the ANN.

. Recognition via the proposed method

.1. Multiple class classification

Regarding the tile–wall bonding integrity assessment system
erein, there are three types of classes that need to be discrim-
nated, ‘Solid1’, ‘Solid2’ and ‘Void’ class. Because SVM type
lassifiers can deal with only two classes, it is necessary to
ecompose a multiclass problem into a set of binary problems,
nd then combine to make a final multiclass prediction.

The basic idea behind combining binary classifiers is to
ecompose the multiclass problem into a set of easier and more
ccessible binary problems. Standard modern approaches for
ombining binary classifiers can be stated in terms of what is
alled output coding [19]. The basic idea behind output coding
s the following: given k classifiers trained on various partitions
f the classes, a new example is mapped into an output vec-
or. Each element in the output vector is the output from one
f the k classifiers, and a codebook is then used to map from
his vector to the class label. Regarding the three classes impact-
coustic signals, three classifiers are designed, among which the
rst classifier is trained to discriminate classes Solid2 and Void
rom Solid, the second classifier is trained to discriminate classes
olid1 and Void from Solid2, and the third classifier is trained to
iscriminate classes Solid1 and Solid2 from Void. In the present
ork, one-versus-all (OVA) output coding scheme [18] con-

ained in the LS-SVMlab toolbox was used for the multiple class
pplications as shown in Fig. 5.

.2. Feature extraction and SVM recognition

The LS-SVM based recognition generally consists of the
raining and classification. Data set are firstly trained with
S-SVM respectively through training sets obtained from the
orresponding artificial slabs. The whole PSD of the impact
ounds was divided into 16 equal intervals, and the area of
ach was extracted as the feature to be used as the input
f the LS-SVM classifier. In the training stage implemented
sing the LS-SVMlab [18], the fast conjugate gradient algo-
ithm is adopted to solve the set of linear equations [20] with
he Radial basis function (RBF) kernel selected as the kernel
cheme. After the training procedure, the LS-SVM classifier is
ethodology, the results are compared with that obtained from a
hree-layer BP artificial neural network consisting of a 16-node
nput layer, 8-node hidden layer as well as a two-node output
ayer.
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Fig. 5. Multiple class meth

.3. Classification results

In this study, impact sounds obtained in the laboratory with
typical sample specimens mentioned above are firstly divided

nto a training set and a test set. The training set of the sample
ata is used to train the LS-SVM model and the trained model is
valuated with the test set exclusively. In the overall 300 samples
f samples for each bonding case, the initial training set contains
00 samples of Solid1, 100 samples of Solid2 and 100 sam-
les of debonded signatures. The test set contains the remained
00 samples for each class. In the training process, the train-
ng set is randomly selected to provide enough information for
he learning algorithm. For the aim of comparison, the training
et is also applied to a classic frequency-domain feature-based
NN classifier. The classification results obtained with the pro-
osed LS-SVM classifier and the ANN classifier are presented
n Tables 1 and 2, respectively. To account for the effect of the
andom factor in simulation experiment, the simulation is inde-
endently carried out for 100 times to obtain the mean output

dopted as the final result.

First, the influence of the surface roughness on the clas-
ification performance is considered. As shown in the upper

c
r
T

able 1
lassification results with proposed LS-SVM method

ype Training and testing setting Mean t

olid1
100 training samples 200 test samples 1.5930olid2

oid

olid1
200 training samples 100 test samples 8.1210olid2

oid
ogy using OVA approach.

alf of Table 1, with LS-SVM classifier using the feature vec-
ors extracted from PSD curve, the accuracy rate is 96.78 and
9.35% for Solid1 and Solid2 classes, 97.08% for the debonded
ase, indicating the good discriminating ability of the pro-
osed approach with respect to bonding property and surface
oughness. Utilizing the classic BP-ANN classifier, the classifi-
ation rate of the Solid1, Solid2 and void class is 91.74, 94.27
nd 95.95%, respectively for the test set (see the upper half
f Table 2), implying performance degradation of the classi-
er caused by the surface irregularity induced similar patterns
mong different bonding qualities. Regarding the failure classi-
cation case where the solid classes are identified as void ones,

he LS-SVM approach produces a false detection rate of 3.22
nd 0.04% for Solid1 and Solid2 class, respectively, outperform-
ng the BP-ANN counterpart associated with a false detection
ate of 8.26 and 1.14%.

In addition, to make a comprehensive comparison between
he proposed SVM approach and the conventional BP-ANN,
lassifications are also performed with larger training set, which

onsisting of 200 number of samples for each class, with the
emained 100 samples each case composing the smaller test set.
he performance of the two techniques based on bigger training

raining time (s) Mean classification rate

Solid1 Solid2 Void

96.78% 0 3.22%
0.61% 99.35% 0.04%
0.49% 2.43% 97.08%

99.03% 0 0.97%
0.21% 99.68% 0.11%
0.74% 1.54% 97.72%
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Table 2
Classification results of BP-ANN classifier

Type Training and testing setting Mean training time (s) Mean classification rate

Solid1 Solid2 Void

Solid1
100 training samples 200 test samples 39.2615

91.74% 0 8.26%
Solid2 4.59% 94.27% 1.14%
Void 0.03% 4.02% 95.95%

Solid1
5.743

96.18% 0 3.82%
S
V

s
c
s
e
b
m
i
b
c

c
h

c
h
T

200 training samples 100 test samples 4olid2
oid

et is provided in the bottom of Tables 1 and 2, respectively. It
an be observed that, under a larger training set, SVM classifier
till achieves superior performance compared to BP-ANN strat-
gy. As indicated in the low half of Table 1, for SVM method,
igger training set leads to improvement of inspection perfor-
ance, with the classification rate of Solid1, Solid2 and void
ncreasing to 99.03, 99.68 and 97.72%, respectively. Similarly,
igger training set pulls the classification rate of the BP-ANN
lassifier to 96.18, 96.90 and 96.39%, respectively, which indi-

u
s
a

Fig. 6. Classification result against th
3 2.54% 96.90% 0.56%
0.39% 3.22% 96.39%

ates bigger performance rise compared to that of SVM (see low
alf of Table 2).

Meanwhile, the training time of the two classifiers is also
ompared with the same simulation software (MATLAB) and
ardware configuration. The comparison result is also shown in
ables 1 and 2 with the training of BP-ANN occupying 39.2615 s

nder 100 training samples and 45.7433 s under 200 training
amples, that of the LS-SVM classier consuming only 1.5930
nd 8.1210 s, respectively. It reveals that, using small and big

e number of training samples.
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raining set, the training of the BP-ANN classifier takes about 25
nd 5.6 times more time than the SVM counterpart does respec-
ively, implying more training time saving of SVM technique
ith respect to the BP-ANN under smaller training set.
To investigate the impact of the number of training samples

n the classification result, experiments with different num-
er of training dataset are carried out. The accuracy rates with
espect to the number of training dataset obtained with the pro-
osed LS-SVM approach and the BP-ANN classifier are shown
n Fig. 6(a)–(c). It can be observed from the figures that the
S-SVM classifier generally exhibits better tolerance on the
iminishing of the training set, with the accuracy rate of Solid1,
olid2 and void class standing at 92.03, 91.80 and 82.30%,
espectively at only 10 training samples. For the ANN case,
he classification rate is found to be significant affected by the
umber of training set, with the accuracy rate associated with
0 train samples greatly falling to 85.68, 78.20 and 71.40%,
espectively for the Solid1, Solid2 and void class. The bigger
egradation of the ANN performance, especially for Solid2 and
oid case, demonstrates the better generalization performance
f the SVM model, which is also consistent with that concluded
n [14].

. Conclusion and discussion

Impact acoustics-based methods have been extensively inves-
igated in the bonding integrity inspection of the layered adhesive
tructure. Most of our previous research employed the classic
NN classifier, the performance of which is found to be hindered
y some drawbacks, such as time consuming training process,
arge amount of training dataset as well as the sensitivity to the
eature mismatch caused by the abnormal impacts on surface
rregularities.

Aiming to enhance the reliability with respect to the surface
oughness, a novel NDE strategy based on the LS-SVM classifier
s derived to develop a quantitative automatic tile–wall inspec-
ion with better reliability. Classification experiments carried
ut with the help of artificial slabs demonstrate that, while the
xistence of the surface non-uniformity seriously deteriorate the
erformance of the classic BP-ANN classifier, the proposed LS-
VM strategy exhibits high tolerance to the mismatch caused.

Moreover, classification experiments with different number
f training dataset indicated that, the training dataset required
o ensure satisfactory performance for the LS-SVM classifier
s significantly fewer than that related with BP-ANN classi-
er. Meanwhile, another advantage of the LS-SVM approach

s that the training time it needs is much shorter than that of the
P-ANN classier, mainly due to the fact that its training only
epends on the support vectors, not on the whole train dataset
s with ANN. These two superiorities of the LS-SVM classifier
ill be important for the practical implementation of the on-line

nspection system that needs to deal with large amount of impact-
coustic signals. In view of the enhanced surface roughness

mmunity as well as the implementation convenience offered by
he adoption of the SVM model, the proposed NDE method pro-
ides an efficient alternative for the impact-acoustic inspection
f tile–wall bonding integrity.

[
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